metal-organic compounds
(2,2′-Biquinoline-κ2N,N′)dibromidozinc(II)
aDepartment of Chemistry, University of Sistan and Baluchestan, PO Box 98135-674, Zahedan, Iran
*Correspondence e-mail: saravani@chem.usb.ac.ir
In the title compound, [ZnBr2(C18H12N2)], the ZnII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from the 2,2′-biquinoline ligand and two terminal Br atoms. The crystal packing is stabilized by weak intermolecular C—H⋯Br hydrogen bonds and extensive intermolecular π–π contacts between the pyridine and benzene rings [centroid–centroid distances = 3.775 (4), 3.748 (4), 3.735 (4), 3.538 (4), 3.678 (4) and 3.513 (4) Å].
Related literature
For Zn—Br and Zn—N bond lengths in related structures, see: Alizadeh et al. (2009), Muranishi et al. (2005). For complexes of 2,2′-biquinoline, see: Bowmaker et al. (2005); Butcher & Sinn (1977); Kou et al. (2008); Moreno et al. (2007); Okabe & Muranishi (2005); Rahimi et al. (2009); Yoshikawa et al. (2003); Zhou & Ng (2006).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810047434/jj2062sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810047434/jj2062Isup2.hkl
For the preparation of the title compound, a solution of 2,2'- biquinoline (0.51 g, 2.0 mmol) in methanol (10 ml) and chloroform (10 ml) was added to a solution of ZnBr2 (0.46 g, 2.0 mmol) in methanol (5 ml) and chloroform (5 ml) and the resulting solution was stirred for 20 min at room temperature. Suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion into a solution in DMSO after one week (yield; 0.72 g, 74.8%).
All H atoms were positioned geometrically, with C—H = 0.93Å for aromatics (H) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq.
Numerous complexes have been prepared with the bidentate ligand 2,2'-biquinoline (2,2'-biq) such as that of iron (Rahimi et al., 2009), iridium (Yoshikawa et al., 2003), platinum (Okabe & Muranishi 2005), copper (Moreno et al., 2007; Zhou & Ng 2006), silver (Bowmaker et al., 2005), nickel (Kou et al., 2008; Butcher & Sinn 1977) and palladium (Muranishi et al., 2005). For further investigation of 2,2'-biquinoline, we have synthesized the title compound, [ZnBr2(C18H12N2)].
In the title compound, the ZnII atom is four-coordinate in a distorted tetrahedral configuration with two N atoms from one 2,2'-biquinoline and two terminal Br atoms (Fig. 1). The Zn—N and Zn—Br bond lengths and angles are within the normal ranges for [ZnCl2(biq)] (Muranishi et al., 2005) and [ZnBr2(6,6'-dmbpy)], (Alizadeh et al., 2009) [where 6,6'-dmbpy is 6,6'-dimethyl-2, 2'-bipyridine], respectively. Crystal stability is enhanced by weak intermolecular C—H···Br hydrogen bonds (Table 2, Fig.2) and extensive weak π—π intermolecular contacts between the mean planes of the pyridine and phenyl rings (Table 3).
For Zn—Br and Zn—N bond lengths in related structures, see: Alizadeh et al. (2009), Muranishi et al. (2005). For complexes of 2,2'-biquinoline, see: Bowmaker et al. (2005); Butcher & Sinn (1977); Kou et al. (2008); Moreno et al. (2007); Okabe & Muranishi (2005); Rahimi et al. (2009); Yoshikawa et al. (2003); Zhou et al. (2006).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[ZnBr2(C18H12N2)] | F(000) = 936 |
Mr = 481.49 | Dx = 1.930 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 434 reflections |
a = 7.9188 (16) Å | θ = 2.0–29.3° |
b = 12.351 (3) Å | µ = 6.31 mm−1 |
c = 17.385 (4) Å | T = 298 K |
β = 103.01 (3)° | Block, colorless |
V = 1656.7 (7) Å3 | 0.20 × 0.13 × 0.10 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 4471 independent reflections |
Radiation source: fine-focus sealed tube | 2968 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.098 |
θ and ω scans | θmax = 29.3°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −9→10 |
Tmin = 0.380, Tmax = 0.530 | k = −16→16 |
13476 measured reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.070 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.150 | H-atom parameters constrained |
S = 1.15 | w = 1/[σ2(Fo2) + (0.0538P)2 + 1.2857P] where P = (Fo2 + 2Fc2)/3 |
4471 reflections | (Δ/σ)max = 0.007 |
208 parameters | Δρmax = 1.14 e Å−3 |
0 restraints | Δρmin = −0.69 e Å−3 |
[ZnBr2(C18H12N2)] | V = 1656.7 (7) Å3 |
Mr = 481.49 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.9188 (16) Å | µ = 6.31 mm−1 |
b = 12.351 (3) Å | T = 298 K |
c = 17.385 (4) Å | 0.20 × 0.13 × 0.10 mm |
β = 103.01 (3)° |
Bruker SMART CCD area-detector diffractometer | 4471 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 2968 reflections with I > 2σ(I) |
Tmin = 0.380, Tmax = 0.530 | Rint = 0.098 |
13476 measured reflections |
R[F2 > 2σ(F2)] = 0.070 | 0 restraints |
wR(F2) = 0.150 | H-atom parameters constrained |
S = 1.15 | Δρmax = 1.14 e Å−3 |
4471 reflections | Δρmin = −0.69 e Å−3 |
208 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7304 (8) | 0.5440 (4) | 0.0324 (4) | 0.0354 (13) | |
C2 | 0.8156 (9) | 0.4877 (5) | 0.1012 (4) | 0.0434 (14) | |
H2 | 0.8158 | 0.5152 | 0.1510 | 0.052* | |
C3 | 0.8975 (9) | 0.3922 (5) | 0.0933 (5) | 0.0518 (18) | |
H3 | 0.9539 | 0.3547 | 0.1382 | 0.062* | |
C4 | 0.8974 (10) | 0.3501 (5) | 0.0183 (5) | 0.0529 (18) | |
H4 | 0.9541 | 0.2851 | 0.0142 | 0.063* | |
C5 | 0.8161 (10) | 0.4024 (5) | −0.0483 (5) | 0.0488 (17) | |
H5 | 0.8161 | 0.3728 | −0.0975 | 0.059* | |
C6 | 0.7312 (8) | 0.5020 (5) | −0.0430 (4) | 0.0386 (13) | |
C7 | 0.6441 (9) | 0.5609 (5) | −0.1093 (4) | 0.0428 (15) | |
H7 | 0.6430 | 0.5354 | −0.1598 | 0.051* | |
C8 | 0.5609 (9) | 0.6557 (5) | −0.1000 (3) | 0.0424 (15) | |
H8 | 0.5021 | 0.6947 | −0.1436 | 0.051* | |
C9 | 0.5666 (8) | 0.6924 (5) | −0.0231 (3) | 0.0317 (11) | |
C10 | 0.4705 (8) | 0.7925 (4) | −0.0082 (3) | 0.0313 (12) | |
C11 | 0.3551 (8) | 0.8467 (5) | −0.0691 (4) | 0.0383 (13) | |
H11 | 0.3384 | 0.8227 | −0.1210 | 0.046* | |
C12 | 0.2681 (8) | 0.9347 (5) | −0.0514 (4) | 0.0409 (14) | |
H12 | 0.1921 | 0.9716 | −0.0915 | 0.049* | |
C13 | 0.2924 (8) | 0.9702 (5) | 0.0272 (4) | 0.0387 (13) | |
C14 | 0.2045 (10) | 1.0612 (5) | 0.0494 (5) | 0.0489 (17) | |
H14 | 0.1258 | 1.0995 | 0.0113 | 0.059* | |
C15 | 0.2351 (11) | 1.0923 (6) | 0.1259 (5) | 0.058 (2) | |
H15 | 0.1752 | 1.1510 | 0.1401 | 0.070* | |
C16 | 0.3560 (12) | 1.0371 (6) | 0.1841 (5) | 0.0576 (19) | |
H16 | 0.3777 | 1.0610 | 0.2361 | 0.069* | |
C17 | 0.4432 (10) | 0.9479 (6) | 0.1651 (4) | 0.0495 (17) | |
H17 | 0.5223 | 0.9110 | 0.2039 | 0.059* | |
C18 | 0.4100 (8) | 0.9135 (5) | 0.0853 (3) | 0.0369 (13) | |
N1 | 0.6500 (7) | 0.6402 (4) | 0.0408 (3) | 0.0312 (10) | |
N2 | 0.4991 (7) | 0.8251 (4) | 0.0668 (3) | 0.0320 (10) | |
Zn1 | 0.67435 (10) | 0.73002 (6) | 0.14281 (4) | 0.03680 (19) | |
Br1 | 0.95564 (10) | 0.80280 (6) | 0.17474 (5) | 0.0561 (2) | |
Br2 | 0.55785 (11) | 0.65496 (6) | 0.24275 (4) | 0.0554 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.039 (3) | 0.029 (3) | 0.041 (3) | −0.006 (2) | 0.014 (3) | 0.000 (2) |
C2 | 0.043 (4) | 0.044 (3) | 0.044 (3) | 0.001 (3) | 0.010 (3) | 0.007 (3) |
C3 | 0.042 (4) | 0.039 (3) | 0.074 (5) | 0.005 (3) | 0.011 (4) | 0.013 (3) |
C4 | 0.045 (4) | 0.031 (3) | 0.086 (6) | 0.001 (3) | 0.019 (4) | −0.007 (3) |
C5 | 0.053 (4) | 0.039 (3) | 0.059 (4) | −0.008 (3) | 0.022 (4) | −0.016 (3) |
C6 | 0.039 (3) | 0.037 (3) | 0.042 (3) | −0.008 (3) | 0.015 (3) | −0.008 (3) |
C7 | 0.055 (4) | 0.039 (3) | 0.035 (3) | −0.011 (3) | 0.011 (3) | −0.016 (3) |
C8 | 0.051 (4) | 0.046 (3) | 0.027 (3) | −0.011 (3) | 0.003 (3) | −0.003 (3) |
C9 | 0.035 (3) | 0.032 (3) | 0.026 (2) | −0.010 (2) | 0.003 (2) | −0.003 (2) |
C10 | 0.035 (3) | 0.031 (3) | 0.025 (2) | −0.006 (2) | 0.001 (2) | 0.001 (2) |
C11 | 0.040 (3) | 0.040 (3) | 0.030 (3) | −0.007 (3) | −0.002 (2) | 0.005 (2) |
C12 | 0.037 (3) | 0.039 (3) | 0.042 (3) | 0.001 (3) | 0.000 (3) | 0.010 (3) |
C13 | 0.034 (3) | 0.037 (3) | 0.044 (3) | −0.002 (2) | 0.008 (3) | 0.003 (3) |
C14 | 0.050 (4) | 0.035 (3) | 0.066 (5) | 0.004 (3) | 0.022 (4) | 0.004 (3) |
C15 | 0.063 (5) | 0.052 (4) | 0.071 (5) | 0.009 (4) | 0.039 (4) | −0.001 (4) |
C16 | 0.074 (5) | 0.058 (4) | 0.046 (4) | 0.010 (4) | 0.025 (4) | −0.011 (3) |
C17 | 0.065 (5) | 0.052 (4) | 0.034 (3) | 0.003 (3) | 0.015 (3) | −0.002 (3) |
C18 | 0.046 (4) | 0.030 (3) | 0.035 (3) | −0.005 (2) | 0.011 (3) | 0.001 (2) |
N1 | 0.038 (3) | 0.028 (2) | 0.027 (2) | −0.0014 (19) | 0.0052 (19) | −0.0017 (18) |
N2 | 0.040 (3) | 0.030 (2) | 0.026 (2) | 0.002 (2) | 0.0074 (19) | 0.0012 (18) |
Zn1 | 0.0467 (4) | 0.0377 (3) | 0.0234 (3) | 0.0022 (3) | 0.0023 (3) | 0.0002 (3) |
Br1 | 0.0502 (4) | 0.0611 (4) | 0.0508 (4) | −0.0085 (3) | −0.0019 (3) | −0.0033 (3) |
Br2 | 0.0760 (5) | 0.0629 (4) | 0.0263 (3) | −0.0154 (4) | 0.0095 (3) | 0.0018 (3) |
C1—N1 | 1.371 (7) | C11—C12 | 1.359 (9) |
C1—C6 | 1.412 (8) | C11—H11 | 0.9300 |
C1—C2 | 1.416 (9) | C12—C13 | 1.407 (9) |
C2—C3 | 1.368 (10) | C12—H12 | 0.9300 |
C2—H2 | 0.9300 | C13—C18 | 1.399 (9) |
C3—C4 | 1.404 (11) | C13—C14 | 1.420 (9) |
C3—H3 | 0.9300 | C14—C15 | 1.353 (11) |
C4—C5 | 1.355 (11) | C14—H14 | 0.9300 |
C4—H4 | 0.9300 | C15—C16 | 1.403 (12) |
C5—C6 | 1.415 (9) | C15—H15 | 0.9300 |
C5—H5 | 0.9300 | C16—C17 | 1.379 (10) |
C6—C7 | 1.405 (9) | C16—H16 | 0.9300 |
C7—C8 | 1.371 (10) | C17—C18 | 1.417 (9) |
C7—H7 | 0.9300 | C17—H17 | 0.9300 |
C8—C9 | 1.403 (8) | C18—N2 | 1.376 (8) |
C8—H8 | 0.9300 | N1—Zn1 | 2.063 (4) |
C9—N1 | 1.325 (7) | N2—Zn1 | 2.056 (5) |
C9—C10 | 1.504 (8) | Zn1—Br2 | 2.3348 (11) |
C10—N2 | 1.334 (7) | Zn1—Br1 | 2.3498 (12) |
C10—C11 | 1.404 (8) | ||
N1—C1—C6 | 121.1 (6) | C11—C12—C13 | 120.2 (6) |
N1—C1—C2 | 118.8 (6) | C11—C12—H12 | 119.9 |
C6—C1—C2 | 120.1 (6) | C13—C12—H12 | 119.9 |
C3—C2—C1 | 119.1 (7) | C18—C13—C12 | 118.0 (6) |
C3—C2—H2 | 120.4 | C18—C13—C14 | 119.2 (6) |
C1—C2—H2 | 120.4 | C12—C13—C14 | 122.9 (6) |
C2—C3—C4 | 120.7 (7) | C15—C14—C13 | 120.1 (7) |
C2—C3—H3 | 119.6 | C15—C14—H14 | 119.9 |
C4—C3—H3 | 119.6 | C13—C14—H14 | 119.9 |
C5—C4—C3 | 121.2 (6) | C14—C15—C16 | 120.8 (7) |
C5—C4—H4 | 119.4 | C14—C15—H15 | 119.6 |
C3—C4—H4 | 119.4 | C16—C15—H15 | 119.6 |
C4—C5—C6 | 120.1 (7) | C17—C16—C15 | 120.9 (7) |
C4—C5—H5 | 120.0 | C17—C16—H16 | 119.6 |
C6—C5—H5 | 120.0 | C15—C16—H16 | 119.6 |
C7—C6—C1 | 117.9 (5) | C16—C17—C18 | 118.8 (7) |
C7—C6—C5 | 123.3 (6) | C16—C17—H17 | 120.6 |
C1—C6—C5 | 118.8 (6) | C18—C17—H17 | 120.6 |
C8—C7—C6 | 120.3 (6) | N2—C18—C13 | 121.4 (5) |
C8—C7—H7 | 119.8 | N2—C18—C17 | 118.3 (6) |
C6—C7—H7 | 119.8 | C13—C18—C17 | 120.2 (6) |
C7—C8—C9 | 118.4 (6) | C9—N1—C1 | 119.3 (5) |
C7—C8—H8 | 120.8 | C9—N1—Zn1 | 113.0 (4) |
C9—C8—H8 | 120.8 | C1—N1—Zn1 | 127.0 (4) |
N1—C9—C8 | 123.0 (6) | C10—N2—C18 | 119.0 (5) |
N1—C9—C10 | 115.6 (5) | C10—N2—Zn1 | 113.4 (4) |
C8—C9—C10 | 121.4 (5) | C18—N2—Zn1 | 127.6 (4) |
N2—C10—C11 | 122.1 (5) | N2—Zn1—N1 | 80.56 (18) |
N2—C10—C9 | 115.8 (5) | N2—Zn1—Br2 | 112.49 (14) |
C11—C10—C9 | 122.0 (5) | N1—Zn1—Br2 | 116.75 (13) |
C12—C11—C10 | 119.2 (6) | N2—Zn1—Br1 | 113.58 (14) |
C12—C11—H11 | 120.4 | N1—Zn1—Br1 | 107.98 (15) |
C10—C11—H11 | 120.4 | Br2—Zn1—Br1 | 119.24 (4) |
N1—C1—C2—C3 | −179.4 (6) | C12—C13—C18—C17 | 178.1 (6) |
C6—C1—C2—C3 | −0.3 (9) | C14—C13—C18—C17 | −1.2 (9) |
C1—C2—C3—C4 | −0.1 (10) | C16—C17—C18—N2 | 179.3 (6) |
C2—C3—C4—C5 | −0.2 (11) | C16—C17—C18—C13 | 0.8 (10) |
C3—C4—C5—C6 | 0.8 (11) | C8—C9—N1—C1 | −2.2 (9) |
N1—C1—C6—C7 | −1.2 (9) | C10—C9—N1—C1 | 175.3 (5) |
C2—C1—C6—C7 | 179.8 (6) | C8—C9—N1—Zn1 | 168.5 (5) |
N1—C1—C6—C5 | 180.0 (6) | C10—C9—N1—Zn1 | −13.9 (6) |
C2—C1—C6—C5 | 0.9 (9) | C6—C1—N1—C9 | 2.4 (8) |
C4—C5—C6—C7 | −179.9 (7) | C2—C1—N1—C9 | −178.5 (6) |
C4—C5—C6—C1 | −1.2 (10) | C6—C1—N1—Zn1 | −166.9 (4) |
C1—C6—C7—C8 | −0.4 (9) | C2—C1—N1—Zn1 | 12.2 (8) |
C5—C6—C7—C8 | 178.4 (6) | C11—C10—N2—C18 | 1.3 (8) |
C6—C7—C8—C9 | 0.6 (9) | C9—C10—N2—C18 | −177.3 (5) |
C7—C8—C9—N1 | 0.7 (9) | C11—C10—N2—Zn1 | 180.0 (4) |
C7—C8—C9—C10 | −176.7 (6) | C9—C10—N2—Zn1 | 1.4 (6) |
N1—C9—C10—N2 | 8.6 (7) | C13—C18—N2—C10 | −0.8 (8) |
C8—C9—C10—N2 | −173.8 (5) | C17—C18—N2—C10 | −179.3 (6) |
N1—C9—C10—C11 | −170.0 (5) | C13—C18—N2—Zn1 | −179.3 (4) |
C8—C9—C10—C11 | 7.6 (9) | C17—C18—N2—Zn1 | 2.3 (8) |
N2—C10—C11—C12 | −0.6 (9) | C10—N2—Zn1—N1 | −6.6 (4) |
C9—C10—C11—C12 | 177.9 (5) | C18—N2—Zn1—N1 | 171.8 (5) |
C10—C11—C12—C13 | −0.6 (9) | C10—N2—Zn1—Br2 | −121.8 (4) |
C11—C12—C13—C18 | 1.1 (9) | C18—N2—Zn1—Br2 | 56.7 (5) |
C11—C12—C13—C14 | −179.6 (6) | C10—N2—Zn1—Br1 | 99.0 (4) |
C18—C13—C14—C15 | 0.2 (10) | C18—N2—Zn1—Br1 | −82.6 (5) |
C12—C13—C14—C15 | −179.1 (7) | C9—N1—Zn1—N2 | 11.4 (4) |
C13—C14—C15—C16 | 1.3 (12) | C1—N1—Zn1—N2 | −178.7 (5) |
C14—C15—C16—C17 | −1.8 (13) | C9—N1—Zn1—Br2 | 121.9 (4) |
C15—C16—C17—C18 | 0.7 (12) | C1—N1—Zn1—Br2 | −68.2 (5) |
C12—C13—C18—N2 | −0.4 (9) | C9—N1—Zn1—Br1 | −100.4 (4) |
C14—C13—C18—N2 | −179.7 (5) | C1—N1—Zn1—Br1 | 69.4 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···Br2i | 0.93 | 2.87 | 3.574 (7) | 133 |
Symmetry code: (i) x−1/2, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [ZnBr2(C18H12N2)] |
Mr | 481.49 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 7.9188 (16), 12.351 (3), 17.385 (4) |
β (°) | 103.01 (3) |
V (Å3) | 1656.7 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 6.31 |
Crystal size (mm) | 0.20 × 0.13 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.380, 0.530 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13476, 4471, 2968 |
Rint | 0.098 |
(sin θ/λ)max (Å−1) | 0.689 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.070, 0.150, 1.15 |
No. of reflections | 4471 |
No. of parameters | 208 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.14, −0.69 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
N1—Zn1 | 2.063 (4) | Zn1—Br2 | 2.3348 (11) |
N2—Zn1 | 2.056 (5) | Zn1—Br1 | 2.3498 (12) |
N2—Zn1—N1 | 80.56 (18) | N2—Zn1—Br1 | 113.58 (14) |
N2—Zn1—Br2 | 112.49 (14) | N1—Zn1—Br1 | 107.98 (15) |
N1—Zn1—Br2 | 116.75 (13) | Br2—Zn1—Br1 | 119.24 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···Br2i | 0.930 | 2.870 | 3.574 (7) | 133.00 |
Symmetry code: (i) x−1/2, −y+3/2, z−1/2. |
Cg(I) Cg(J) Cg···Cg (Å) top
Cg1 | Cg4 | 3.775 (4)i |
Cg2 | Cg2 | 3.748 (4)i |
Cg2 | Cg4 | 3.735 (4)i |
Cg3 | Cg3 | 3.538 (4)ii |
Cg3 | Cg5 | 3.678 (4)ii |
Cg4 | Cg4 | 3.513 (4)iii |
Acknowledgements
We are grateful to the University of Sistan and Baluchestan for financial support.
References
Alizadeh, R., Khoshtarkib, Z., Chegeni, K., Ebadi, A. & Amani, V. (2009). Acta Cryst. E65, m1311. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bowmaker, G.A., Effendy, Marfuah, S., Skelton, B.W. & White, A. H. (2005). Inorg. Chim. Acta, 358, 4371–4388. Web of Science CSD CrossRef CAS Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Butcher, R. J. & Sinn, E. (1977). Inorg. Chem. 16, 2334–2343. CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kou, H. Z., Hishiya, S. & Sato, O. (2008). Inorg. Chim. Acta, 361, 2396–2406. Web of Science CSD CrossRef CAS Google Scholar
Moreno, Y., Salgado, Y., Garland, M. T. & Baggio, R. (2007). Acta Cryst. C63, m487–m489. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muranishi, Y., Wang, Y., Odoko, M. & Okabe, N. (2005). Acta Cryst. C61, m307–m310. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Okabe, N. & Muranishi, Y. (2005). Acta Cryst. E61, m2332–m2334. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rahimi, N., Safari, N., Amani, V. & Khavasi, H. R. (2009). Acta Cryst. E65, m1370. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y., Matsumura-Inoue, T., Takashima, H. & Tsukahara, K. (2003). Acta Cryst. E59, m551–m552. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhou, R. & Ng, S. W. (2006). Acta Cryst. E62, m1691–m1692. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Numerous complexes have been prepared with the bidentate ligand 2,2'-biquinoline (2,2'-biq) such as that of iron (Rahimi et al., 2009), iridium (Yoshikawa et al., 2003), platinum (Okabe & Muranishi 2005), copper (Moreno et al., 2007; Zhou & Ng 2006), silver (Bowmaker et al., 2005), nickel (Kou et al., 2008; Butcher & Sinn 1977) and palladium (Muranishi et al., 2005). For further investigation of 2,2'-biquinoline, we have synthesized the title compound, [ZnBr2(C18H12N2)].
In the title compound, the ZnII atom is four-coordinate in a distorted tetrahedral configuration with two N atoms from one 2,2'-biquinoline and two terminal Br atoms (Fig. 1). The Zn—N and Zn—Br bond lengths and angles are within the normal ranges for [ZnCl2(biq)] (Muranishi et al., 2005) and [ZnBr2(6,6'-dmbpy)], (Alizadeh et al., 2009) [where 6,6'-dmbpy is 6,6'-dimethyl-2, 2'-bipyridine], respectively. Crystal stability is enhanced by weak intermolecular C—H···Br hydrogen bonds (Table 2, Fig.2) and extensive weak π—π intermolecular contacts between the mean planes of the pyridine and phenyl rings (Table 3).