metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­quinoline-κ2N,N′)di­bromido­zinc(II)

aDepartment of Chemistry, University of Sistan and Baluchestan, PO Box 98135-674, Zahedan, Iran
*Correspondence e-mail: saravani@chem.usb.ac.ir

(Received 22 September 2010; accepted 16 November 2010; online 24 November 2010)

In the title compound, [ZnBr2(C18H12N2)], the ZnII atom is four-coordinated in a distorted tetra­hedral configuration by two N atoms from the 2,2′-biquinoline ligand and two terminal Br atoms. The crystal packing is stabilized by weak inter­molecular C—H⋯Br hydrogen bonds and extensive inter­molecular ππ contacts between the pyridine and benzene rings [centroid–centroid distances = 3.775 (4), 3.748 (4), 3.735 (4), 3.538 (4), 3.678 (4) and 3.513 (4) Å].

Related literature

For Zn—Br and Zn—N bond lengths in related structures, see: Alizadeh et al. (2009[Alizadeh, R., Khoshtarkib, Z., Chegeni, K., Ebadi, A. & Amani, V. (2009). Acta Cryst. E65, m1311.]), Muranishi et al. (2005[Muranishi, Y., Wang, Y., Odoko, M. & Okabe, N. (2005). Acta Cryst. C61, m307-m310.]). For complexes of 2,2′-biquinoline, see: Bowmaker et al. (2005[Bowmaker, G.A., Effendy, Marfuah, S., Skelton, B.W. & White, A. H. (2005). Inorg. Chim. Acta, 358, 4371-4388.]); Butcher & Sinn (1977[Butcher, R. J. & Sinn, E. (1977). Inorg. Chem. 16, 2334-2343.]); Kou et al. (2008[Kou, H. Z., Hishiya, S. & Sato, O. (2008). Inorg. Chim. Acta, 361, 2396-2406.]); Moreno et al. (2007[Moreno, Y., Salgado, Y., Garland, M. T. & Baggio, R. (2007). Acta Cryst. C63, m487-m489.]); Okabe & Muranishi (2005[Okabe, N. & Muranishi, Y. (2005). Acta Cryst. E61, m2332-m2334.]); Rahimi et al. (2009[Rahimi, N., Safari, N., Amani, V. & Khavasi, H. R. (2009). Acta Cryst. E65, m1370.]); Yoshikawa et al. (2003[Yoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y., Matsumura-Inoue, T., Takashima, H. & Tsukahara, K. (2003). Acta Cryst. E59, m551-m552.]); Zhou & Ng (2006[Zhou, R. & Ng, S. W. (2006). Acta Cryst. E62, m1691-m1692.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C18H12N2)]

  • Mr = 481.49

  • Monoclinic, P 21 /n

  • a = 7.9188 (16) Å

  • b = 12.351 (3) Å

  • c = 17.385 (4) Å

  • β = 103.01 (3)°

  • V = 1656.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.31 mm−1

  • T = 298 K

  • 0.20 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.380, Tmax = 0.530

  • 13476 measured reflections

  • 4471 independent reflections

  • 2968 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.150

  • S = 1.15

  • 4471 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected geometric parameters (Å, °)

N1—Zn1 2.063 (4)
N2—Zn1 2.056 (5)
Zn1—Br2 2.3348 (11)
Zn1—Br1 2.3498 (12)
N2—Zn1—N1 80.56 (18)
N2—Zn1—Br2 112.49 (14)
N1—Zn1—Br2 116.75 (13)
N2—Zn1—Br1 113.58 (14)
N1—Zn1—Br1 107.98 (15)
Br2—Zn1—Br1 119.24 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Br2i 0.93 2.87 3.574 (7) 133
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Numerous complexes have been prepared with the bidentate ligand 2,2'-biquinoline (2,2'-biq) such as that of iron (Rahimi et al., 2009), iridium (Yoshikawa et al., 2003), platinum (Okabe & Muranishi 2005), copper (Moreno et al., 2007; Zhou & Ng 2006), silver (Bowmaker et al., 2005), nickel (Kou et al., 2008; Butcher & Sinn 1977) and palladium (Muranishi et al., 2005). For further investigation of 2,2'-biquinoline, we have synthesized the title compound, [ZnBr2(C18H12N2)].

