metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-aminopyridinium) tetra­chloridozincate(II)

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fuxuequn222@163.com

(Received 6 November 2010; accepted 12 November 2010; online 17 November 2010)

In the title compound, (C5H7N2)2[ZnCl4], the pyridine N atoms are protonated and the [ZnCl4]2− anions adopt a slightly distorted tetra­hedral configuration. In the crystal, weak N—H⋯Cl hydrogen bonds link the mol­ecules into layers, while weak ππ inter­actions [centroid–centroid distance = 4.2758 (18) Å] also help to stabilize the packing.

Related literature

For background to phase transition materials, see: Li et al. (2008[Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. . 11, 1959-1962.]); Ye et al. (2009[Ye, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42-43.]); Zhang et al. (2010[Zhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z., Xiong, R. G. & Huang, S. D. (2010). J. Am. Chem. Soc. 131, 7300-7302.])

[Scheme 1]

Experimental

Crystal data
  • (C5H7N2)2[ZnCl4]

  • Mr = 397.42

  • Monoclinic, C 2/c

  • a = 8.3520 (17) Å

  • b = 14.198 (3) Å

  • c = 13.913 (3) Å

  • β = 93.70 (3)°

  • V = 1646.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.13 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.653, Tmax = 0.659

  • 8175 measured reflections

  • 1870 independent reflections

  • 1612 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.103

  • S = 1.21

  • 1870 reflections

  • 99 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯Cl1 0.90 (4) 2.44 (4) 3.335 (3) 170 (3)
N1—H1A⋯Cl2i 0.88 (4) 2.42 (4) 3.291 (3) 168 (4)
N2—H2A⋯Cl1ii 0.87 (3) 2.61 (3) 3.325 (2) 140 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The asymmetric unit of the title compound is built up from one protonated 2-amino-pyridinium cation where the non-hydrogen atoms are practically co-planar with a mean deviation of 0.0101 (3)Å and a half of [ZnCl4]2- anion (Fig. 1). The [ZnCl4]2- anion is slightly distorted with the Zn—Cl distances and Cl—Zn—Cl angles of 2.2800 (8)Å to 2.2819 (8)Å and 104.40 (3)° to 114.65 (4)°, respectively. In the crystal structure (Fig. 2), π-π packing interactions of adjacent pyridine rings with a Cg1—Cg2 distance of 4.2758 (18)Å link the cations chains along b axis. The N—H···Cl hydrogen bonds with the average N—Cl distances of 3.317 A link the cations and anions into plan parallel to [1 1 0].

Related literature top

For background to phase transition materials, see: Li et al. (2008); Ye et al. (2009); Zhang et al. (2010)

Experimental top

As a continuation of our study of phase transition materials (Li et al., 2008, Ye et al., 2009, Zhang et al., 2010,), we performed dielectric studies (capacitance and dielectric loss measurements) using an automatic impedance TongHui2828 Analyzer on samples that were pressed into tablets on the surfaces of which a conducting carbon glue was deposited. Unfortunately, there was no distinct anomaly observed from 93 K to 420 K, (m.p. 438–440 K), suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range.

1.36 g (10 mmol)ZnCl2 was firstly dissolved in 20 ml 1M HCl solution, to which 0.94 g (10 mmol) 2-amino-pyridine ethanol solution was then added under stirring. Ethanol was added until the precipitated substrates disappeared, then the solution was allowed to slowly evaporate at room temperature until prisms of the title were grown.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C). The other H atoms bonded to N atom were found in the difference maps and refined freely.

Structure description top

The asymmetric unit of the title compound is built up from one protonated 2-amino-pyridinium cation where the non-hydrogen atoms are practically co-planar with a mean deviation of 0.0101 (3)Å and a half of [ZnCl4]2- anion (Fig. 1). The [ZnCl4]2- anion is slightly distorted with the Zn—Cl distances and Cl—Zn—Cl angles of 2.2800 (8)Å to 2.2819 (8)Å and 104.40 (3)° to 114.65 (4)°, respectively. In the crystal structure (Fig. 2), π-π packing interactions of adjacent pyridine rings with a Cg1—Cg2 distance of 4.2758 (18)Å link the cations chains along b axis. The N—H···Cl hydrogen bonds with the average N—Cl distances of 3.317 A link the cations and anions into plan parallel to [1 1 0].

For background to phase transition materials, see: Li et al. (2008); Ye et al. (2009); Zhang et al. (2010)

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds and π-π packing interactions.
Bis(2-aminopyridinium) tetrachloridozincate(II) top
Crystal data top
(C5H7N2)2[ZnCl4]F(000) = 800
Mr = 397.42Dx = 1.603 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3679 reflections
a = 8.3520 (17) Åθ = 3.1–27.4°
b = 14.198 (3) ŵ = 2.13 mm1
c = 13.913 (3) ÅT = 298 K
β = 93.70 (3)°Prism, colourless
V = 1646.5 (6) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
1870 independent reflections
Radiation source: fine-focus sealed tube1612 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 13.6612 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1818
Tmin = 0.653, Tmax = 0.659l = 1717
8175 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.21 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.9383P]
where P = (Fo2 + 2Fc2)/3
1870 reflections(Δ/σ)max = 0.001
99 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
(C5H7N2)2[ZnCl4]V = 1646.5 (6) Å3
Mr = 397.42Z = 4
Monoclinic, C2/cMo Kα radiation
a = 8.3520 (17) ŵ = 2.13 mm1
b = 14.198 (3) ÅT = 298 K
c = 13.913 (3) Å0.20 × 0.20 × 0.20 mm
β = 93.70 (3)°
Data collection top
Rigaku SCXmini
diffractometer
1870 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1612 reflections with I > 2σ(I)
Tmin = 0.653, Tmax = 0.659Rint = 0.036
8175 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.21Δρmax = 0.39 e Å3
1870 reflectionsΔρmin = 0.94 e Å3
99 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.53941 (3)0.25000.04169 (16)
Cl10.40003 (10)0.44657 (6)0.36567 (7)0.0650 (3)
Cl20.71122 (9)0.63194 (5)0.30264 (6)0.0577 (2)
N10.5979 (3)0.2427 (2)0.3635 (2)0.0569 (6)
H1B0.543 (4)0.297 (3)0.356 (3)0.071 (11)*
H1A0.655 (5)0.222 (3)0.317 (3)0.083 (12)*
N20.6702 (3)0.11162 (17)0.45575 (19)0.0495 (6)
H2A0.728 (4)0.092 (2)0.410 (2)0.055 (9)*
C10.5877 (3)0.19378 (19)0.44405 (19)0.0432 (6)
C20.4952 (3)0.2225 (2)0.5209 (2)0.0510 (6)
H2B0.43280.27930.51540.061*
C30.4951 (4)0.1691 (2)0.6022 (2)0.0586 (7)
H3A0.43300.18930.65410.070*
C40.5850 (4)0.0851 (2)0.6126 (2)0.0606 (8)
H4A0.58390.04790.67020.073*
C50.6707 (4)0.0582 (2)0.5376 (2)0.0556 (7)
H5A0.73040.00280.54190.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0398 (2)0.0381 (2)0.0484 (3)0.0000.01243 (18)0.000
Cl10.0636 (5)0.0588 (4)0.0761 (5)0.0085 (3)0.0311 (4)0.0244 (4)
Cl20.0556 (4)0.0519 (4)0.0656 (5)0.0148 (3)0.0046 (3)0.0023 (3)
N10.0571 (15)0.0612 (16)0.0533 (14)0.0015 (13)0.0096 (12)0.0039 (12)
N20.0394 (11)0.0509 (13)0.0591 (14)0.0010 (10)0.0097 (10)0.0149 (11)
C10.0322 (11)0.0480 (14)0.0494 (15)0.0047 (10)0.0016 (10)0.0103 (11)
C20.0431 (13)0.0548 (16)0.0554 (16)0.0072 (12)0.0050 (12)0.0104 (13)
C30.0556 (17)0.0704 (19)0.0509 (17)0.0036 (14)0.0127 (13)0.0078 (14)
C40.0625 (18)0.0605 (18)0.0595 (18)0.0003 (15)0.0077 (14)0.0036 (14)
C50.0500 (16)0.0469 (14)0.070 (2)0.0017 (12)0.0029 (14)0.0020 (13)
Geometric parameters (Å, º) top
Zn1—Cl12.2800 (8)N2—H2A0.87 (3)
Zn1—Cl1i2.2800 (8)C1—C21.419 (4)
Zn1—Cl22.2819 (8)C2—C31.362 (4)
Zn1—Cl2i2.2819 (8)C2—H2B0.9601
N1—C11.326 (4)C3—C41.412 (5)
N1—H1B0.90 (4)C3—H3A0.9599
N1—H1A0.88 (4)C4—C51.359 (4)
N2—C11.359 (4)C4—H4A0.9600
N2—C51.368 (4)C5—H5A0.9300
Cl1—Zn1—Cl1i109.36 (5)N2—C1—C2116.9 (3)
Cl1—Zn1—Cl2114.65 (4)C3—C2—C1119.7 (3)
Cl1i—Zn1—Cl2104.40 (3)C3—C2—H2B120.2
Cl1—Zn1—Cl2i104.40 (3)C1—C2—H2B120.1
Cl1i—Zn1—Cl2i114.65 (4)C2—C3—C4121.8 (3)
Cl2—Zn1—Cl2i109.70 (5)C2—C3—H3A119.2
C1—N1—H1B120 (2)C4—C3—H3A119.0
C1—N1—H1A121 (3)C5—C4—C3117.5 (3)
H1B—N1—H1A120 (3)C5—C4—H4A121.3
C1—N2—C5123.4 (2)C3—C4—H4A121.1
C1—N2—H2A119 (2)C4—C5—N2120.6 (3)
C5—N2—H2A117 (2)C4—C5—H5A119.7
N1—C1—N2119.4 (3)N2—C5—H5A119.7
N1—C1—C2123.6 (3)
C5—N2—C1—N1177.9 (3)C1—C2—C3—C40.0 (5)
C5—N2—C1—C21.7 (4)C2—C3—C4—C51.0 (5)
N1—C1—C2—C3178.2 (3)C3—C4—C5—N20.7 (5)
N2—C1—C2—C31.3 (4)C1—N2—C5—C40.7 (4)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl10.90 (4)2.44 (4)3.335 (3)170 (3)
N1—H1A···Cl2ii0.88 (4)2.42 (4)3.291 (3)168 (4)
N2—H2A···Cl1iii0.87 (3)2.61 (3)3.325 (2)140 (3)
Symmetry codes: (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula(C5H7N2)2[ZnCl4]
Mr397.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)8.3520 (17), 14.198 (3), 13.913 (3)
β (°) 93.70 (3)
V3)1646.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.13
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.653, 0.659
No. of measured, independent and
observed [I > 2σ(I)] reflections
8175, 1870, 1612
Rint0.036
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.21
No. of reflections1870
No. of parameters99
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.94

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl10.90 (4)2.44 (4)3.335 (3)170 (3)
N1—H1A···Cl2i0.88 (4)2.42 (4)3.291 (3)168 (4)
N2—H2A···Cl1ii0.87 (3)2.61 (3)3.325 (2)140 (3)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to purchase the X-ray diffractometer.

References

First citationLi, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. . 11, 1959–1962.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z., Xiong, R. G. & Huang, S. D. (2010). J. Am. Chem. Soc. 131, 7300–7302.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds