organic compounds
3-Benzyl-6-(2-chlorobenzoyl)-1,3-benzoxazol-2(3H)-one
aUrgench State University named after Al-Khorezmiy, Kh. Olimjon Str. 14, Urgench 220100, Uzbekistan, and bS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
*Correspondence e-mail: yuldash_78@mail.ru
In the title compound, C21H14ClNO3, the benzoxazolone ring system is planar (r.m.s. deviation = 0.022 Å) and forms dihedral angles of 75.38 (10) and 65.92 (13)° with the mean planes of the chlorobenzoyl (r.m.s. deviation = 0.045 Å, excluding O atom) and benzyl (r.m.s. deviation = 0.023 Å) groups. The observed structure is stabilized by weak C—H⋯O hydrogen bonds and weak intermolecular C—H⋯π interactions.
Related literature
For the natural source of benzoxazolin-2-one and its derivatives, see: Tang et al. (1975); Chen & Chen (1976); Smissman et al. (1957). For the synthesis of benzoxazolin-2-one derivatives, see: Honkanen & Virtanen (1961); Bredenberg et al. (1962); Mukhamedov et al. (1994). For related structures, see: Groth (1973); Işık et al. (2004). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: STADI4 (Stoe & Cie, 1997); cell STADI4; data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810046301/jj2063sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810046301/jj2063Isup2.hkl
To a powder of 3-benzylbenzoxazolin-2-one (2.25 g, 10 mmol) was added 2-chloro-benzoylchloride (2.625 g, 1.899 ml, d=1.382 g/ml, 15 mmol) and FeCl3.6H2O (0,027 g, 0.1 mmol) as a catalyst (Fig. 1). The reaction mixture was heated to 423–433 K for 4 h. After cooling, the product was washed with water and re-crystallized from ethanol. The title compound with m.p. 401–403 K was obtained in a yield of 80% (3.2 g). Crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation.
Carbon-bound H atoms were positioned geometrically and treated as riding on their C atoms, with C—H distances of 0.93 Å (aromatic) and 0.97 Å (CH2) and were refined with Uiso(H) =1.2Ueq(C). All other non-H atoms were refined anisotropically.
Benzoxazolin-2-one and its derivatives were found in rye seedlings, roots of Coix Lacryma Jobi L. and Scoporia dulcus and possess physiological activity (Tang et al., 1975; Chen & Chen, 1976; Smissman et al., 1957). Acylation of benzoxazolin-2-ones using FeCl3.6H2O as a catalyst, in low yields, has been demonstrated (Mukhamedov et al., 1994). Our efforts toward acylation of benzoxazolin-2-one derivatives, containing an additional aromatic ring, has led to the synthesis of the title compound, (I), C21H14ClNO3.
In the title compound,(I), the benzoxazolone ring system is planar with an r.m.s. deviation of 0.022 Å. The dihedral angles between the mean planes of the benzoxazolone ring system and benzyl plane (r.m.s.deviation of 0.023Å) is 65.92 (13)° (Fig. 2). The carbonyl group is twisted by 61.6 (3)° relative to the mean plane of the chlorophenyl group. The dihedral angle between the benzoxazolone ring system and chlorophenyl plane (r.m.s. deviation of 0.045 Å) is 75.38 (10)°. Bond distances and angles are in normal ranges (Allen et al., 1987). The observed structure is stabilized by weak C—H···O hydrogen bonds (Table 1). In addition, weak C–H···π-ring intermolecular interactions are also observed (Fig. 3) [H11A···Cg1ii = 2.92Å; C11···Cg1ii = 3.474 (7)Å; C11—H11A···Cg1ii = 119°; where Cg1 = C16–C21; ii = -1/2 +x, 1/2 - y, 1/2 + z].
For the natural source of benzoxazolin-2-one and its derivatives, see: Tang et al. (1975); Chen & Chen (1976); Smissman et al. (1957). For the synthesis of benzoxazolin-2-one derivatives, see: Honkanen et al. (1961); Bredenberg et al. (1962); Mukhamedov et al. (1994). For related structures, see: Groth (1973); Işık et al. (2004). For bond-length data, see: Allen et al. (1987).
Data collection: STADI4 (Stoe & Cie, 1997); cell
STADI4 (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C21H14ClNO3 | F(000) = 752 |
Mr = 363.78 | Dx = 1.408 Mg m−3 |
Monoclinic, P21/n | Melting point: 401(2) K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 13.391 (7) Å | Cell parameters from 32 reflections |
b = 7.317 (6) Å | θ = 5–15° |
c = 18.611 (9) Å | µ = 0.24 mm−1 |
β = 109.72 (4)° | T = 293 K |
V = 1716.6 (19) Å3 | Plate, colourless |
Z = 4 | 0.80 × 0.40 × 0.07 mm |
Stoe Stadi-4 four-circle diffractometer | Rint = 0.099 |
Radiation source: fine-focus sealed tube | θmax = 25.0°, θmin = 1.6° |
Graphite monochromator | h = −15→14 |
Scan width (ω) = 0.90 – 1.71, scan ratio 2θ:ω = 1.00 I(Net) and sigma(I) calculated according to Blessing (1987) | k = 0→8 |
3452 measured reflections | l = 0→22 |
2987 independent reflections | 3 standard reflections every 60 min |
1866 reflections with I > 2σ(I) | intensity decay: 3.7% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.072 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.205 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0725P)2 + 2.8897P] where P = (Fo2 + 2Fc2)/3 |
2987 reflections | (Δ/σ)max < 0.001 |
235 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
C21H14ClNO3 | V = 1716.6 (19) Å3 |
Mr = 363.78 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.391 (7) Å | µ = 0.24 mm−1 |
b = 7.317 (6) Å | T = 293 K |
c = 18.611 (9) Å | 0.80 × 0.40 × 0.07 mm |
β = 109.72 (4)° |
Stoe Stadi-4 four-circle diffractometer | Rint = 0.099 |
3452 measured reflections | 3 standard reflections every 60 min |
2987 independent reflections | intensity decay: 3.7% |
1866 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.072 | 0 restraints |
wR(F2) = 0.205 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.28 e Å−3 |
2987 reflections | Δρmin = −0.32 e Å−3 |
235 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.88491 (10) | 0.2399 (2) | 0.04201 (8) | 0.0687 (4) | |
O1 | 0.6161 (3) | 0.7278 (4) | 0.13219 (19) | 0.0572 (9) | |
O2 | 0.6094 (3) | 0.8327 (5) | 0.2452 (2) | 0.0766 (11) | |
O3 | 0.6181 (3) | 0.3656 (5) | −0.10981 (19) | 0.0663 (10) | |
C2 | 0.6132 (4) | 0.7045 (7) | 0.2053 (3) | 0.0559 (12) | |
N3 | 0.6172 (3) | 0.5233 (5) | 0.2211 (2) | 0.0519 (10) | |
C4A | 0.6211 (3) | 0.4250 (6) | 0.1587 (3) | 0.0490 (11) | |
C4 | 0.6275 (3) | 0.2415 (6) | 0.1450 (3) | 0.0489 (11) | |
H4A | 0.6262 | 0.1538 | 0.1808 | 0.059* | |
C5 | 0.6361 (3) | 0.1930 (6) | 0.0752 (3) | 0.0506 (11) | |
H5A | 0.6400 | 0.0699 | 0.0640 | 0.061* | |
C6 | 0.6391 (3) | 0.3256 (6) | 0.0204 (2) | 0.0460 (11) | |
C7 | 0.6294 (3) | 0.5111 (6) | 0.0358 (3) | 0.0500 (11) | |
H7A | 0.6283 | 0.6010 | 0.0002 | 0.060* | |
C7A | 0.6219 (3) | 0.5538 (6) | 0.1039 (3) | 0.0485 (11) | |
C8 | 0.6265 (4) | 0.4485 (8) | 0.2965 (3) | 0.0615 (13) | |
H8A | 0.6485 | 0.5460 | 0.3339 | 0.074* | |
H8B | 0.6821 | 0.3568 | 0.3101 | 0.074* | |
C9 | 0.5278 (4) | 0.3645 (6) | 0.3019 (2) | 0.0497 (11) | |
C10 | 0.4392 (4) | 0.4682 (7) | 0.2953 (3) | 0.0591 (13) | |
H10A | 0.4387 | 0.5917 | 0.2833 | 0.071* | |
C11 | 0.3516 (4) | 0.3913 (9) | 0.3061 (3) | 0.0722 (16) | |
H11A | 0.2927 | 0.4633 | 0.3021 | 0.087* | |
C12 | 0.3507 (5) | 0.2090 (9) | 0.3226 (3) | 0.0807 (17) | |
H12A | 0.2914 | 0.1570 | 0.3297 | 0.097* | |
C13 | 0.4371 (6) | 0.1042 (8) | 0.3286 (3) | 0.0806 (17) | |
H13A | 0.4360 | −0.0200 | 0.3390 | 0.097* | |
C14 | 0.5260 (5) | 0.1800 (8) | 0.3196 (3) | 0.0698 (15) | |
H14A | 0.5852 | 0.1076 | 0.3253 | 0.084* | |
C15 | 0.6501 (3) | 0.2713 (6) | −0.0531 (2) | 0.0451 (10) | |
C16 | 0.7044 (4) | 0.0938 (6) | −0.0560 (3) | 0.0505 (11) | |
C17 | 0.8106 (4) | 0.0622 (7) | −0.0113 (3) | 0.0518 (11) | |
C18 | 0.8569 (5) | −0.1045 (8) | −0.0133 (3) | 0.0679 (15) | |
H18A | 0.9267 | −0.1260 | 0.0175 | 0.081* | |
C19 | 0.8000 (6) | −0.2389 (8) | −0.0608 (4) | 0.0817 (19) | |
H19A | 0.8317 | −0.3515 | −0.0617 | 0.098* | |
C20 | 0.6969 (6) | −0.2108 (8) | −0.1073 (3) | 0.0741 (17) | |
H20A | 0.6593 | −0.3025 | −0.1398 | 0.089* | |
C21 | 0.6500 (5) | −0.0431 (7) | −0.1046 (3) | 0.0653 (14) | |
H21A | 0.5806 | −0.0224 | −0.1362 | 0.078* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0556 (7) | 0.0825 (10) | 0.0667 (8) | −0.0025 (7) | 0.0188 (6) | −0.0065 (7) |
O1 | 0.070 (2) | 0.0443 (19) | 0.067 (2) | −0.0005 (15) | 0.0354 (17) | −0.0036 (16) |
O2 | 0.093 (3) | 0.063 (2) | 0.084 (3) | 0.004 (2) | 0.043 (2) | −0.019 (2) |
O3 | 0.080 (2) | 0.071 (2) | 0.051 (2) | 0.0075 (19) | 0.0250 (17) | 0.0077 (18) |
C2 | 0.047 (3) | 0.057 (3) | 0.064 (3) | −0.001 (2) | 0.019 (2) | −0.010 (3) |
N3 | 0.057 (2) | 0.050 (2) | 0.052 (2) | 0.0041 (18) | 0.0221 (18) | −0.0039 (18) |
C4A | 0.044 (3) | 0.049 (3) | 0.058 (3) | 0.002 (2) | 0.022 (2) | 0.000 (2) |
C4 | 0.050 (3) | 0.046 (3) | 0.055 (3) | 0.000 (2) | 0.023 (2) | 0.002 (2) |
C5 | 0.052 (3) | 0.049 (3) | 0.057 (3) | −0.001 (2) | 0.027 (2) | −0.002 (2) |
C6 | 0.044 (2) | 0.047 (3) | 0.049 (3) | 0.003 (2) | 0.019 (2) | 0.005 (2) |
C7 | 0.050 (3) | 0.049 (3) | 0.056 (3) | −0.001 (2) | 0.025 (2) | 0.007 (2) |
C7A | 0.048 (3) | 0.044 (3) | 0.060 (3) | 0.000 (2) | 0.027 (2) | −0.002 (2) |
C8 | 0.052 (3) | 0.080 (4) | 0.050 (3) | 0.010 (3) | 0.015 (2) | −0.009 (3) |
C9 | 0.057 (3) | 0.054 (3) | 0.041 (2) | 0.002 (2) | 0.020 (2) | −0.005 (2) |
C10 | 0.059 (3) | 0.062 (3) | 0.062 (3) | 0.010 (2) | 0.027 (2) | −0.002 (2) |
C11 | 0.069 (4) | 0.097 (5) | 0.060 (3) | 0.002 (3) | 0.034 (3) | −0.013 (3) |
C12 | 0.091 (5) | 0.087 (5) | 0.075 (4) | −0.022 (4) | 0.041 (3) | −0.007 (3) |
C13 | 0.115 (5) | 0.059 (4) | 0.077 (4) | −0.009 (4) | 0.045 (4) | 0.006 (3) |
C14 | 0.096 (4) | 0.059 (3) | 0.063 (3) | 0.013 (3) | 0.038 (3) | 0.000 (3) |
C15 | 0.041 (2) | 0.058 (3) | 0.040 (2) | −0.001 (2) | 0.0185 (18) | 0.003 (2) |
C16 | 0.056 (3) | 0.052 (3) | 0.053 (3) | −0.003 (2) | 0.031 (2) | −0.001 (2) |
C17 | 0.059 (3) | 0.056 (3) | 0.049 (3) | 0.001 (2) | 0.028 (2) | 0.001 (2) |
C18 | 0.082 (4) | 0.064 (4) | 0.071 (4) | 0.016 (3) | 0.044 (3) | 0.009 (3) |
C19 | 0.122 (6) | 0.049 (3) | 0.102 (5) | 0.013 (4) | 0.073 (5) | 0.006 (3) |
C20 | 0.119 (5) | 0.060 (4) | 0.066 (4) | −0.022 (3) | 0.059 (4) | −0.015 (3) |
C21 | 0.075 (4) | 0.064 (4) | 0.064 (3) | −0.015 (3) | 0.033 (3) | −0.013 (3) |
Cl1—C17 | 1.732 (5) | C9—C14 | 1.392 (7) |
O1—C2 | 1.384 (6) | C10—C11 | 1.376 (7) |
O1—C7A | 1.390 (5) | C10—H10A | 0.9300 |
O2—C2 | 1.209 (6) | C11—C12 | 1.370 (8) |
O3—C15 | 1.212 (5) | C11—H11A | 0.9300 |
C2—N3 | 1.355 (6) | C12—C13 | 1.360 (9) |
N3—C4A | 1.381 (6) | C12—H12A | 0.9300 |
N3—C8 | 1.472 (6) | C13—C14 | 1.374 (8) |
C4A—C4 | 1.375 (6) | C13—H13A | 0.9300 |
C4A—C7A | 1.392 (6) | C14—H14A | 0.9300 |
C4—C5 | 1.388 (6) | C15—C16 | 1.498 (6) |
C4—H4A | 0.9300 | C16—C21 | 1.381 (7) |
C5—C6 | 1.417 (6) | C16—C17 | 1.403 (6) |
C5—H5A | 0.9300 | C17—C18 | 1.375 (7) |
C6—C7 | 1.402 (6) | C18—C19 | 1.370 (8) |
C6—C15 | 1.480 (6) | C18—H18A | 0.9300 |
C7—C7A | 1.341 (6) | C19—C20 | 1.375 (9) |
C7—H7A | 0.9300 | C19—H19A | 0.9300 |
C8—C9 | 1.491 (7) | C20—C21 | 1.386 (8) |
C8—H8A | 0.9700 | C20—H20A | 0.9300 |
C8—H8B | 0.9700 | C21—H21A | 0.9300 |
C9—C10 | 1.378 (6) | ||
C2—O1—C7A | 106.5 (4) | C11—C10—H10A | 119.6 |
O2—C2—N3 | 129.2 (5) | C9—C10—H10A | 119.6 |
O2—C2—O1 | 122.0 (5) | C12—C11—C10 | 120.2 (6) |
N3—C2—O1 | 108.8 (4) | C12—C11—H11A | 119.9 |
C2—N3—C4A | 109.7 (4) | C10—C11—H11A | 119.9 |
C2—N3—C8 | 123.8 (4) | C13—C12—C11 | 119.7 (6) |
C4A—N3—C8 | 126.3 (4) | C13—C12—H12A | 120.1 |
C4—C4A—N3 | 133.4 (4) | C11—C12—H12A | 120.1 |
C4—C4A—C7A | 120.5 (4) | C12—C13—C14 | 120.7 (6) |
N3—C4A—C7A | 106.0 (4) | C12—C13—H13A | 119.7 |
C4A—C4—C5 | 117.0 (4) | C14—C13—H13A | 119.7 |
C4A—C4—H4A | 121.5 | C13—C14—C9 | 120.4 (5) |
C5—C4—H4A | 121.5 | C13—C14—H14A | 119.8 |
C4—C5—C6 | 122.0 (4) | C9—C14—H14A | 119.8 |
C4—C5—H5A | 119.0 | O3—C15—C6 | 122.4 (4) |
C6—C5—H5A | 119.0 | O3—C15—C16 | 119.7 (4) |
C7—C6—C5 | 119.3 (4) | C6—C15—C16 | 117.8 (4) |
C7—C6—C15 | 119.6 (4) | C21—C16—C17 | 118.2 (5) |
C5—C6—C15 | 121.1 (4) | C21—C16—C15 | 119.8 (4) |
C7A—C7—C6 | 117.3 (4) | C17—C16—C15 | 121.9 (4) |
C7A—C7—H7A | 121.3 | C18—C17—C16 | 120.4 (5) |
C6—C7—H7A | 121.3 | C18—C17—Cl1 | 120.3 (4) |
C7—C7A—O1 | 127.1 (4) | C16—C17—Cl1 | 119.2 (4) |
C7—C7A—C4A | 123.9 (4) | C19—C18—C17 | 119.8 (6) |
O1—C7A—C4A | 109.1 (4) | C19—C18—H18A | 120.1 |
N3—C8—C9 | 115.2 (4) | C17—C18—H18A | 120.1 |
N3—C8—H8A | 108.5 | C18—C19—C20 | 121.4 (5) |
C9—C8—H8A | 108.5 | C18—C19—H19A | 119.3 |
N3—C8—H8B | 108.5 | C20—C19—H19A | 119.3 |
C9—C8—H8B | 108.5 | C19—C20—C21 | 118.7 (5) |
H8A—C8—H8B | 107.5 | C19—C20—H20A | 120.6 |
C10—C9—C14 | 118.1 (5) | C21—C20—H20A | 120.6 |
C10—C9—C8 | 121.5 (5) | C16—C21—C20 | 121.4 (6) |
C14—C9—C8 | 120.2 (5) | C16—C21—H21A | 119.3 |
C11—C10—C9 | 120.9 (5) | C20—C21—H21A | 119.3 |
C7A—O1—C2—O2 | 179.0 (4) | N3—C8—C9—C14 | 118.2 (5) |
C7A—O1—C2—N3 | 0.1 (5) | C14—C9—C10—C11 | 0.2 (7) |
O2—C2—N3—C4A | −179.8 (5) | C8—C9—C10—C11 | −175.1 (4) |
O1—C2—N3—C4A | −1.0 (5) | C9—C10—C11—C12 | −0.9 (8) |
O2—C2—N3—C8 | −5.2 (8) | C10—C11—C12—C13 | 0.3 (9) |
O1—C2—N3—C8 | 173.6 (4) | C11—C12—C13—C14 | 1.1 (9) |
C2—N3—C4A—C4 | 178.8 (5) | C12—C13—C14—C9 | −1.8 (9) |
C8—N3—C4A—C4 | 4.4 (8) | C10—C9—C14—C13 | 1.2 (7) |
C2—N3—C4A—C7A | 1.5 (5) | C8—C9—C14—C13 | 176.5 (5) |
C8—N3—C4A—C7A | −173.0 (4) | C7—C6—C15—O3 | −24.5 (6) |
N3—C4A—C4—C5 | −176.3 (4) | C5—C6—C15—O3 | 154.4 (4) |
C7A—C4A—C4—C5 | 0.8 (7) | C7—C6—C15—C16 | 154.7 (4) |
C4A—C4—C5—C6 | 0.5 (6) | C5—C6—C15—C16 | −26.4 (6) |
C4—C5—C6—C7 | −2.2 (6) | O3—C15—C16—C21 | −61.6 (6) |
C4—C5—C6—C15 | 178.9 (4) | C6—C15—C16—C21 | 119.1 (5) |
C5—C6—C7—C7A | 2.6 (6) | O3—C15—C16—C17 | 117.3 (5) |
C15—C6—C7—C7A | −178.6 (4) | C6—C15—C16—C17 | −62.0 (5) |
C6—C7—C7A—O1 | 177.2 (4) | C21—C16—C17—C18 | −3.3 (7) |
C6—C7—C7A—C4A | −1.3 (7) | C15—C16—C17—C18 | 177.8 (4) |
C2—O1—C7A—C7 | −177.9 (4) | C21—C16—C17—Cl1 | 172.8 (4) |
C2—O1—C7A—C4A | 0.8 (5) | C15—C16—C17—Cl1 | −6.1 (6) |
C4—C4A—C7A—C7 | −0.4 (7) | C16—C17—C18—C19 | 1.8 (7) |
N3—C4A—C7A—C7 | 177.4 (4) | Cl1—C17—C18—C19 | −174.2 (4) |
C4—C4A—C7A—O1 | −179.2 (4) | C17—C18—C19—C20 | 0.3 (8) |
N3—C4A—C7A—O1 | −1.4 (5) | C18—C19—C20—C21 | −0.9 (8) |
C2—N3—C8—C9 | 106.2 (5) | C17—C16—C21—C20 | 2.8 (7) |
C4A—N3—C8—C9 | −80.1 (6) | C15—C16—C21—C20 | −178.3 (4) |
N3—C8—C9—C10 | −66.6 (6) | C19—C20—C21—C16 | −0.7 (8) |
Cg1 is the centroid of the C16–C21 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14A···O2i | 0.93 | 2.59 | 3.266 (8) | 130 |
C20—H20A···O3i | 0.93 | 2.59 | 3.269 (8) | 130 |
C11—H11A···Cg1ii | 0.93 | 2.92 | 3.474 (7) | 119 |
Symmetry codes: (i) x, y−1, z; (ii) x−1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C21H14ClNO3 |
Mr | 363.78 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 13.391 (7), 7.317 (6), 18.611 (9) |
β (°) | 109.72 (4) |
V (Å3) | 1716.6 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.24 |
Crystal size (mm) | 0.80 × 0.40 × 0.07 |
Data collection | |
Diffractometer | Stoe Stadi-4 four-circle |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3452, 2987, 1866 |
Rint | 0.099 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.072, 0.205, 1.06 |
No. of reflections | 2987 |
No. of parameters | 235 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.32 |
Computer programs: STADI4 (Stoe & Cie, 1997), X-RED (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Bruker, 1998).
Cg1 is the centroid of the C16–C21 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14A···O2i | 0.93 | 2.590 | 3.266 (8) | 130 |
C20—H20A···O3i | 0.93 | 2.590 | 3.269 (8) | 130 |
C11—H11A···Cg1ii | 0.93 | 2.92 | 3.474 (7) | 119 |
Symmetry codes: (i) x, y−1, z; (ii) x−1/2, −y+1/2, z+1/2. |
Acknowledgements
We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant FA–F3–T012).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Google Scholar
Bredenberg, J. B., Honkanen, E. & Virtanen, A. I. (1962). Acta Chem. Scand. 16, 135–141. CrossRef Web of Science Google Scholar
Bruker (1998). XP. Bruker AXS Ins., Madison, Wisconsin, USA. Google Scholar
Chen, Ch. M. & Chen, M. T. (1976). Phytochemistry, 15, 1997–1999. CrossRef CAS Web of Science Google Scholar
Groth, P. (1973). Acta Chem. Scand. 15, 945–969. CrossRef Web of Science Google Scholar
Honkanen, E. & Virtanen, A. I. (1961). Acta Chem. Scand. 15, 221–222. CrossRef CAS Web of Science Google Scholar
Işık, Ş., Köysal, Y., Yavuz, M., Köksal, M. & Erdoğan, H. (2004). Acta Cryst. E60, o2321–o2323. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mukhamedov, N. S., Kristallovich, E. L., Plugar, V. N., Giyasov, K., Aliyev, N. A. & Abdullayev, N. D. (1994). Chem. Heterocycl. Compd, 30, 982–984. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smissman, E., Lapidus, B. & Beck, D. (1957). J. Am. Chem. Soc. 79, 4697–4699. CrossRef CAS Web of Science Google Scholar
Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Tang, Ch. S., Chang, H., Hoo, D. & &Yanagihara, K. H. (1975). Phytochemistry, 14, 2077–2079. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzoxazolin-2-one and its derivatives were found in rye seedlings, roots of Coix Lacryma Jobi L. and Scoporia dulcus and possess physiological activity (Tang et al., 1975; Chen & Chen, 1976; Smissman et al., 1957). Acylation of benzoxazolin-2-ones using FeCl3.6H2O as a catalyst, in low yields, has been demonstrated (Mukhamedov et al., 1994). Our efforts toward acylation of benzoxazolin-2-one derivatives, containing an additional aromatic ring, has led to the synthesis of the title compound, (I), C21H14ClNO3.
In the title compound,(I), the benzoxazolone ring system is planar with an r.m.s. deviation of 0.022 Å. The dihedral angles between the mean planes of the benzoxazolone ring system and benzyl plane (r.m.s.deviation of 0.023Å) is 65.92 (13)° (Fig. 2). The carbonyl group is twisted by 61.6 (3)° relative to the mean plane of the chlorophenyl group. The dihedral angle between the benzoxazolone ring system and chlorophenyl plane (r.m.s. deviation of 0.045 Å) is 75.38 (10)°. Bond distances and angles are in normal ranges (Allen et al., 1987). The observed structure is stabilized by weak C—H···O hydrogen bonds (Table 1). In addition, weak C–H···π-ring intermolecular interactions are also observed (Fig. 3) [H11A···Cg1ii = 2.92Å; C11···Cg1ii = 3.474 (7)Å; C11—H11A···Cg1ii = 119°; where Cg1 = C16–C21; ii = -1/2 +x, 1/2 - y, 1/2 + z].