In the title compound, the ZnII atom is four-coordinate in a distorted tetrahedral configuration with two N atoms from one 2,2'-biquinoline and two terminal Br atoms (Fig. 1). The Zn—N and Zn—Br bond lengths and angles are within the normal ranges for [ZnCl2(biq)] (Muranishi et al., 2005) and [ZnBr2(6,6'-dmbpy)], (Alizadeh et al., 2009) [where 6,6'-dmbpy is 6,6'-dimethyl-2, 2'-bipyridine], respectively. Crystal stability is enhanced by weak intermolecular C—H···Br hydrogen bonds (Table 2, Fig.2) and extensive weak ππ intermolecular contacts between the mean planes of the pyridine and phenyl rings (Table 3).

Related literature top

For Zn—Br and Zn—N bond lengths in related structures, see: Alizadeh et al. (2009), Muranishi et al. (2005). For complexes of 2,2'-biquinoline, see: Bowmaker et al. (2005); Butcher & Sinn (1977); Kou et al. (2008); Moreno et al. (2007); Okabe & Muranishi (2005); Rahimi et al. (2009); Yoshikawa et al. (2003); Zhou et al. (2006).

Experimental top

For the preparation of the title compound, a solution of 2,2'- biquinoline (0.51 g, 2.0 mmol) in methanol (10 ml) and chloroform (10 ml) was added to a solution of ZnBr2 (0.46 g, 2.0 mmol) in methanol (5 ml) and chloroform (5 ml) and the resulting solution was stirred for 20 min at room temperature. Suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion into a solution in DMSO after one week (yield; 0.72 g, 74.8%).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93Å for aromatics (H) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq.

Structure description top

Numerous complexes have been prepared with the bidentate ligand 2,2'-biquinoline (2,2'-biq) such as that of iron (Rahimi et al., 2009), iridium (Yoshikawa et al., 2003), platinum (Okabe & Muranishi 2005), copper (Moreno et al., 2007; Zhou & Ng 2006), silver (Bowmaker et al., 2005), nickel (Kou et al., 2008; Butcher & Sinn 1977) and palladium (Muranishi et al., 2005). For further investigation of 2,2'-biquinoline, we have synthesized the title compound, [ZnBr2(C18H12N2)].

In the title compound, the ZnII atom is four-coordinate in a distorted tetrahedral configuration with two N atoms from one 2,2'-biquinoline and two terminal Br atoms (Fig. 1). The Zn—N and Zn—Br bond lengths and angles are within the normal ranges for [ZnCl2(biq)] (Muranishi et al., 2005) and [ZnBr2(6,6'-dmbpy)], (Alizadeh et al., 2009) [where 6,6'-dmbpy is 6,6'-dimethyl-2, 2'-bipyridine], respectively. Crystal stability is enhanced by weak intermolecular C—H···Br hydrogen bonds (Table 2, Fig.2) and extensive weak ππ intermolecular contacts between the mean planes of the pyridine and phenyl rings (Table 3).

For Zn—Br and Zn—N bond lengths in related structures, see: Alizadeh et al. (2009), Muranishi et al. (2005). For complexes of 2,2'-biquinoline, see: Bowmaker et al. (2005); Butcher & Sinn (1977); Kou et al. (2008); Moreno et al. (2007); Okabe & Muranishi (2005); Rahimi et al. (2009); Yoshikawa et al. (2003); Zhou et al. (2006).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram for title molecule viewed down the a axis. Dashed lines indicate weak C—H···Br intermolecular interactions.
(2,2'-Biquinoline-κ2N,N')dibromidozinc(II) top
Crystal data top
[ZnBr2(C18H12N2)]F(000) = 936
Mr = 481.49Dx = 1.930 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 434 reflections
a = 7.9188 (16) Åθ = 2.0–29.3°
b = 12.351 (3) ŵ = 6.31 mm1
c = 17.385 (4) ÅT = 298 K
β = 103.01 (3)°Block, colorless
V = 1656.7 (7) Å30.20 × 0.13 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4471 independent reflections
Radiation source: fine-focus sealed tube2968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
θ and ω scansθmax = 29.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 910
Tmin = 0.380, Tmax = 0.530k = 1616
13476 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0538P)2 + 1.2857P]
where P = (Fo2 + 2Fc2)/3
4471 reflections(Δ/σ)max = 0.007
208 parametersΔρmax = 1.14 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[ZnBr2(C18H12N2)]V = 1656.7 (7) Å3
Mr = 481.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9188 (16) ŵ = 6.31 mm1
b = 12.351 (3) ÅT = 298 K
c = 17.385 (4) Å0.20 × 0.13 × 0.10 mm
β = 103.01 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4471 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2968 reflections with I > 2σ(I)
Tmin = 0.380, Tmax = 0.530Rint = 0.098
13476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.15Δρmax = 1.14 e Å3
4471 reflectionsΔρmin = 0.69 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7304 (8)0.5440 (4)0.0324 (4)0.0354 (13)
C20.8156 (9)0.4877 (5)0.1012 (4)0.0434 (14)
H20.81580.51520.15100.052*
C30.8975 (9)0.3922 (5)0.0933 (5)0.0518 (18)
H30.95390.35470.13820.062*
C40.8974 (10)0.3501 (5)0.0183 (5)0.0529 (18)
H40.95410.28510.01420.063*
C50.8161 (10)0.4024 (5)0.0483 (5)0.0488 (17)
H50.81610.37280.09750.059*
C60.7312 (8)0.5020 (5)0.0430 (4)0.0386 (13)
C70.6441 (9)0.5609 (5)0.1093 (4)0.0428 (15)
H70.64300.53540.15980.051*
C80.5609 (9)0.6557 (5)0.1000 (3)0.0424 (15)
H80.50210.69470.14360.051*
C90.5666 (8)0.6924 (5)0.0231 (3)0.0317 (11)
C100.4705 (8)0.7925 (4)0.0082 (3)0.0313 (12)
C110.3551 (8)0.8467 (5)0.0691 (4)0.0383 (13)
H110.33840.82270.12100.046*
C120.2681 (8)0.9347 (5)0.0514 (4)0.0409 (14)
H120.19210.97160.09150.049*
C130.2924 (8)0.9702 (5)0.0272 (4)0.0387 (13)
C140.2045 (10)1.0612 (5)0.0494 (5)0.0489 (17)
H140.12581.09950.01130.059*
C150.2351 (11)1.0923 (6)0.1259 (5)0.058 (2)
H150.17521.15100.14010.070*
C160.3560 (12)1.0371 (6)0.1841 (5)0.0576 (19)
H160.37771.06100.23610.069*
C170.4432 (10)0.9479 (6)0.1651 (4)0.0495 (17)
H170.52230.91100.20390.059*
C180.4100 (8)0.9135 (5)0.0853 (3)0.0369 (13)
N10.6500 (7)0.6402 (4)0.0408 (3)0.0312 (10)
N20.4991 (7)0.8251 (4)0.0668 (3)0.0320 (10)
Zn10.67435 (10)0.73002 (6)0.14281 (4)0.03680 (19)
Br10.95564 (10)0.80280 (6)0.17474 (5)0.0561 (2)
Br20.55785 (11)0.65496 (6)0.24275 (4)0.0554 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.039 (3)0.029 (3)0.041 (3)0.006 (2)0.014 (3)0.000 (2)
C20.043 (4)0.044 (3)0.044 (3)0.001 (3)0.010 (3)0.007 (3)
C30.042 (4)0.039 (3)0.074 (5)0.005 (3)0.011 (4)0.013 (3)
C40.045 (4)0.031 (3)0.086 (6)0.001 (3)0.019 (4)0.007 (3)
C50.053 (4)0.039 (3)0.059 (4)0.008 (3)0.022 (4)0.016 (3)
C60.039 (3)0.037 (3)0.042 (3)0.008 (3)0.015 (3)0.008 (3)
C70.055 (4)0.039 (3)0.035 (3)0.011 (3)0.011 (3)0.016 (3)
C80.051 (4)0.046 (3)0.027 (3)0.011 (3)0.003 (3)0.003 (3)
C90.035 (3)0.032 (3)0.026 (2)0.010 (2)0.003 (2)0.003 (2)
C100.035 (3)0.031 (3)0.025 (2)0.006 (2)0.001 (2)0.001 (2)
C110.040 (3)0.040 (3)0.030 (3)0.007 (3)0.002 (2)0.005 (2)
C120.037 (3)0.039 (3)0.042 (3)0.001 (3)0.000 (3)0.010 (3)
C130.034 (3)0.037 (3)0.044 (3)0.002 (2)0.008 (3)0.003 (3)
C140.050 (4)0.035 (3)0.066 (5)0.004 (3)0.022 (4)0.004 (3)
C150.063 (5)0.052 (4)0.071 (5)0.009 (4)0.039 (4)0.001 (4)
C160.074 (5)0.058 (4)0.046 (4)0.010 (4)0.025 (4)0.011 (3)
C170.065 (5)0.052 (4)0.034 (3)0.003 (3)0.015 (3)0.002 (3)
C180.046 (4)0.030 (3)0.035 (3)0.005 (2)0.011 (3)0.001 (2)
N10.038 (3)0.028 (2)0.027 (2)0.0014 (19)0.0052 (19)0.0017 (18)
N20.040 (3)0.030 (2)0.026 (2)0.002 (2)0.0074 (19)0.0012 (18)
Zn10.0467 (4)0.0377 (3)0.0234 (3)0.0022 (3)0.0023 (3)0.0002 (3)
Br10.0502 (4)0.0611 (4)0.0508 (4)0.0085 (3)0.0019 (3)0.0033 (3)
Br20.0760 (5)0.0629 (4)0.0263 (3)0.0154 (4)0.0095 (3)0.0018 (3)
Geometric parameters (Å, º) top
C1—N11.371 (7)C11—C121.359 (9)
C1—C61.412 (8)C11—H110.9300
C1—C21.416 (9)C12—C131.407 (9)
C2—C31.368 (10)C12—H120.9300
C2—H20.9300C13—C181.399 (9)
C3—C41.404 (11)C13—C141.420 (9)
C3—H30.9300C14—C151.353 (11)
C4—C51.355 (11)C14—H140.9300
C4—H40.9300C15—C161.403 (12)
C5—C61.415 (9)C15—H150.9300
C5—H50.9300C16—C171.379 (10)
C6—C71.405 (9)C16—H160.9300
C7—C81.371 (10)C17—C181.417 (9)
C7—H70.9300C17—H170.9300
C8—C91.403 (8)C18—N21.376 (8)
C8—H80.9300N1—Zn12.063 (4)
C9—N11.325 (7)N2—Zn12.056 (5)
C9—C101.504 (8)Zn1—Br22.3348 (11)
C10—N21.334 (7)Zn1—Br12.3498 (12)
C10—C111.404 (8)
N1—C1—C6121.1 (6)C11—C12—C13120.2 (6)
N1—C1—C2118.8 (6)C11—C12—H12119.9
C6—C1—C2120.1 (6)C13—C12—H12119.9
C3—C2—C1119.1 (7)C18—C13—C12118.0 (6)
C3—C2—H2120.4C18—C13—C14119.2 (6)
C1—C2—H2120.4C12—C13—C14122.9 (6)
C2—C3—C4120.7 (7)C15—C14—C13120.1 (7)
C2—C3—H3119.6C15—C14—H14119.9
C4—C3—H3119.6C13—C14—H14119.9
C5—C4—C3121.2 (6)C14—C15—C16120.8 (7)
C5—C4—H4119.4C14—C15—H15119.6
C3—C4—H4119.4C16—C15—H15119.6
C4—C5—C6120.1 (7)C17—C16—C15120.9 (7)
C4—C5—H5120.0C17—C16—H16119.6
C6—C5—H5120.0C15—C16—H16119.6
C7—C6—C1117.9 (5)C16—C17—C18118.8 (7)
C7—C6—C5123.3 (6)C16—C17—H17120.6
C1—C6—C5118.8 (6)C18—C17—H17120.6
C8—C7—C6120.3 (6)N2—C18—C13121.4 (5)
C8—C7—H7119.8N2—C18—C17118.3 (6)
C6—C7—H7119.8C13—C18—C17120.2 (6)
C7—C8—C9118.4 (6)C9—N1—C1119.3 (5)
C7—C8—H8120.8C9—N1—Zn1113.0 (4)
C9—C8—H8120.8C1—N1—Zn1127.0 (4)
N1—C9—C8123.0 (6)C10—N2—C18119.0 (5)
N1—C9—C10115.6 (5)C10—N2—Zn1113.4 (4)
C8—C9—C10121.4 (5)C18—N2—Zn1127.6 (4)
N2—C10—C11122.1 (5)N2—Zn1—N180.56 (18)
N2—C10—C9115.8 (5)N2—Zn1—Br2112.49 (14)
C11—C10—C9122.0 (5)N1—Zn1—Br2116.75 (13)
C12—C11—C10119.2 (6)N2—Zn1—Br1113.58 (14)
C12—C11—H11120.4N1—Zn1—Br1107.98 (15)
C10—C11—H11120.4Br2—Zn1—Br1119.24 (4)
N1—C1—C2—C3179.4 (6)C12—C13—C18—C17178.1 (6)
C6—C1—C2—C30.3 (9)C14—C13—C18—C171.2 (9)
C1—C2—C3—C40.1 (10)C16—C17—C18—N2179.3 (6)
C2—C3—C4—C50.2 (11)C16—C17—C18—C130.8 (10)
C3—C4—C5—C60.8 (11)C8—C9—N1—C12.2 (9)
N1—C1—C6—C71.2 (9)C10—C9—N1—C1175.3 (5)
C2—C1—C6—C7179.8 (6)C8—C9—N1—Zn1168.5 (5)
N1—C1—C6—C5180.0 (6)C10—C9—N1—Zn113.9 (6)
C2—C1—C6—C50.9 (9)C6—C1—N1—C92.4 (8)
C4—C5—C6—C7179.9 (7)C2—C1—N1—C9178.5 (6)
C4—C5—C6—C11.2 (10)C6—C1—N1—Zn1166.9 (4)
C1—C6—C7—C80.4 (9)C2—C1—N1—Zn112.2 (8)
C5—C6—C7—C8178.4 (6)C11—C10—N2—C181.3 (8)
C6—C7—C8—C90.6 (9)C9—C10—N2—C18177.3 (5)
C7—C8—C9—N10.7 (9)C11—C10—N2—Zn1180.0 (4)
C7—C8—C9—C10176.7 (6)C9—C10—N2—Zn11.4 (6)
N1—C9—C10—N28.6 (7)C13—C18—N2—C100.8 (8)
C8—C9—C10—N2173.8 (5)C17—C18—N2—C10179.3 (6)
N1—C9—C10—C11170.0 (5)C13—C18—N2—Zn1179.3 (4)
C8—C9—C10—C117.6 (9)C17—C18—N2—Zn12.3 (8)
N2—C10—C11—C120.6 (9)C10—N2—Zn1—N16.6 (4)
C9—C10—C11—C12177.9 (5)C18—N2—Zn1—N1171.8 (5)
C10—C11—C12—C130.6 (9)C10—N2—Zn1—Br2121.8 (4)
C11—C12—C13—C181.1 (9)C18—N2—Zn1—Br256.7 (5)
C11—C12—C13—C14179.6 (6)C10—N2—Zn1—Br199.0 (4)
C18—C13—C14—C150.2 (10)C18—N2—Zn1—Br182.6 (5)
C12—C13—C14—C15179.1 (7)C9—N1—Zn1—N211.4 (4)
C13—C14—C15—C161.3 (12)C1—N1—Zn1—N2178.7 (5)
C14—C15—C16—C171.8 (13)C9—N1—Zn1—Br2121.9 (4)
C15—C16—C17—C180.7 (12)C1—N1—Zn1—Br268.2 (5)
C12—C13—C18—N20.4 (9)C9—N1—Zn1—Br1100.4 (4)
C14—C13—C18—N2179.7 (5)C1—N1—Zn1—Br169.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Br2i0.932.873.574 (7)133
Symmetry code: (i) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[ZnBr2(C18H12N2)]
Mr481.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.9188 (16), 12.351 (3), 17.385 (4)
β (°) 103.01 (3)
V3)1656.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)6.31
Crystal size (mm)0.20 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.380, 0.530
No. of measured, independent and
observed [I > 2σ(I)] reflections
13476, 4471, 2968
Rint0.098
(sin θ/λ)max1)0.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.150, 1.15
No. of reflections4471
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 0.69

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
N1—Zn12.063 (4)Zn1—Br22.3348 (11)
N2—Zn12.056 (5)Zn1—Br12.3498 (12)
N2—Zn1—N180.56 (18)N2—Zn1—Br1113.58 (14)
N2—Zn1—Br2112.49 (14)N1—Zn1—Br1107.98 (15)
N1—Zn1—Br2116.75 (13)Br2—Zn1—Br1119.24 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Br2i0.9302.8703.574 (7)133.00
Symmetry code: (i) x1/2, y+3/2, z1/2.
Cg···Cg ππ interactions [Cg1, Cg2, Cg3, Cg5, Cg5 = centroids of rings Zn1/N1/C9/C10/N2; N1/C1/C6/C7/C8/C9; N2/C10/C11/C12/C13/C18; C1–C6; C13–C18; Symmetry codes: (i) 1-x, 1-y, -z; (ii) 1-x, 2-y, -z; (iii) 2-x, 1-y, -z]
Cg(I) Cg(J) Cg···Cg (Å)
top
Cg1Cg43.775 (4)i
Cg2Cg23.748 (4)i
Cg2Cg43.735 (4)i
Cg3Cg33.538 (4)ii
Cg3Cg53.678 (4)ii
Cg4Cg43.513 (4)iii
 

Acknowledgements

We are grateful to the University of Sistan and Baluchestan for financial support.

References

First citationAlizadeh, R., Khoshtarkib, Z., Chegeni, K., Ebadi, A. & Amani, V. (2009). Acta Cryst. E65, m1311.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBowmaker, G.A., Effendy, Marfuah, S., Skelton, B.W. & White, A. H. (2005). Inorg. Chim. Acta, 358, 4371–4388.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J. & Sinn, E. (1977). Inorg. Chem. 16, 2334–2343.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKou, H. Z., Hishiya, S. & Sato, O. (2008). Inorg. Chim. Acta, 361, 2396–2406.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoreno, Y., Salgado, Y., Garland, M. T. & Baggio, R. (2007). Acta Cryst. C63, m487–m489.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuranishi, Y., Wang, Y., Odoko, M. & Okabe, N. (2005). Acta Cryst. C61, m307–m310.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOkabe, N. & Muranishi, Y. (2005). Acta Cryst. E61, m2332–m2334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRahimi, N., Safari, N., Amani, V. & Khavasi, H. R. (2009). Acta Cryst. E65, m1370.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y., Matsumura-Inoue, T., Takashima, H. & Tsukahara, K. (2003). Acta Cryst. E59, m551–m552.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, R. & Ng, S. W. (2006). Acta Cryst. E62, m1691–m1692.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds