metal-organic compounds
Bis[μ2-1,1-(butane-1,4-diyl)-2,3-dicyclohexylguanidinato]bis[(tetrahydrofuran)lithium](Li—Li)
aDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: hhf_2222@yahoo.com.cn
In the dinuclear centrosymmetric title complex, [Li2(C17H30N3)2(C4H8O)2], the Li+ cation is coordinated by three N atoms from two guanidinate ligands and an O atom from tetrahydrofuran (THF) in a strongly distorted tetrahedral environment. In the guanidinate-bridged THF-stabilized dimer the Li⋯Li separation is short at 2.479 (8) Å.
Related literature
For related guanidinato compounds, see: Chandra et al. (1970); Barker & Kilner (1994); Bailey & Pace (2001); Coles & Hitchcock (2004); Corey et al. (2006); Zhou et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810046477/jj2061sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810046477/jj2061Isup2.hkl
A solution of N-tetrahydropyrrolyl lithium in diethylether (0.232g, 3mmol) was added dropwise with stirring at 0 C to a solution of N,N'-dicyclohexyl carbodiimide (0.619g, 3mmol) in ether. The mixture was warmed to room temperature and stirred for 2h. The solvent was removed under reduced pressure. The resulting white precipitate was washed with hexane and dried in vacuo. The residue was dissolved in a mixed solvent of THF and hexane, and then filtered. The concentration of the filtrate under reduced pressure gave the colorless crystals suitable for X-ray analysis over several days (yield 0.534g, 50%).
All of the H atoms were contrained to ideal geometry and refined under the riding model with C–H distances of 0.98-0.99 Å and Uiso(H) = 1.2Ueq(C).
As a result of the donor ability of the nitrogen centers and the potential to exploit both the steric and electronic effects induced by the programmed variation of organic substituents,the guanidinate anion has generated significant interest as a ligand (Bailey & Pace, 2001; Barker & Kilner, 1994). Since the first guanidinato complexes have been reported (Chandra et al., 1970), guanidinato ligands have been used extensively in the coordination chemistry of transition, f-block, and main-group metals (Corey et al., 2006). Moreover many guanidinato complexes were reported showing good performance in ethylene polymerization (Zhou et al., 2007) and in ring-opening polymerisation reactions (Coles & Hitchcock, 2004) in catalysis applications.
In the title complex,[(THF)LiN(C6H11)C(NC4H8)N(C6H11)]2 , the Li cation is coordinated by three N atoms from two guanidinato ligands and an O atom from tetrahydrofuran as a dimer around a planar Li/N1/LiA/N1A ring (Fig. 1). The core of the centrosymmetric molecule has a fused tricyclic ladder motif comprising a central planar Li/N1/LiA/N1A ring flanked by planar N2/C1/N1/LiA and N2A/C1A/N1A/Li rings. The dihedral angle between the latter two rings is 46.4 (9)°. Inside the guanidinato-bridged THF-stabilized dimer the Li···Li separation is short at 2.479 (8) Å. Electronic delocalization throughout the guanidinate moiety is observed as evidenced by the C-N distances [N1—C1: 1.355 (3) Å, N2—C1: 1.314 (3) Å].
For related guanidinato compounds, see: Chandra et al. (1970); Barker et al. (1994); Bailey et al. (2001); Coles et al. (2004); Corey et al. (2006); Zhou et al. (2007).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure, showing the atom–numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. |
[Li2(C17H30N3)2(C4H8O)2] | F(000) = 784 |
Mr = 710.97 | Dx = 1.100 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1854 reflections |
a = 10.446 (6) Å | θ = 1.9–25.0° |
b = 21.454 (15) Å | µ = 0.07 mm−1 |
c = 10.491 (6) Å | T = 223 K |
β = 114.13 (4)° | Block, colorless |
V = 2146 (2) Å3 | 0.30 × 0.20 × 0.20 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 3688 independent reflections |
Radiation source: fine-focus sealed tube | 2749 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
φ and ω scans | θmax = 25.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→12 |
Tmin = 0.980, Tmax = 0.987 | k = −25→25 |
8457 measured reflections | l = −12→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.082 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.237 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.1491P)2 + 0.6111P] where P = (Fo2 + 2Fc2)/3 |
3688 reflections | (Δ/σ)max < 0.001 |
235 parameters | Δρmax = 0.68 e Å−3 |
0 restraints | Δρmin = −0.61 e Å−3 |
[Li2(C17H30N3)2(C4H8O)2] | V = 2146 (2) Å3 |
Mr = 710.97 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.446 (6) Å | µ = 0.07 mm−1 |
b = 21.454 (15) Å | T = 223 K |
c = 10.491 (6) Å | 0.30 × 0.20 × 0.20 mm |
β = 114.13 (4)° |
Bruker SMART CCD area-detector diffractometer | 3688 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2749 reflections with I > 2σ(I) |
Tmin = 0.980, Tmax = 0.987 | Rint = 0.042 |
8457 measured reflections |
R[F2 > 2σ(F2)] = 0.082 | 0 restraints |
wR(F2) = 0.237 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.68 e Å−3 |
3688 reflections | Δρmin = −0.61 e Å−3 |
235 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Li | 1.0428 (4) | 0.04287 (19) | 0.4484 (4) | 0.0287 (9) | |
N1 | 0.8388 (2) | 0.03737 (9) | 0.4284 (2) | 0.0258 (5) | |
N2 | 0.7869 (2) | −0.06576 (9) | 0.3820 (2) | 0.0282 (5) | |
N3 | 0.6042 (2) | 0.00733 (10) | 0.2715 (2) | 0.0311 (6) | |
O | 1.0417 (2) | 0.06534 (9) | 0.26561 (19) | 0.0396 (5) | |
C1 | 0.7440 (2) | −0.00756 (11) | 0.3611 (2) | 0.0245 (6) | |
C2 | 0.7853 (2) | 0.09453 (10) | 0.4653 (3) | 0.0254 (6) | |
H2 | 0.6822 | 0.0952 | 0.4121 | 0.030* | |
C3 | 0.8457 (3) | 0.15283 (11) | 0.4260 (3) | 0.0316 (6) | |
H3A | 0.9480 | 0.1527 | 0.4764 | 0.038* | |
H3B | 0.8232 | 0.1521 | 0.3257 | 0.038* | |
C4 | 0.7868 (3) | 0.21241 (13) | 0.4613 (3) | 0.0442 (8) | |
H4A | 0.8314 | 0.2486 | 0.4396 | 0.053* | |
H4B | 0.6858 | 0.2148 | 0.4032 | 0.053* | |
C5 | 0.8114 (3) | 0.21468 (13) | 0.6146 (3) | 0.0465 (8) | |
H5A | 0.9120 | 0.2188 | 0.6725 | 0.056* | |
H5B | 0.7639 | 0.2512 | 0.6311 | 0.056* | |
C6 | 0.7565 (4) | 0.15618 (14) | 0.6565 (3) | 0.0476 (8) | |
H6A | 0.6539 | 0.1553 | 0.6083 | 0.057* | |
H6B | 0.7811 | 0.1573 | 0.7572 | 0.057* | |
C7 | 0.8164 (3) | 0.09684 (12) | 0.6211 (3) | 0.0359 (7) | |
H7A | 0.7751 | 0.0603 | 0.6459 | 0.043* | |
H7B | 0.9180 | 0.0955 | 0.6761 | 0.043* | |
C8 | 0.7020 (2) | −0.11505 (11) | 0.2911 (3) | 0.0284 (6) | |
H8 | 0.6187 | −0.0960 | 0.2164 | 0.034* | |
C9 | 0.6532 (3) | −0.16101 (12) | 0.3720 (3) | 0.0369 (7) | |
H9A | 0.5972 | −0.1388 | 0.4131 | 0.044* | |
H9B | 0.7352 | −0.1787 | 0.4485 | 0.044* | |
C10 | 0.5658 (3) | −0.21360 (14) | 0.2799 (3) | 0.0456 (8) | |
H10A | 0.5389 | −0.2428 | 0.3366 | 0.055* | |
H10B | 0.4799 | −0.1964 | 0.2077 | 0.055* | |
C11 | 0.6480 (4) | −0.24799 (14) | 0.2117 (4) | 0.0545 (9) | |
H11A | 0.7279 | −0.2693 | 0.2837 | 0.065* | |
H11B | 0.5879 | −0.2797 | 0.1479 | 0.065* | |
C12 | 0.7002 (4) | −0.20397 (15) | 0.1320 (4) | 0.0542 (9) | |
H12A | 0.6200 | −0.1869 | 0.0525 | 0.065* | |
H12B | 0.7588 | −0.2270 | 0.0952 | 0.065* | |
C13 | 0.7857 (3) | −0.15020 (13) | 0.2236 (3) | 0.0415 (7) | |
H13A | 0.8125 | −0.1213 | 0.1665 | 0.050* | |
H13B | 0.8718 | −0.1668 | 0.2968 | 0.050* | |
C14 | 0.5631 (3) | 0.05740 (13) | 0.1696 (3) | 0.0355 (7) | |
H14A | 0.5720 | 0.0446 | 0.0839 | 0.043* | |
H14B | 0.6209 | 0.0945 | 0.2072 | 0.043* | |
C15 | 0.4109 (4) | 0.0700 (2) | 0.1417 (5) | 0.0731 (12) | |
H15A | 0.3945 | 0.1149 | 0.1436 | 0.088* | |
H15B | 0.3486 | 0.0536 | 0.0499 | 0.088* | |
C16 | 0.3846 (4) | 0.0377 (2) | 0.2543 (5) | 0.0751 (13) | |
H16A | 0.4007 | 0.0661 | 0.3326 | 0.090* | |
H16B | 0.2879 | 0.0224 | 0.2191 | 0.090* | |
C17 | 0.4850 (3) | −0.01453 (14) | 0.2982 (3) | 0.0431 (7) | |
H17A | 0.4439 | −0.0521 | 0.2436 | 0.052* | |
H17B | 0.5136 | −0.0238 | 0.3976 | 0.052* | |
C18 | 1.0836 (3) | 0.12480 (14) | 0.2329 (3) | 0.0439 (8) | |
H18A | 1.1860 | 0.1283 | 0.2730 | 0.053* | |
H18B | 1.0456 | 0.1586 | 0.2699 | 0.053* | |
C19 | 1.0247 (4) | 0.12776 (17) | 0.0757 (4) | 0.0571 (9) | |
H19A | 1.0054 | 0.1708 | 0.0421 | 0.069* | |
H19B | 1.0884 | 0.1085 | 0.0398 | 0.069* | |
C20 | 0.8910 (4) | 0.09066 (19) | 0.0352 (4) | 0.0636 (10) | |
H20A | 0.8603 | 0.0738 | −0.0595 | 0.076* | |
H20B | 0.8156 | 0.1162 | 0.0406 | 0.076* | |
C21 | 0.9332 (3) | 0.03918 (16) | 0.1427 (3) | 0.0501 (8) | |
H21A | 0.8531 | 0.0260 | 0.1621 | 0.060* | |
H21B | 0.9685 | 0.0030 | 0.1097 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Li | 0.023 (2) | 0.028 (2) | 0.032 (2) | −0.0009 (17) | 0.0092 (18) | 0.0017 (17) |
N1 | 0.0210 (11) | 0.0210 (10) | 0.0326 (12) | −0.0009 (8) | 0.0081 (9) | −0.0012 (8) |
N2 | 0.0259 (11) | 0.0206 (11) | 0.0306 (12) | 0.0000 (8) | 0.0039 (9) | −0.0021 (8) |
N3 | 0.0183 (11) | 0.0282 (11) | 0.0417 (13) | −0.0008 (8) | 0.0070 (9) | 0.0063 (9) |
O | 0.0414 (12) | 0.0434 (12) | 0.0326 (11) | −0.0087 (9) | 0.0137 (9) | 0.0035 (8) |
C1 | 0.0214 (13) | 0.0262 (13) | 0.0261 (13) | −0.0007 (10) | 0.0099 (10) | 0.0014 (10) |
C2 | 0.0208 (12) | 0.0216 (12) | 0.0316 (14) | 0.0022 (9) | 0.0085 (10) | 0.0003 (10) |
C3 | 0.0350 (15) | 0.0244 (13) | 0.0347 (15) | −0.0012 (11) | 0.0134 (12) | 0.0015 (10) |
C4 | 0.0527 (19) | 0.0236 (14) | 0.0531 (19) | 0.0045 (12) | 0.0185 (15) | 0.0043 (13) |
C5 | 0.0525 (19) | 0.0311 (15) | 0.0538 (19) | 0.0050 (13) | 0.0197 (15) | −0.0099 (13) |
C6 | 0.062 (2) | 0.0454 (18) | 0.0457 (18) | 0.0076 (15) | 0.0319 (16) | −0.0051 (14) |
C7 | 0.0409 (16) | 0.0305 (14) | 0.0397 (16) | 0.0016 (12) | 0.0201 (13) | 0.0028 (12) |
C8 | 0.0235 (13) | 0.0246 (13) | 0.0307 (14) | −0.0004 (10) | 0.0044 (11) | −0.0011 (10) |
C9 | 0.0390 (16) | 0.0295 (14) | 0.0390 (16) | −0.0051 (12) | 0.0128 (13) | −0.0024 (12) |
C10 | 0.0472 (18) | 0.0338 (16) | 0.0488 (18) | −0.0121 (13) | 0.0124 (14) | −0.0023 (13) |
C11 | 0.054 (2) | 0.0286 (16) | 0.065 (2) | −0.0043 (14) | 0.0080 (17) | −0.0133 (15) |
C12 | 0.056 (2) | 0.0511 (19) | 0.057 (2) | −0.0076 (16) | 0.0242 (17) | −0.0267 (16) |
C13 | 0.0385 (16) | 0.0404 (16) | 0.0456 (18) | −0.0043 (13) | 0.0173 (14) | −0.0121 (13) |
C14 | 0.0298 (15) | 0.0366 (15) | 0.0327 (15) | 0.0005 (11) | 0.0052 (12) | 0.0041 (12) |
C15 | 0.042 (2) | 0.083 (3) | 0.088 (3) | 0.0260 (19) | 0.019 (2) | 0.043 (2) |
C16 | 0.042 (2) | 0.067 (2) | 0.123 (4) | 0.0193 (18) | 0.041 (2) | 0.034 (2) |
C17 | 0.0260 (15) | 0.0427 (17) | 0.060 (2) | 0.0015 (12) | 0.0165 (14) | 0.0078 (14) |
C18 | 0.0455 (18) | 0.0397 (16) | 0.0545 (19) | −0.0028 (13) | 0.0285 (15) | 0.0038 (14) |
C19 | 0.063 (2) | 0.060 (2) | 0.054 (2) | 0.0105 (17) | 0.0285 (18) | 0.0237 (17) |
C20 | 0.055 (2) | 0.085 (3) | 0.043 (2) | 0.0093 (19) | 0.0131 (17) | 0.0083 (18) |
C21 | 0.052 (2) | 0.063 (2) | 0.0344 (16) | −0.0132 (16) | 0.0162 (15) | −0.0061 (15) |
Li—O | 1.973 (5) | C8—H8 | 0.9900 |
Li—N2i | 1.997 (5) | C9—C10 | 1.522 (4) |
Li—N1 | 2.057 (5) | C9—H9A | 0.9800 |
Li—N1i | 2.204 (5) | C9—H9B | 0.9800 |
Li—C1i | 2.427 (5) | C10—C11 | 1.515 (5) |
Li—Lii | 2.479 (8) | C10—H10A | 0.9800 |
N1—C1 | 1.355 (3) | C10—H10B | 0.9800 |
N1—C2 | 1.464 (3) | C11—C12 | 1.504 (5) |
N1—Lii | 2.204 (5) | C11—H11A | 0.9800 |
N2—C1 | 1.314 (3) | C11—H11B | 0.9800 |
N2—C8 | 1.457 (3) | C12—C13 | 1.533 (4) |
N2—Lii | 1.997 (5) | C12—H12A | 0.9800 |
N3—C1 | 1.413 (3) | C12—H12B | 0.9800 |
N3—C14 | 1.451 (3) | C13—H13A | 0.9800 |
N3—C17 | 1.461 (4) | C13—H13B | 0.9800 |
O—C18 | 1.435 (4) | C14—C15 | 1.518 (4) |
O—C21 | 1.438 (4) | C14—H14A | 0.9800 |
C1—Lii | 2.427 (5) | C14—H14B | 0.9800 |
C2—C7 | 1.532 (4) | C15—C16 | 1.489 (6) |
C2—C3 | 1.531 (3) | C15—H15A | 0.9800 |
C2—H2 | 0.9900 | C15—H15B | 0.9800 |
C3—C4 | 1.528 (4) | C16—C17 | 1.475 (5) |
C3—H3A | 0.9800 | C16—H16A | 0.9800 |
C3—H3B | 0.9800 | C16—H16B | 0.9800 |
C4—C5 | 1.523 (5) | C17—H17A | 0.9800 |
C4—H4A | 0.9800 | C17—H17B | 0.9800 |
C4—H4B | 0.9800 | C18—C19 | 1.507 (5) |
C5—C6 | 1.518 (4) | C18—H18A | 0.9800 |
C5—H5A | 0.9800 | C18—H18B | 0.9800 |
C5—H5B | 0.9800 | C19—C20 | 1.510 (5) |
C6—C7 | 1.530 (4) | C19—H19A | 0.9800 |
C6—H6A | 0.9800 | C19—H19B | 0.9800 |
C6—H6B | 0.9800 | C20—C21 | 1.510 (5) |
C7—H7A | 0.9800 | C20—H20A | 0.9800 |
C7—H7B | 0.9800 | C20—H20B | 0.9800 |
C8—C9 | 1.519 (4) | C21—H21A | 0.9800 |
C8—C13 | 1.529 (4) | C21—H21B | 0.9800 |
O—Li—N2i | 117.1 (2) | C8—C9—C10 | 112.2 (2) |
O—Li—N1 | 108.7 (2) | C8—C9—H9A | 109.2 |
N2i—Li—N1 | 127.9 (2) | C10—C9—H9A | 109.2 |
O—Li—N1i | 122.7 (2) | C8—C9—H9B | 109.2 |
N2i—Li—N1i | 65.61 (15) | C10—C9—H9B | 109.2 |
N1—Li—N1i | 108.94 (18) | H9A—C9—H9B | 107.9 |
O—Li—C1i | 121.0 (2) | C11—C10—C9 | 110.6 (3) |
N2i—Li—C1i | 32.77 (10) | C11—C10—H10A | 109.5 |
N1—Li—C1i | 129.0 (2) | C9—C10—H10A | 109.5 |
N1i—Li—C1i | 33.59 (10) | C11—C10—H10B | 109.5 |
O—Li—Lii | 138.3 (3) | C9—C10—H10B | 109.5 |
N2i—Li—Lii | 98.2 (2) | H10A—C10—H10B | 108.1 |
N1—Li—Lii | 57.24 (16) | C12—C11—C10 | 111.2 (3) |
N1i—Li—Lii | 51.70 (16) | C12—C11—H11A | 109.4 |
C1i—Li—Lii | 77.4 (2) | C10—C11—H11A | 109.4 |
C1—N1—C2 | 117.2 (2) | C12—C11—H11B | 109.4 |
C1—N1—Li | 126.8 (2) | C10—C11—H11B | 109.4 |
C2—N1—Li | 114.63 (19) | H11A—C11—H11B | 108.0 |
C1—N1—Lii | 82.27 (18) | C11—C12—C13 | 112.0 (3) |
C2—N1—Lii | 133.03 (19) | C11—C12—H12A | 109.2 |
Li—N1—Lii | 71.06 (18) | C13—C12—H12A | 109.2 |
C1—N2—C8 | 120.4 (2) | C11—C12—H12B | 109.2 |
C1—N2—Lii | 91.93 (19) | C13—C12—H12B | 109.2 |
C8—N2—Lii | 147.6 (2) | H12A—C12—H12B | 107.9 |
C1—N3—C14 | 124.9 (2) | C12—C13—C8 | 111.4 (2) |
C1—N3—C17 | 122.0 (2) | C12—C13—H13A | 109.3 |
C14—N3—C17 | 111.1 (2) | C8—C13—H13A | 109.3 |
C18—O—C21 | 109.8 (2) | C12—C13—H13B | 109.3 |
C18—O—Li | 124.6 (2) | C8—C13—H13B | 109.3 |
C21—O—Li | 117.7 (2) | H13A—C13—H13B | 108.0 |
N2—C1—N1 | 117.6 (2) | N3—C14—C15 | 104.2 (2) |
N2—C1—N3 | 121.0 (2) | N3—C14—H14A | 110.9 |
N1—C1—N3 | 121.5 (2) | C15—C14—H14A | 110.9 |
N2—C1—Lii | 55.31 (16) | N3—C14—H14B | 110.9 |
N1—C1—Lii | 64.14 (16) | C15—C14—H14B | 110.9 |
N3—C1—Lii | 165.82 (19) | H14A—C14—H14B | 108.9 |
N1—C2—C7 | 111.85 (19) | C16—C15—C14 | 106.5 (3) |
N1—C2—C3 | 111.65 (19) | C16—C15—H15A | 110.4 |
C7—C2—C3 | 109.3 (2) | C14—C15—H15A | 110.4 |
N1—C2—H2 | 108.0 | C16—C15—H15B | 110.4 |
C7—C2—H2 | 108.0 | C14—C15—H15B | 110.4 |
C3—C2—H2 | 108.0 | H15A—C15—H15B | 108.6 |
C4—C3—C2 | 111.5 (2) | C17—C16—C15 | 105.2 (3) |
C4—C3—H3A | 109.3 | C17—C16—H16A | 110.7 |
C2—C3—H3A | 109.3 | C15—C16—H16A | 110.7 |
C4—C3—H3B | 109.3 | C17—C16—H16B | 110.7 |
C2—C3—H3B | 109.3 | C15—C16—H16B | 110.7 |
H3A—C3—H3B | 108.0 | H16A—C16—H16B | 108.8 |
C5—C4—C3 | 111.8 (2) | C16—C17—N3 | 104.4 (3) |
C5—C4—H4A | 109.2 | C16—C17—H17A | 110.9 |
C3—C4—H4A | 109.2 | N3—C17—H17A | 110.9 |
C5—C4—H4B | 109.2 | C16—C17—H17B | 110.9 |
C3—C4—H4B | 109.2 | N3—C17—H17B | 110.9 |
H4A—C4—H4B | 107.9 | H17A—C17—H17B | 108.9 |
C6—C5—C4 | 111.0 (2) | O—C18—C19 | 105.7 (3) |
C6—C5—H5A | 109.4 | O—C18—H18A | 110.6 |
C4—C5—H5A | 109.4 | C19—C18—H18A | 110.6 |
C6—C5—H5B | 109.4 | O—C18—H18B | 110.6 |
C4—C5—H5B | 109.4 | C19—C18—H18B | 110.6 |
H5A—C5—H5B | 108.0 | H18A—C18—H18B | 108.7 |
C5—C6—C7 | 112.2 (2) | C20—C19—C18 | 101.7 (3) |
C5—C6—H6A | 109.2 | C20—C19—H19A | 111.4 |
C7—C6—H6A | 109.2 | C18—C19—H19A | 111.4 |
C5—C6—H6B | 109.2 | C20—C19—H19B | 111.4 |
C7—C6—H6B | 109.2 | C18—C19—H19B | 111.4 |
H6A—C6—H6B | 107.9 | H19A—C19—H19B | 109.3 |
C6—C7—C2 | 110.9 (2) | C19—C20—C21 | 102.8 (3) |
C6—C7—H7A | 109.5 | C19—C20—H20A | 111.2 |
C2—C7—H7A | 109.5 | C21—C20—H20A | 111.2 |
C6—C7—H7B | 109.5 | C19—C20—H20B | 111.2 |
C2—C7—H7B | 109.5 | C21—C20—H20B | 111.2 |
H7A—C7—H7B | 108.0 | H20A—C20—H20B | 109.1 |
N2—C8—C9 | 111.0 (2) | O—C21—C20 | 105.5 (3) |
N2—C8—C13 | 110.6 (2) | O—C21—H21A | 110.6 |
C9—C8—C13 | 109.0 (2) | C20—C21—H21A | 110.6 |
N2—C8—H8 | 108.8 | O—C21—H21B | 110.6 |
C9—C8—H8 | 108.8 | C20—C21—H21B | 110.6 |
C13—C8—H8 | 108.8 | H21A—C21—H21B | 108.8 |
O—Li—N1—C1 | 71.7 (3) | C17—N3—C1—Lii | −9.3 (9) |
N2i—Li—N1—C1 | −137.6 (3) | C1—N1—C2—C7 | 104.0 (2) |
N1i—Li—N1—C1 | −64.2 (3) | Li—N1—C2—C7 | −88.3 (2) |
C1i—Li—N1—C1 | −95.4 (3) | Lii—N1—C2—C7 | −1.8 (3) |
Lii—Li—N1—C1 | −64.2 (3) | C1—N1—C2—C3 | −133.2 (2) |
O—Li—N1—C2 | −94.5 (2) | Li—N1—C2—C3 | 34.5 (3) |
N2i—Li—N1—C2 | 56.1 (3) | Lii—N1—C2—C3 | 121.0 (2) |
N1i—Li—N1—C2 | 129.5 (2) | N1—C2—C3—C4 | 178.6 (2) |
C1i—Li—N1—C2 | 98.3 (3) | C7—C2—C3—C4 | −57.2 (3) |
Lii—Li—N1—C2 | 129.5 (2) | C2—C3—C4—C5 | 55.9 (3) |
O—Li—N1—Lii | 136.0 (3) | C3—C4—C5—C6 | −53.3 (4) |
N2i—Li—N1—Lii | −73.4 (3) | C4—C5—C6—C7 | 53.9 (4) |
N1i—Li—N1—Lii | 0.0 | C5—C6—C7—C2 | −56.6 (3) |
C1i—Li—N1—Lii | −31.19 (16) | N1—C2—C7—C6 | −178.7 (2) |
N2i—Li—O—C18 | −45.7 (3) | C3—C2—C7—C6 | 57.2 (3) |
N1—Li—O—C18 | 108.6 (3) | C1—N2—C8—C9 | −116.5 (3) |
N1i—Li—O—C18 | −122.8 (3) | Lii—N2—C8—C9 | 58.7 (4) |
C1i—Li—O—C18 | −83.0 (3) | C1—N2—C8—C13 | 122.5 (3) |
Lii—Li—O—C18 | 170.0 (4) | Lii—N2—C8—C13 | −62.4 (4) |
N2i—Li—O—C21 | 168.5 (2) | N2—C8—C9—C10 | −179.2 (2) |
N1—Li—O—C21 | −37.3 (3) | C13—C8—C9—C10 | −57.2 (3) |
N1i—Li—O—C21 | 91.4 (3) | C8—C9—C10—C11 | 57.5 (3) |
C1i—Li—O—C21 | 131.1 (3) | C9—C10—C11—C12 | −55.1 (3) |
Lii—Li—O—C21 | 24.1 (5) | C10—C11—C12—C13 | 54.6 (4) |
C8—N2—C1—N1 | −166.2 (2) | C11—C12—C13—C8 | −55.4 (4) |
Lii—N2—C1—N1 | 16.4 (2) | N2—C8—C13—C12 | 177.7 (2) |
C8—N2—C1—N3 | 13.7 (3) | C9—C8—C13—C12 | 55.5 (3) |
Lii—N2—C1—N3 | −163.7 (2) | C1—N3—C14—C15 | −159.4 (3) |
C8—N2—C1—Lii | 177.4 (3) | C17—N3—C14—C15 | 4.6 (3) |
C2—N1—C1—N2 | −149.7 (2) | N3—C14—C15—C16 | 13.9 (4) |
Li—N1—C1—N2 | 44.3 (3) | C14—C15—C16—C17 | −27.0 (5) |
Lii—N1—C1—N2 | −14.9 (2) | C15—C16—C17—N3 | 29.2 (4) |
C2—N1—C1—N3 | 30.4 (3) | C1—N3—C17—C16 | 143.2 (3) |
Li—N1—C1—N3 | −135.6 (2) | C14—N3—C17—C16 | −21.4 (4) |
Lii—N1—C1—N3 | 165.1 (2) | C21—O—C18—C19 | −14.8 (3) |
C2—N1—C1—Lii | −134.8 (2) | Li—O—C18—C19 | −162.9 (2) |
Li—N1—C1—Lii | 59.3 (3) | O—C18—C19—C20 | 32.7 (3) |
C14—N3—C1—N2 | −136.5 (3) | C18—C19—C20—C21 | −37.6 (3) |
C17—N3—C1—N2 | 61.1 (3) | C18—O—C21—C20 | −9.5 (3) |
C14—N3—C1—N1 | 43.4 (4) | Li—O—C21—C20 | 141.2 (3) |
C17—N3—C1—N1 | −118.9 (3) | C19—C20—C21—O | 29.7 (3) |
C14—N3—C1—Lii | 153.1 (7) |
Symmetry code: (i) −x+2, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Li2(C17H30N3)2(C4H8O)2] |
Mr | 710.97 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 223 |
a, b, c (Å) | 10.446 (6), 21.454 (15), 10.491 (6) |
β (°) | 114.13 (4) |
V (Å3) | 2146 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.980, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8457, 3688, 2749 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.082, 0.237, 1.05 |
No. of reflections | 3688 |
No. of parameters | 235 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.68, −0.61 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Li—O | 1.973 (5) | Li—N1 | 2.057 (5) |
Li—N2i | 1.997 (5) | Li—N1i | 2.204 (5) |
Symmetry code: (i) −x+2, −y, −z+1. |
Acknowledgements
The authors thank Professor Xuehong Wei and the Center of Testing and Analysis, Shanxi University, for support.
References
Bailey, P. J. & Pace, S. (2001). Coord. Chem. Rev. 214, 91–141. Web of Science CrossRef CAS Google Scholar
Barker, J. & Kilner, M. (1994). Coord. Chem. Rev. 133, 219–300. CrossRef CAS Web of Science Google Scholar
Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chandra, G., Jenkins, A. D., Lappert, M. F. & Srivastava, R. C. (1970). J. Chem. Soc. pp. 2550–2558. CrossRef Google Scholar
Coles, M. P. & Hitchcock, P. B. (2004). Eur. J. Inorg. Chem. 13, 2662–2672. Web of Science CSD CrossRef Google Scholar
Corey, B. W., Laurel, L. R., Khalil, A. A. & Lisa, M. W. (2006). Inorg. Chem. 45, 263–268. Web of Science PubMed Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhou, M. S., Tong, H. B., Wei, X. H. & Liu, D. S. (2007). J. Organomet. Chem. 692, 5195–5202. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a result of the donor ability of the nitrogen centers and the potential to exploit both the steric and electronic effects induced by the programmed variation of organic substituents,the guanidinate anion has generated significant interest as a ligand (Bailey & Pace, 2001; Barker & Kilner, 1994). Since the first guanidinato complexes have been reported (Chandra et al., 1970), guanidinato ligands have been used extensively in the coordination chemistry of transition, f-block, and main-group metals (Corey et al., 2006). Moreover many guanidinato complexes were reported showing good performance in ethylene polymerization (Zhou et al., 2007) and in ring-opening polymerisation reactions (Coles & Hitchcock, 2004) in catalysis applications.
In the title complex,[(THF)LiN(C6H11)C(NC4H8)N(C6H11)]2 , the Li cation is coordinated by three N atoms from two guanidinato ligands and an O atom from tetrahydrofuran as a dimer around a planar Li/N1/LiA/N1A ring (Fig. 1). The core of the centrosymmetric molecule has a fused tricyclic ladder motif comprising a central planar Li/N1/LiA/N1A ring flanked by planar N2/C1/N1/LiA and N2A/C1A/N1A/Li rings. The dihedral angle between the latter two rings is 46.4 (9)°. Inside the guanidinato-bridged THF-stabilized dimer the Li···Li separation is short at 2.479 (8) Å. Electronic delocalization throughout the guanidinate moiety is observed as evidenced by the C-N distances [N1—C1: 1.355 (3) Å, N2—C1: 1.314 (3) Å].