organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[3-(1H-Imidazol-1-yl)prop­yl]-3-methyl-5-(thio­phen-2-ylmeth­yl)-4H-1,2,4-triazole monohydrate

aDepartment of Physics, Saveetha School of Engineering, Saveetha University, Chennai-5, India, bDepartment of Physics, Kunthavai Naachiar Government Arts College (w) (Autonomous), Thanjavur-7, India, cDepartment of Chemistry, Faculty of Arts and Sciences, Karadeniz Teknik University, Trabzon 61080, Turkey, and dCrystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli-24, India
*Correspondence e-mail: vasuki.arasi@yahoo.com

(Received 21 October 2010; accepted 7 November 2010; online 13 November 2010)

In the title compound, C14H17N5S·H2O, the triazole ring makes dihedral angles of 48.15 (8) and 84.92 (8)° with the imidazole and thio­phenyl rings, respectively. The water mol­ecule is involved in inter­molecular O—H⋯N hydrogen bonding.

Related literature

For details of the synthesis, see: Ünver et al. (2009[Ünver, Y., Sancak, K., Tanak, H., Değirmencioğlu, I., Düğdü, E., Er, M. & Işik, Ş. (2009). J. Mol. Struct. 936, 46-55.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Quah, C. K., Vijesh, A. M., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o29-o30.]); Kalkan et al. (2007[Kalkan, H., Ustabaş, R., Sancak, K., Ünver, Y. & Vázquez-López, E. M. (2007). Acta Cryst. E63, o2449-o2451.]); Ustabaş et al. (2007[Ustabaş, R., Çoruh, U., Sancak, K., Ünver, Y. & Vázquez-López, E. M. (2007). Acta Cryst. E63, o2982-o2983.], 2009[Ustabaş, R., Ünver, Y., Suleymanoğlu, N., Çoruh, U. & Sancak, K. (2009). Acta Cryst. E65, o1006-o1007.]); Ünver et al. (2006[Ünver, Y., Ustabaş, R., Çoruh, U., Sancak, K. & Vázquez-López, E. M. (2006). Acta Cryst. E62, o3938-o3939.]). For the biological activity of triazoles, see: Ustabaş, et al. (2006a[Ustabaş, R., Çoruh, U., Sancak, K., Düğdü, E. & Vázquez-López, E. M. (2006a). Acta Cryst. E62, o4265-o4267.],b[Ustabaş, R., Çoruh, U., Sancak, K., Ünver, Y. & Vázquez-López, E. M. (2006b). Acta Cryst. E62, o5520-o5522.]); Yılmaz et al. (2006[Yılmaz, I., Arslan, N. B., Kazak, C., Sancak, K. & Unver, Y. (2006). Acta Cryst. E62, o3067-o3068.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17N5S·H2O

  • Mr = 305.40

  • Monoclinic, P 21 /c

  • a = 9.5584 (12) Å

  • b = 9.4873 (10) Å

  • c = 17.644 (3) Å

  • β = 99.360 (12)°

  • V = 1578.7 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.88 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.603, Tmax = 0.705

  • 2855 measured reflections

  • 2679 independent reflections

  • 2336 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.137

  • S = 1.12

  • 2679 reflections

  • 200 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯N5i 0.93 (1) 2.04 (2) 2.915 (4) 155 (4)
O1W—H1W⋯N2 0.93 (1) 2.05 (2) 2.948 (3) 161 (4)
Symmetry code: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ZORTEP (Zsolnai, 1997[Zsolnai, L. (1997). ZORTEP97. University of Heidelberg, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Triazole compounds and their derivatives have many applications in industry and medicine. Ionic liquids consisting of imidazolium and triazolium salts have attracted increasing interest as an alternative to classical organic solvents for a wide range of chemical syntheses, biocatalysis, electrochemical applications, energetic materials, nano-rods, liquid-liquid separation and polymerization. These interesting liquids containing imidazole and triazole ring systems have unique physical and chemical properties: low melting point, very low vapour pressure, a large liquid phase range, tunable miscibility, and good hydrolytic and thermal stability (Ustabaş et al., 2006). In the field of medicine triazole derivatives were reported to exhibit various pharmacological activities such as antimicrobial, analgesic, anti- inflammatory, anticancer and antioxidant properties. A few derivatives of triazoles have exhibited antimicrobial activity. Some of the drugs such as ribavirin (antiviral agent), rizatriptan (anti migraine agent), alprazolam (anxiolytic agent), fluconazole and itraconazole (antifungal agents) are the best examples for potent molecules possessing the triazole nucleus (Fun et al., 2010). Furthermore, in many compounds, the thiophene unit is associated with high anticancer and antifungal activity (Kalkan et al., 2007). In a previous paper, we reported the 1,2,4 triazole derivative with different substituents. We report here the crystal structure of the title compound (I) (Fig.1) in order to examine the structure activity of 1,2,4 triazole with a thiophene substituent.

Compound (I) contains three planar rings (Fig.1), namely a triazole ring N1/N2/C7/N3/C6 (A), an imidazole ring N4/C12/C13/N5/C14 (B) and a thiophene ring C1/C2/C3/C4/S1 (C). The dihedral angle between rings A/B, A/C and B/C are 48.15 (8)°, 84.92 (8)° and 74.73 (9)°, respectively. In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The C—N bond lengths in the triazole ring of all molecules lie in the range of 1.260 (3)–1.349 (4) Å. These are longer than a typical double CN bond [1.269 (2) Å], but shorter than a C—N single bond [1.443 (4) Å]. The bond length N2—C7 [1.306 (3) Å] and N3—C7 [1.365 (3) Å] are in agreement with the corresponding values in similar structures containing triazole ring such as [1.290 (3)Å and 1.384 (3) Å; Yılmaz et al., 2006], [1.287 (4)Å and 1.374 (4) Å; Ustabaş et al., 2007] and [1.292 (3)Å and 1.373 (3) Å; Ustabaş et al., 2009]. The N1—N2 [1.389 (3) Å] bond length is close to that reported for similar compounds [1.388 (2)Å Ünver et al., 2006] and [1.398 (4)Å Ustabaş, Çoruh, Sancak, Ünver & Vázquez-López (2006)]. Atom N3 has a trigonal configuration, the sum of three bond angles around them being 360° (Kalkan et al., 2007). The bond lengths and angles in the imidazole and thiophenyl rings are normal. In the thiophenyl ring S1—C4 [1.711 (2) Å] bond is longer than S1—C1 [1.699 (3) Å] bond. These S—C distances are in agreement with the corresponding values of those found in other structures containing thiophene, [1.706 (2)Å and 1.723 (2) Å; Ünver et al., 2006], [1.710 (5)Å and 1.724 (4) Å; Ustabaş,Çoruh, Sancak, Ünver & Vázquez-López (2006)],[1.701 (3)Å and 1.712 (2) Å; Yılmaz et al., 2006], [1.685 (5)Å and 1.692 (6) Å; Ustabaş et al., 2007] and [1.698 (3)Å and 1.735 (6) Å; Ustabaş et al., 2009]. The exocyclic bond angles N1—C6—C5 and N2—C7—C8 are 125.08 (18)° and 125.73 (19)°, respectively. These increase from the normal value of 120° might be the consequence of repulsion between the lone pair of electrons on atom N1 and H5B attached to C5(N1···H5B = 2.563 Å) and on atom N2 and H8A attached to C8(N2···H8B = 2.566 Å), respectively. The widening of the excocyclic angles N3—C9—C10 [112.3 (16)°]and C9—C10—C11 [112.5 (19)°] from the normal 109° may be due to the steric repulsion between H8B and H10A (H8B ··· H10A = 2.547 Å) and H9A and H10B (H9A··· H10B = 2.357 Å), respectively. The C10—C11—N4 exocyclic angle [112.13 (18)°] deviate from the normal value of 109° may be due to the consequence of repulsion between the lone pair of electrons on atom N4 and H11A and H11B attached to C11 (N4···H11A = 1.998Å and N4···H11B = 1.998 Å). The C11—N4—C14 exocyclic angle [127.4 (2)°] significantly deviate from the normal value of 120° may be due to the consequence of repulsion between the lone pair of electrons on atom N4 and H14 at C14 (N4···H14 = 2.019 Å). The N3—C9—C10—C11 torsion angle of 178.95 (18)° indicates that the triazole ring and the immidazole moiety has an E-Configuration across the C9—C10 bond. The C9—N3—C6—C5 torsion angle of 4.3 (3)° indicates that the imidazole moiety and the thiophenyl moiety are in Z-Configuration across the N3—N6 bond. The water molecule is involved in the intermolecular O–H···N hydrogen bonding (Table 2), which is effective in stabilizing the crystal structure.

Related literature top

For details of the synthesis, see: Ünver et al. (2009). For related structures, see: Fun et al. (2010); Kalkan et al. (2007); Ustabaş et al. (2007, 2009); Ünver et al. (2006). For the biological activity of triazoles, see: Ustabaş, et al. (2006a,b); Yılmaz et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

The compound was synthesized by published method (Ünver et al.,2009)

Refinement top

Water H atoms were located in a difference Fourier map and isotropically refined with O—H distance restraints of 0.90 (1) Å. All the other H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.93(aromatic),0.96(methyl) and 0.97Å (methylene),N—H = 0.86Å and refined using a riding model with Uiso(H) = 1.2Ueq or 1.5Ueq (parent atom).In the absence of significant anomalous scattering effects,Friedel pairs were merged.

Structure description top

Triazole compounds and their derivatives have many applications in industry and medicine. Ionic liquids consisting of imidazolium and triazolium salts have attracted increasing interest as an alternative to classical organic solvents for a wide range of chemical syntheses, biocatalysis, electrochemical applications, energetic materials, nano-rods, liquid-liquid separation and polymerization. These interesting liquids containing imidazole and triazole ring systems have unique physical and chemical properties: low melting point, very low vapour pressure, a large liquid phase range, tunable miscibility, and good hydrolytic and thermal stability (Ustabaş et al., 2006). In the field of medicine triazole derivatives were reported to exhibit various pharmacological activities such as antimicrobial, analgesic, anti- inflammatory, anticancer and antioxidant properties. A few derivatives of triazoles have exhibited antimicrobial activity. Some of the drugs such as ribavirin (antiviral agent), rizatriptan (anti migraine agent), alprazolam (anxiolytic agent), fluconazole and itraconazole (antifungal agents) are the best examples for potent molecules possessing the triazole nucleus (Fun et al., 2010). Furthermore, in many compounds, the thiophene unit is associated with high anticancer and antifungal activity (Kalkan et al., 2007). In a previous paper, we reported the 1,2,4 triazole derivative with different substituents. We report here the crystal structure of the title compound (I) (Fig.1) in order to examine the structure activity of 1,2,4 triazole with a thiophene substituent.

Compound (I) contains three planar rings (Fig.1), namely a triazole ring N1/N2/C7/N3/C6 (A), an imidazole ring N4/C12/C13/N5/C14 (B) and a thiophene ring C1/C2/C3/C4/S1 (C). The dihedral angle between rings A/B, A/C and B/C are 48.15 (8)°, 84.92 (8)° and 74.73 (9)°, respectively. In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The C—N bond lengths in the triazole ring of all molecules lie in the range of 1.260 (3)–1.349 (4) Å. These are longer than a typical double CN bond [1.269 (2) Å], but shorter than a C—N single bond [1.443 (4) Å]. The bond length N2—C7 [1.306 (3) Å] and N3—C7 [1.365 (3) Å] are in agreement with the corresponding values in similar structures containing triazole ring such as [1.290 (3)Å and 1.384 (3) Å; Yılmaz et al., 2006], [1.287 (4)Å and 1.374 (4) Å; Ustabaş et al., 2007] and [1.292 (3)Å and 1.373 (3) Å; Ustabaş et al., 2009]. The N1—N2 [1.389 (3) Å] bond length is close to that reported for similar compounds [1.388 (2)Å Ünver et al., 2006] and [1.398 (4)Å Ustabaş, Çoruh, Sancak, Ünver & Vázquez-López (2006)]. Atom N3 has a trigonal configuration, the sum of three bond angles around them being 360° (Kalkan et al., 2007). The bond lengths and angles in the imidazole and thiophenyl rings are normal. In the thiophenyl ring S1—C4 [1.711 (2) Å] bond is longer than S1—C1 [1.699 (3) Å] bond. These S—C distances are in agreement with the corresponding values of those found in other structures containing thiophene, [1.706 (2)Å and 1.723 (2) Å; Ünver et al., 2006], [1.710 (5)Å and 1.724 (4) Å; Ustabaş,Çoruh, Sancak, Ünver & Vázquez-López (2006)],[1.701 (3)Å and 1.712 (2) Å; Yılmaz et al., 2006], [1.685 (5)Å and 1.692 (6) Å; Ustabaş et al., 2007] and [1.698 (3)Å and 1.735 (6) Å; Ustabaş et al., 2009]. The exocyclic bond angles N1—C6—C5 and N2—C7—C8 are 125.08 (18)° and 125.73 (19)°, respectively. These increase from the normal value of 120° might be the consequence of repulsion between the lone pair of electrons on atom N1 and H5B attached to C5(N1···H5B = 2.563 Å) and on atom N2 and H8A attached to C8(N2···H8B = 2.566 Å), respectively. The widening of the excocyclic angles N3—C9—C10 [112.3 (16)°]and C9—C10—C11 [112.5 (19)°] from the normal 109° may be due to the steric repulsion between H8B and H10A (H8B ··· H10A = 2.547 Å) and H9A and H10B (H9A··· H10B = 2.357 Å), respectively. The C10—C11—N4 exocyclic angle [112.13 (18)°] deviate from the normal value of 109° may be due to the consequence of repulsion between the lone pair of electrons on atom N4 and H11A and H11B attached to C11 (N4···H11A = 1.998Å and N4···H11B = 1.998 Å). The C11—N4—C14 exocyclic angle [127.4 (2)°] significantly deviate from the normal value of 120° may be due to the consequence of repulsion between the lone pair of electrons on atom N4 and H14 at C14 (N4···H14 = 2.019 Å). The N3—C9—C10—C11 torsion angle of 178.95 (18)° indicates that the triazole ring and the immidazole moiety has an E-Configuration across the C9—C10 bond. The C9—N3—C6—C5 torsion angle of 4.3 (3)° indicates that the imidazole moiety and the thiophenyl moiety are in Z-Configuration across the N3—N6 bond. The water molecule is involved in the intermolecular O–H···N hydrogen bonding (Table 2), which is effective in stabilizing the crystal structure.

For details of the synthesis, see: Ünver et al. (2009). For related structures, see: Fun et al. (2010); Kalkan et al. (2007); Ustabaş et al. (2007, 2009); Ünver et al. (2006). For the biological activity of triazoles, see: Ustabaş, et al. (2006a,b); Yılmaz et al. (2006). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the c axis. Intermolecular O—H···N hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Crystal Packing of the title compound with hydrogen bonds.
[Figure 4] Fig. 4. Crystal packing of the title compound viewed along the c axis. Intermolecular O—H···N hydrogen bonds are shown as dashed lines.
4-[3-(1H-Imidazol-1-yl)propyl]-3-methyl-5-(thiophen-2-ylmethyl)- 4H-1,2,4-triazole monohydrate top
Crystal data top
C14H17N5S·H2OF(000) = 648
Mr = 305.40Dx = 1.285 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
a = 9.5584 (12) ÅCell parameters from 25 reflections
b = 9.4873 (10) Åθ = 20–30°
c = 17.644 (3) ŵ = 1.88 mm1
β = 99.360 (12)°T = 293 K
V = 1578.7 (4) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2679 independent reflections
Radiation source: fine-focus sealed tube2336 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 2 pixels mm-1θmax = 64.9°, θmin = 4.7°
ω–2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.603, Tmax = 0.705l = 2020
2855 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0774P)2 + 0.5509P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
2679 reflectionsΔρmax = 0.31 e Å3
200 parametersΔρmin = 0.34 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (2)
Crystal data top
C14H17N5S·H2OV = 1578.7 (4) Å3
Mr = 305.40Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.5584 (12) ŵ = 1.88 mm1
b = 9.4873 (10) ÅT = 293 K
c = 17.644 (3) Å0.30 × 0.25 × 0.20 mm
β = 99.360 (12)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2679 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
2336 reflections with I > 2σ(I)
Tmin = 0.603, Tmax = 0.705Rint = 0.016
2855 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0513 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.31 e Å3
2679 reflectionsΔρmin = 0.34 e Å3
200 parameters
Special details top

Experimental. North A.C.T., Phillips D.C. & Mathews F.S. (1968) Acta. Cryst. A24, 351 Number of psi-scan sets used was 5 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37723 (6)0.43126 (6)0.61955 (4)0.0582 (3)
N30.39660 (16)0.21826 (17)0.81129 (9)0.0356 (4)
N10.61089 (18)0.2561 (2)0.78623 (10)0.0442 (5)
N40.01247 (18)0.0268 (2)0.74184 (11)0.0456 (5)
N20.60666 (18)0.29618 (19)0.86153 (10)0.0437 (5)
C40.3386 (2)0.2567 (2)0.62899 (11)0.0410 (5)
C70.4785 (2)0.2729 (2)0.87518 (11)0.0393 (5)
N50.1397 (2)0.0259 (3)0.63795 (14)0.0662 (6)
C90.2487 (2)0.1719 (2)0.80399 (12)0.0410 (5)
H9A0.20410.17970.75070.049*
H9B0.19830.23360.83420.049*
C50.4407 (2)0.1592 (2)0.67757 (12)0.0465 (5)
H5A0.39680.06720.67890.056*
H5B0.52460.14820.65370.056*
C30.2087 (2)0.2246 (3)0.58660 (12)0.0494 (6)
H30.16780.13550.58440.059*
C120.0596 (2)0.0922 (3)0.68159 (14)0.0501 (6)
H120.14010.14800.68360.060*
C80.4268 (3)0.3028 (3)0.94823 (13)0.0592 (7)
H8A0.50390.33650.98550.089*
H8B0.38920.21800.96680.089*
H8C0.35380.37310.93970.089*
C100.2361 (2)0.0211 (2)0.83060 (12)0.0446 (5)
H10A0.27920.01380.88420.053*
H10B0.28800.04030.80110.053*
C60.4841 (2)0.2100 (2)0.75747 (11)0.0372 (5)
C20.1441 (2)0.3447 (3)0.54633 (14)0.0570 (6)
H20.05640.34200.51450.068*
C10.2227 (3)0.4610 (3)0.55909 (15)0.0586 (6)
H10.19600.54830.53740.070*
C130.0351 (3)0.0591 (3)0.61877 (15)0.0588 (7)
H130.02990.08970.56920.071*
C110.0822 (2)0.0285 (3)0.82172 (13)0.0548 (6)
H11A0.07980.12360.84170.066*
H11B0.03050.03200.85180.066*
C140.1074 (2)0.0419 (3)0.71219 (17)0.0590 (7)
H140.16110.09480.74130.071*
O1W0.8146 (3)0.2886 (3)1.00449 (18)0.1142 (11)
H1W0.758 (3)0.312 (4)0.9581 (11)0.111 (13)*
H2W0.801 (5)0.341 (5)1.0473 (14)0.16 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0574 (4)0.0422 (4)0.0688 (5)0.0088 (2)0.0084 (3)0.0012 (3)
N30.0323 (8)0.0379 (9)0.0360 (8)0.0000 (7)0.0033 (6)0.0008 (7)
N10.0393 (9)0.0478 (11)0.0460 (10)0.0052 (8)0.0085 (7)0.0062 (8)
N40.0333 (9)0.0503 (11)0.0529 (11)0.0075 (8)0.0058 (7)0.0015 (8)
N20.0399 (9)0.0454 (10)0.0439 (9)0.0064 (8)0.0011 (7)0.0028 (8)
C40.0495 (11)0.0409 (11)0.0327 (10)0.0069 (9)0.0067 (8)0.0032 (8)
C70.0404 (10)0.0398 (11)0.0361 (10)0.0002 (8)0.0017 (8)0.0022 (8)
N50.0560 (13)0.0636 (14)0.0717 (14)0.0045 (11)0.0115 (11)0.0065 (11)
C90.0293 (10)0.0478 (12)0.0450 (11)0.0017 (8)0.0031 (8)0.0009 (9)
C50.0562 (13)0.0422 (12)0.0415 (11)0.0023 (10)0.0093 (10)0.0024 (9)
C30.0529 (13)0.0553 (14)0.0406 (11)0.0170 (10)0.0090 (9)0.0014 (10)
C120.0404 (11)0.0507 (13)0.0604 (14)0.0112 (10)0.0117 (10)0.0003 (11)
C80.0567 (14)0.0789 (18)0.0412 (12)0.0017 (13)0.0053 (10)0.0093 (11)
C100.0368 (11)0.0516 (13)0.0440 (11)0.0037 (9)0.0025 (8)0.0046 (9)
C60.0394 (10)0.0334 (10)0.0393 (10)0.0016 (8)0.0081 (8)0.0050 (8)
C20.0408 (12)0.0800 (18)0.0484 (13)0.0049 (11)0.0021 (10)0.0044 (12)
C10.0578 (14)0.0577 (15)0.0579 (14)0.0098 (12)0.0017 (11)0.0059 (11)
C130.0603 (15)0.0606 (15)0.0547 (14)0.0212 (12)0.0066 (11)0.0003 (11)
C110.0428 (12)0.0710 (16)0.0514 (13)0.0128 (11)0.0103 (10)0.0055 (11)
C140.0404 (12)0.0542 (15)0.0798 (18)0.0017 (10)0.0017 (11)0.0041 (12)
O1W0.1007 (18)0.106 (2)0.113 (2)0.0367 (15)0.0494 (16)0.0440 (17)
Geometric parameters (Å, º) top
S1—C11.699 (3)C5—H5B0.9700
S1—C41.711 (2)C3—C21.429 (4)
N3—C71.365 (3)C3—H30.9300
N3—C61.366 (3)C12—C131.349 (4)
N3—C91.466 (2)C12—H120.9300
N1—C61.311 (3)C8—H8A0.9600
N1—N21.389 (3)C8—H8B0.9600
N4—C141.348 (3)C8—H8C0.9600
N4—C121.369 (3)C10—C111.528 (3)
N4—C111.458 (3)C10—H10A0.9700
N2—C71.306 (3)C10—H10B0.9700
C4—C31.376 (3)C2—C11.333 (4)
C4—C51.507 (3)C2—H20.9300
C7—C81.481 (3)C1—H10.9300
N5—C141.305 (4)C13—H130.9300
N5—C131.369 (4)C11—H11A0.9700
C9—C101.516 (3)C11—H11B0.9700
C9—H9A0.9700C14—H140.9300
C9—H9B0.9700O1W—H1W0.933 (10)
C5—C61.484 (3)O1W—H2W0.931 (10)
C5—H5A0.9700
C1—S1—C492.43 (12)C7—C8—H8A109.5
C7—N3—C6105.21 (16)C7—C8—H8B109.5
C7—N3—C9126.96 (17)H8A—C8—H8B109.5
C6—N3—C9127.76 (17)C7—C8—H8C109.5
C6—N1—N2107.03 (16)H8A—C8—H8C109.5
C14—N4—C12106.5 (2)H8B—C8—H8C109.5
C14—N4—C11127.4 (2)C9—C10—C11112.50 (19)
C12—N4—C11126.1 (2)C9—C10—H10A109.1
C7—N2—N1107.71 (16)C11—C10—H10A109.1
C3—C4—C5128.1 (2)C9—C10—H10B109.1
C3—C4—S1110.58 (17)C11—C10—H10B109.1
C5—C4—S1121.31 (16)H10A—C10—H10B107.8
N2—C7—N3109.94 (18)N1—C6—N3110.11 (17)
N2—C7—C8125.73 (19)N1—C6—C5125.08 (18)
N3—C7—C8124.32 (19)N3—C6—C5124.80 (18)
C14—N5—C13104.7 (2)C1—C2—C3112.9 (2)
N3—C9—C10112.32 (16)C1—C2—H2123.5
N3—C9—H9A109.1C3—C2—H2123.5
C10—C9—H9A109.1C2—C1—S1112.2 (2)
N3—C9—H9B109.1C2—C1—H1123.9
C10—C9—H9B109.1S1—C1—H1123.9
H9A—C9—H9B107.9C12—C13—N5110.7 (2)
C6—C5—C4113.35 (18)C12—C13—H13124.7
C6—C5—H5A108.9N5—C13—H13124.7
C4—C5—H5A108.9N4—C11—C10112.13 (18)
C6—C5—H5B108.9N4—C11—H11A109.2
C4—C5—H5B108.9C10—C11—H11A109.2
H5A—C5—H5B107.7N4—C11—H11B109.2
C4—C3—C2111.9 (2)C10—C11—H11B109.2
C4—C3—H3124.1H11A—C11—H11B107.9
C2—C3—H3124.1N5—C14—N4112.3 (2)
C13—C12—N4105.7 (2)N5—C14—H14123.8
C13—C12—H12127.1N4—C14—H14123.8
N4—C12—H12127.1H1W—O1W—H2W116.6 (17)
C6—N1—N2—C70.0 (2)C4—C5—C6—N368.3 (3)
C1—S1—C4—C30.50 (17)C4—C3—C2—C10.6 (3)
C1—S1—C4—C5178.72 (18)C3—C2—C1—S10.2 (3)
N1—N2—C7—N30.0 (2)C4—S1—C1—C20.2 (2)
N1—N2—C7—C8179.0 (2)N4—C12—C13—N50.3 (3)
C6—N3—C7—N20.1 (2)C14—N5—C13—C120.5 (3)
C9—N3—C7—N2177.05 (18)C14—N4—C11—C10123.4 (3)
C6—N3—C7—C8179.0 (2)C12—N4—C11—C1054.5 (3)
C9—N3—C7—C83.9 (3)C9—C10—C11—N461.6 (3)
C7—N3—C9—C1085.2 (2)C13—N5—C14—N40.5 (3)
C6—N3—C9—C1091.3 (2)C12—N4—C14—N50.3 (3)
C3—C4—C5—C6126.8 (2)C11—N4—C14—N5177.9 (2)
S1—C4—C5—C654.2 (2)C3—C4—C5—C6126.8 (2)
C5—C4—C3—C2178.5 (2)S1—C4—C5—C654.2 (2)
S1—C4—C3—C20.7 (2)C4—C5—C6—N368.3 (3)
C14—N4—C12—C130.0 (2)C4—C5—C6—N1110.2 (2)
C11—N4—C12—C13178.3 (2)C5—C6—N3—C94.3 (3)
N3—C9—C10—C11178.95 (18)C6—N3—C9—C1091.3 (2)
N2—N1—C6—N30.0 (2)N3—C9—C10—C11178.95 (18)
N2—N1—C6—C5178.65 (19)C9—C10—C11—N461.6 (3)
C7—N3—C6—N10.0 (2)C10—C11—N4—C1254.5 (3)
C9—N3—C6—N1177.03 (18)C10—C11—N4—C14123.4 (3)
C7—N3—C6—C5178.63 (19)C8—C7—N3—C93.9 (3)
C9—N3—C6—C54.3 (3)C7—N3—C9—C1085.2 (2)
C4—C5—C6—N1110.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···N5i0.93 (1)2.04 (2)2.915 (4)155 (4)
O1W—H1W···N20.93 (1)2.05 (2)2.948 (3)161 (4)
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H17N5S·H2O
Mr305.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.5584 (12), 9.4873 (10), 17.644 (3)
β (°) 99.360 (12)
V3)1578.7 (4)
Z4
Radiation typeCu Kα
µ (mm1)1.88
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.603, 0.705
No. of measured, independent and
observed [I > 2σ(I)] reflections
2855, 2679, 2336
Rint0.016
(sin θ/λ)max1)0.587
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.137, 1.12
No. of reflections2679
No. of parameters200
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.34

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), MolEN (Fair, 1990), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and ZORTEP (Zsolnai, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···N5i0.931 (10)2.04 (2)2.915 (4)155 (4)
O1W—H1W···N20.933 (10)2.051 (17)2.948 (3)161 (4)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

VG thanks the UGC, India, for financial assistance under a Minor Research Project (2010–2011) and also thanks the Regional Sophisticated Instrumentation Centre for the data collection. DÜ and GK thank the Research Fund of Karadeniz Technical University for its support of this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFun, H.-K., Quah, C. K., Vijesh, A. M., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o29–o30.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalkan, H., Ustabaş, R., Sancak, K., Ünver, Y. & Vázquez-López, E. M. (2007). Acta Cryst. E63, o2449–o2451.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationÜnver, Y., Sancak, K., Tanak, H., Değirmencioğlu, I., Düğdü, E., Er, M. & Işik, Ş. (2009). J. Mol. Struct. 936, 46-55.  Google Scholar
First citationÜnver, Y., Ustabaş, R., Çoruh, U., Sancak, K. & Vázquez-López, E. M. (2006). Acta Cryst. E62, o3938–o3939.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUstabaş, R., Çoruh, U., Sancak, K., Düğdü, E. & Vázquez-López, E. M. (2006a). Acta Cryst. E62, o4265–o4267.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUstabaş, R., Çoruh, U., Sancak, K., Ünver, Y. & Vázquez-López, E. M. (2006b). Acta Cryst. E62, o5520–o5522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUstabaş, R., Çoruh, U., Sancak, K., Ünver, Y. & Vázquez-López, E. M. (2007). Acta Cryst. E63, o2982–o2983.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUstabaş, R., Ünver, Y., Suleymanoğlu, N., Çoruh, U. & Sancak, K. (2009). Acta Cryst. E65, o1006–o1007.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYılmaz, I., Arslan, N. B., Kazak, C., Sancak, K. & Unver, Y. (2006). Acta Cryst. E62, o3067–o3068.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZsolnai, L. (1997). ZORTEP97. University of Heidelberg, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds