organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1H-Pyrrol-2-ylmethyl­idene)(3-{[(1H-pyrrol-2-ylmethyl­idene)amino]methyl}benzyl)amine

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang, National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jaeskim@gnu.ac.kr

(Received 10 November 2010; accepted 12 November 2010; online 17 November 2010)

In the title compound, C18H18N4, the dihedral angles between the pyrrole rings and the phenyl ring are 85.07 (8)° and 77.13 (9)°. Inter­molecular N—H⋯N hydrogen bonds contribute to the stabilization of the crystal packing.

Related literature

For the synthesis of the title compound, see: Chakravorty & Holm (1964[Chakravorty, A. & Holm, R. H. (1964). Inorg. Chem. 3, 1521-1524.]); Jasat & Dolphin, (1997[Jasat, A. & Dolphin, D. (1997). Chem. Rev. 97, 2267-2340.]). For related structures, see: Nativi et al. (2007[Nativi, C., Cacciarini, M., Francesconi, O., Vacca, A., Moneti, G., Ienco, A. & Roelens, S. (2007). J. Am. Chem. Soc. 129, 4377-4385.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N4

  • Mr = 290.36

  • Monoclinic, P 21 /n

  • a = 5.0010 (6) Å

  • b = 17.271 (2) Å

  • c = 17.764 (2) Å

  • β = 96.128 (9)°

  • V = 1525.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.15 × 0.05 × 0.02 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.988, Tmax = 0.998

  • 12454 measured reflections

  • 2990 independent reflections

  • 1550 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.141

  • S = 0.98

  • 2990 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.88 2.17 2.993 (3) 156
N4—H4⋯N2ii 0.88 2.12 2.949 (3) 158
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of supramolcular ligands are based on the ability to organize the binding site and size complementarities in a proper way. Especially, metal ions assisted self-assembly are one of most powerful approaches to supramolecular architectures. For examples, the N4 type of tetradentate ligands, pyrrole-2-yl Schiff base and pyrrole-2-ylmethylene amines have been known for a long time (Chakravorty & Holm, 1964; Jasat & Dolphin, 1997).

In the asymmetric unit (Fig. 1), the dihedral angle between the pyrrole ring plane system and phenyl ring plane are 85.07 (8)° and 77.13 (9)°. All bond lengths and bond angles of pyrrole-2-ylmethylene group are are comparable to those observed in similar structures (Nativi et al., 2007).

In the crystal structure, intermolecular N—H···N hydrogen bonds are observed. These interactinos contribute to stabilization of the packing (Fig. 2).

Related literature top

For the synthesis of the title compound, see: Chakravorty & Holm (1964); Jasat & Dolphin, (1997). For related structures, see: Nativi et al. (2007).

Experimental top

Pyrrole-2-carbaldehyde (1.9 g, 20 mmol) and 1,3-phenylenedimethanamine (1.36 g, 10 mmol) were dissolved in ethanol (20 ml). The mixture strirred for a while, and then a few drops of acetic acid was added. After about 30 min, a light yellow precipitate was observed. After about 20 min, the precipitate obtained from filtration was washed with ethanol, dried in vacuum. Slow evaporation of a solution in CH2Cl2 gave single crystals suitable for X-ray analysis.

FT—IR (KBr disk) 3166, 3110, 2830, 1641 cm-1. 1H NMR (300 MHz, DMSO-d6) 4.7 (s, 2H), 6.1 (d, 2H, J=4.2 Hz), 6.5 (t, 2H, J=2.8 Hz), 6.9 (d, 2H, J=4.2 Hz), 7.3 (m, 4H), 8.2 (s, 2H), 11.4 (broad s, 2H). 13C NMR (75 MHz, DMSO-d6) 39.1, 64.3, 109.3, 114.2, 122.6, 126.9, 128.1, 130.4, 140.6, 152.9. EI—MS (m/z): 290 (M+).

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(N—H) = 0.88 Å, Uiso(H) = 1.2Ueq(C) for pyrrole N, d(C—H) = 0.95 Å, Uiso(H) = 1.2Ueq(C) for aromatic C and d(C—H) = 0.99 Å, Uiso(H) = 1.2Ueq(C) for CH2 groups.

Structure description top

The design and synthesis of supramolcular ligands are based on the ability to organize the binding site and size complementarities in a proper way. Especially, metal ions assisted self-assembly are one of most powerful approaches to supramolecular architectures. For examples, the N4 type of tetradentate ligands, pyrrole-2-yl Schiff base and pyrrole-2-ylmethylene amines have been known for a long time (Chakravorty & Holm, 1964; Jasat & Dolphin, 1997).

In the asymmetric unit (Fig. 1), the dihedral angle between the pyrrole ring plane system and phenyl ring plane are 85.07 (8)° and 77.13 (9)°. All bond lengths and bond angles of pyrrole-2-ylmethylene group are are comparable to those observed in similar structures (Nativi et al., 2007).

In the crystal structure, intermolecular N—H···N hydrogen bonds are observed. These interactinos contribute to stabilization of the packing (Fig. 2).

For the synthesis of the title compound, see: Chakravorty & Holm (1964); Jasat & Dolphin, (1997). For related structures, see: Nativi et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound with intermolecular N—H···N hydrogen bonds shown as dashed lines. H atoms not involved in intermolecular interactions have been omitted for clarity. [Symmetry codes: (i) -x + 1/2, y + 1/2, -z + 1/2; (ii) -x + 1/2, y - 1/2, -z + 1/2; (iii) -x + 1, -y + 1, -z + 1; (iv) x + 1/2, -y + 1/2, z + 1/2; (v) x + 1/2, -y - 1.5, z + 1/2.]
(1H-Pyrrol-2-ylmethylidene)(3-{[(1H-pyrrol-2- ylmethylidene)amino]methyl}benzyl)amine top
Crystal data top
C18H18N4F(000) = 616
Mr = 290.36Dx = 1.264 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 867 reflections
a = 5.0010 (6) Åθ = 2.3–18.8°
b = 17.271 (2) ŵ = 0.08 mm1
c = 17.764 (2) ÅT = 173 K
β = 96.128 (9)°Plate, yellow
V = 1525.5 (3) Å30.15 × 0.05 × 0.02 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2990 independent reflections
Radiation source: fine-focus sealed tube1550 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
φ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.988, Tmax = 0.998k = 2119
12454 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0531P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
2990 reflectionsΔρmax = 0.20 e Å3
200 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0061 (15)
Crystal data top
C18H18N4V = 1525.5 (3) Å3
Mr = 290.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.0010 (6) ŵ = 0.08 mm1
b = 17.271 (2) ÅT = 173 K
c = 17.764 (2) Å0.15 × 0.05 × 0.02 mm
β = 96.128 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
2990 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1550 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.998Rint = 0.087
12454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 0.98Δρmax = 0.20 e Å3
2990 reflectionsΔρmin = 0.18 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1887 (4)0.93308 (13)0.30396 (12)0.0471 (6)
H10.24300.90340.26830.057*
N20.1228 (4)0.78669 (13)0.30188 (12)0.0479 (6)
N30.0866 (4)0.37738 (12)0.33592 (12)0.0443 (6)
N40.4888 (4)0.24887 (12)0.35156 (12)0.0466 (6)
H40.48670.26700.30520.056*
C10.2853 (6)1.00448 (17)0.32310 (17)0.0555 (8)
H1A0.42321.03070.30040.067*
C20.1523 (6)1.03243 (18)0.38019 (17)0.0597 (8)
H20.18071.08120.40450.072*
C30.0330 (6)0.97645 (17)0.39655 (15)0.0539 (8)
H30.15540.98030.43380.065*
C40.0070 (5)0.91461 (16)0.34911 (14)0.0454 (7)
C50.1556 (6)0.84397 (16)0.34583 (15)0.0488 (7)
H50.29090.83890.37920.059*
C60.2874 (5)0.71839 (15)0.31250 (16)0.0483 (7)
H6A0.38060.70240.26300.058*
H6B0.42610.73180.34610.058*
C70.1203 (5)0.65149 (15)0.34658 (14)0.0399 (7)
C80.1874 (5)0.57583 (16)0.32711 (14)0.0436 (7)
H80.33680.56640.29060.052*
C90.0432 (5)0.51348 (15)0.35929 (14)0.0406 (7)
C100.1738 (6)0.52757 (16)0.41134 (14)0.0461 (7)
H100.27630.48560.43360.055*
C110.2443 (5)0.60305 (16)0.43154 (14)0.0476 (7)
H110.39500.61260.46760.057*
C120.0964 (6)0.66413 (16)0.39942 (15)0.0450 (7)
H120.14480.71560.41400.054*
C130.1352 (5)0.43160 (15)0.33830 (17)0.0519 (8)
H13A0.25400.41300.37560.062*
H13B0.24200.43260.28810.062*
C140.1251 (6)0.33165 (16)0.39264 (15)0.0469 (7)
H140.00850.33730.43110.056*
C150.3263 (5)0.27306 (15)0.40368 (14)0.0425 (7)
C160.3911 (6)0.23031 (17)0.46802 (16)0.0556 (8)
H160.30850.23410.51360.067*
C170.5993 (6)0.18029 (17)0.45480 (17)0.0592 (8)
H170.68640.14440.48980.071*
C180.6545 (6)0.19249 (16)0.38240 (18)0.0552 (8)
H180.78670.16600.35760.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0528 (14)0.0354 (14)0.0530 (14)0.0013 (12)0.0052 (12)0.0062 (11)
N20.0588 (15)0.0349 (14)0.0505 (14)0.0004 (12)0.0073 (12)0.0055 (11)
N30.0514 (14)0.0296 (13)0.0513 (14)0.0039 (11)0.0031 (11)0.0047 (11)
N40.0575 (14)0.0362 (14)0.0463 (13)0.0017 (12)0.0065 (11)0.0033 (10)
C10.0540 (18)0.0411 (19)0.070 (2)0.0056 (15)0.0008 (16)0.0095 (15)
C20.062 (2)0.0461 (19)0.068 (2)0.0031 (17)0.0030 (17)0.0154 (16)
C30.0631 (19)0.054 (2)0.0443 (17)0.0067 (17)0.0046 (14)0.0067 (14)
C40.0553 (18)0.0410 (18)0.0398 (15)0.0019 (15)0.0043 (14)0.0011 (12)
C50.0599 (19)0.0463 (19)0.0410 (16)0.0061 (15)0.0088 (14)0.0070 (13)
C60.0526 (17)0.0369 (17)0.0555 (18)0.0025 (14)0.0066 (14)0.0048 (13)
C70.0473 (17)0.0364 (17)0.0369 (15)0.0013 (13)0.0083 (14)0.0002 (12)
C80.0428 (16)0.0437 (19)0.0439 (16)0.0025 (14)0.0022 (13)0.0035 (13)
C90.0437 (16)0.0348 (17)0.0429 (15)0.0033 (14)0.0031 (14)0.0037 (12)
C100.0557 (18)0.0346 (17)0.0477 (17)0.0007 (14)0.0042 (15)0.0008 (12)
C110.0494 (17)0.0438 (19)0.0482 (17)0.0049 (15)0.0012 (14)0.0069 (13)
C120.0542 (19)0.0311 (17)0.0510 (17)0.0025 (14)0.0125 (15)0.0026 (13)
C130.0505 (17)0.0362 (18)0.068 (2)0.0004 (15)0.0022 (15)0.0109 (14)
C140.0583 (19)0.0380 (17)0.0457 (17)0.0077 (15)0.0109 (14)0.0087 (13)
C150.0538 (17)0.0310 (16)0.0423 (16)0.0074 (14)0.0032 (14)0.0031 (12)
C160.076 (2)0.0437 (19)0.0464 (18)0.0058 (17)0.0027 (15)0.0001 (14)
C170.074 (2)0.0400 (19)0.060 (2)0.0024 (17)0.0114 (17)0.0083 (15)
C180.0548 (19)0.0394 (19)0.070 (2)0.0037 (15)0.0022 (16)0.0057 (15)
Geometric parameters (Å, º) top
N1—C11.354 (3)C7—C121.373 (4)
N1—C41.368 (3)C7—C81.384 (3)
N1—H10.8800C8—C91.385 (3)
N2—C51.282 (3)C8—H80.9500
N2—C61.462 (3)C9—C101.370 (4)
N3—C141.279 (3)C9—C131.521 (3)
N3—C131.456 (3)C10—C111.388 (4)
N4—C181.356 (3)C10—H100.9500
N4—C151.361 (3)C11—C121.377 (3)
N4—H40.8800C11—H110.9500
C1—C21.359 (4)C12—H120.9500
C1—H1A0.9500C13—H13A0.9900
C2—C31.391 (4)C13—H13B0.9900
C2—H20.9500C14—C151.426 (4)
C3—C41.375 (4)C14—H140.9500
C3—H30.9500C15—C161.370 (4)
C4—C51.426 (4)C16—C171.392 (4)
C5—H50.9500C16—H160.9500
C6—C71.514 (4)C17—C181.360 (4)
C6—H6A0.9900C17—H170.9500
C6—H6B0.9900C18—H180.9500
C1—N1—C4108.9 (2)C9—C8—H8119.0
C1—N1—H1125.6C10—C9—C8118.7 (2)
C4—N1—H1125.6C10—C9—C13121.8 (2)
C5—N2—C6115.7 (2)C8—C9—C13119.4 (2)
C14—N3—C13115.2 (2)C9—C10—C11120.2 (3)
C18—N4—C15109.2 (2)C9—C10—H10119.9
C18—N4—H4125.4C11—C10—H10119.9
C15—N4—H4125.4C12—C11—C10120.1 (3)
N1—C1—C2108.7 (3)C12—C11—H11119.9
N1—C1—H1A125.6C10—C11—H11119.9
C2—C1—H1A125.6C7—C12—C11120.8 (3)
C1—C2—C3107.4 (3)C7—C12—H12119.6
C1—C2—H2126.3C11—C12—H12119.6
C3—C2—H2126.3N3—C13—C9113.2 (2)
C4—C3—C2107.6 (3)N3—C13—H13A108.9
C4—C3—H3126.2C9—C13—H13A108.9
C2—C3—H3126.2N3—C13—H13B108.9
N1—C4—C3107.4 (2)C9—C13—H13B108.9
N1—C4—C5125.3 (2)H13A—C13—H13B107.8
C3—C4—C5127.3 (3)N3—C14—C15126.3 (2)
N2—C5—C4125.8 (3)N3—C14—H14116.9
N2—C5—H5117.1C15—C14—H14116.9
C4—C5—H5117.1N4—C15—C16107.3 (3)
N2—C6—C7111.9 (2)N4—C15—C14126.0 (2)
N2—C6—H6A109.2C16—C15—C14126.7 (3)
C7—C6—H6A109.2C15—C16—C17107.9 (3)
N2—C6—H6B109.2C15—C16—H16126.0
C7—C6—H6B109.2C17—C16—H16126.0
H6A—C6—H6B107.9C18—C17—C16107.1 (3)
C12—C7—C8118.3 (2)C18—C17—H17126.4
C12—C7—C6120.9 (2)C16—C17—H17126.4
C8—C7—C6120.8 (3)N4—C18—C17108.4 (3)
C7—C8—C9122.0 (3)N4—C18—H18125.8
C7—C8—H8119.0C17—C18—H18125.8
C4—N1—C1—C20.2 (3)C13—C9—C10—C11177.1 (2)
N1—C1—C2—C30.2 (3)C9—C10—C11—C120.0 (4)
C1—C2—C3—C40.6 (3)C8—C7—C12—C110.6 (3)
C1—N1—C4—C30.6 (3)C6—C7—C12—C11178.6 (2)
C1—N1—C4—C5179.9 (3)C10—C11—C12—C70.7 (4)
C2—C3—C4—N10.7 (3)C14—N3—C13—C9103.7 (3)
C2—C3—C4—C5179.8 (3)C10—C9—C13—N336.8 (3)
C6—N2—C5—C4176.1 (3)C8—C9—C13—N3145.5 (2)
N1—C4—C5—N22.1 (4)C13—N3—C14—C15179.4 (2)
C3—C4—C5—N2178.5 (3)C18—N4—C15—C160.5 (3)
C5—N2—C6—C7109.9 (3)C18—N4—C15—C14179.9 (3)
N2—C6—C7—C1235.8 (3)N3—C14—C15—N49.2 (4)
N2—C6—C7—C8146.3 (2)N3—C14—C15—C16171.3 (3)
C12—C7—C8—C90.1 (3)N4—C15—C16—C170.9 (3)
C6—C7—C8—C9177.9 (2)C14—C15—C16—C17179.5 (3)
C7—C8—C9—C100.7 (4)C15—C16—C17—C181.0 (3)
C7—C8—C9—C13177.1 (2)C15—N4—C18—C170.1 (3)
C8—C9—C10—C110.6 (4)C16—C17—C18—N40.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.882.172.993 (3)156
N4—H4···N2ii0.882.122.949 (3)158
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H18N4
Mr290.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)5.0010 (6), 17.271 (2), 17.764 (2)
β (°) 96.128 (9)
V3)1525.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.15 × 0.05 × 0.02
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.988, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
12454, 2990, 1550
Rint0.087
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.141, 0.98
No. of reflections2990
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.882.172.993 (3)156.3
N4—H4···N2ii0.882.122.949 (3)157.8
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010–0016386).

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakravorty, A. & Holm, R. H. (1964). Inorg. Chem. 3, 1521–1524.  CrossRef CAS Web of Science Google Scholar
First citationJasat, A. & Dolphin, D. (1997). Chem. Rev. 97, 2267–2340.  CrossRef PubMed CAS Web of Science Google Scholar
First citationNativi, C., Cacciarini, M., Francesconi, O., Vacca, A., Moneti, G., Ienco, A. & Roelens, S. (2007). J. Am. Chem. Soc. 129, 4377–4385.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds