organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl-6-(2-chloro­benzo­yl)-1,3-benzoxazol-2(3H)-one

aUrgench State University named after Al-Khorezmiy, Kh. Olimjon Str. 14, Urgench 220100, Uzbekistan, and bS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
*Correspondence e-mail: yuldash_78@mail.ru

(Received 23 September 2010; accepted 9 November 2010; online 17 November 2010)

In the title compound, C21H14ClNO3, the benzoxazolone ring system is planar (r.m.s. deviation = 0.022 Å) and forms dihedral angles of 75.38 (10) and 65.92 (13)° with the mean planes of the chloro­benzoyl (r.m.s. deviation = 0.045 Å, excluding O atom) and benzyl (r.m.s. deviation = 0.023 Å) groups. The observed structure is stabilized by weak C—H⋯O hydrogen bonds and weak inter­molecular C—H⋯π inter­actions.

Related literature

For the natural source of benzoxazolin-2-one and its derivatives, see: Tang et al. (1975[Tang, Ch. S., Chang, H., Hoo, D. & &Yanagihara, K. H. (1975). Phytochemistry, 14, 2077-2079.]); Chen & Chen (1976[Chen, Ch. M. & Chen, M. T. (1976). Phytochemistry, 15, 1997-1999.]); Smissman et al. (1957[Smissman, E., Lapidus, B. & Beck, D. (1957). J. Am. Chem. Soc. 79, 4697-4699.]). For the synthesis of benzoxazolin-2-one derivatives, see: Honkanen & Virtanen (1961[Honkanen, E. & Virtanen, A. I. (1961). Acta Chem. Scand. 15, 221-222.]); Bredenberg et al. (1962[Bredenberg, J. B., Honkanen, E. & Virtanen, A. I. (1962). Acta Chem. Scand. 16, 135-141.]); Mukhamedov et al. (1994[Mukhamedov, N. S., Kristallovich, E. L., Plugar, V. N., Giyasov, K., Aliyev, N. A. & Abdullayev, N. D. (1994). Chem. Heterocycl. Compd, 30, 982-984.]). For related structures, see: Groth (1973[Groth, P. (1973). Acta Chem. Scand. 15, 945-969.]); Işık et al. (2004[Işık, Ş., Köysal, Y., Yavuz, M., Köksal, M. & Erdoğan, H. (2004). Acta Cryst. E60, o2321-o2323.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H14ClNO3

  • Mr = 363.78

  • Monoclinic, P 21 /n

  • a = 13.391 (7) Å

  • b = 7.317 (6) Å

  • c = 18.611 (9) Å

  • β = 109.72 (4)°

  • V = 1716.6 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.80 × 0.40 × 0.07 mm

Data collection
  • Stoe Stadi-4 four-circle diffractometer

  • 3452 measured reflections

  • 2987 independent reflections

  • 1866 reflections with I > 2σ(I)

  • Rint = 0.099

  • 3 standard reflections every 60 min intensity decay: 3.7%

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.205

  • S = 1.06

  • 2987 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C16–C21 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O2i 0.93 2.59 3.266 (8) 130
C20—H20A⋯O3i 0.93 2.59 3.269 (8) 130
C11—H11ACg1ii 0.93 2.92 3.474 (7) 119
Symmetry codes: (i) x, y-1, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: STADI4 (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Bruker, 1998[Bruker (1998). XP. Bruker AXS Ins., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzoxazolin-2-one and its derivatives were found in rye seedlings, roots of Coix Lacryma Jobi L. and Scoporia dulcus and possess physiological activity (Tang et al., 1975; Chen & Chen, 1976; Smissman et al., 1957). Acylation of benzoxazolin-2-ones using FeCl3.6H2O as a catalyst, in low yields, has been demonstrated (Mukhamedov et al., 1994). Our efforts toward acylation of benzoxazolin-2-one derivatives, containing an additional aromatic ring, has led to the synthesis of the title compound, (I), C21H14ClNO3.

In the title compound,(I), the benzoxazolone ring system is planar with an r.m.s. deviation of 0.022 Å. The dihedral angles between the mean planes of the benzoxazolone ring system and benzyl plane (r.m.s.deviation of 0.023Å) is 65.92 (13)° (Fig. 2). The carbonyl group is twisted by 61.6 (3)° relative to the mean plane of the chlorophenyl group. The dihedral angle between the benzoxazolone ring system and chlorophenyl plane (r.m.s. deviation of 0.045 Å) is 75.38 (10)°. Bond distances and angles are in normal ranges (Allen et al., 1987). The observed structure is stabilized by weak C—H···O hydrogen bonds (Table 1). In addition, weak C–H···π-ring intermolecular interactions are also observed (Fig. 3) [H11A···Cg1ii = 2.92Å; C11···Cg1ii = 3.474 (7)Å; C11—H11A···Cg1ii = 119°; where Cg1 = C16–C21; ii = -1/2 +x, 1/2 - y, 1/2 + z].

Related literature top

For the natural source of benzoxazolin-2-one and its derivatives, see: Tang et al. (1975); Chen & Chen (1976); Smissman et al. (1957). For the synthesis of benzoxazolin-2-one derivatives, see: Honkanen et al. (1961); Bredenberg et al. (1962); Mukhamedov et al. (1994). For related structures, see: Groth (1973); Işık et al. (2004). For bond-length data, see: Allen et al. (1987).

Experimental top

To a powder of 3-benzylbenzoxazolin-2-one (2.25 g, 10 mmol) was added 2-chloro-benzoylchloride (2.625 g, 1.899 ml, d=1.382 g/ml, 15 mmol) and FeCl3.6H2O (0,027 g, 0.1 mmol) as a catalyst (Fig. 1). The reaction mixture was heated to 423–433 K for 4 h. After cooling, the product was washed with water and re-crystallized from ethanol. The title compound with m.p. 401–403 K was obtained in a yield of 80% (3.2 g). Crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation.

Refinement top

Carbon-bound H atoms were positioned geometrically and treated as riding on their C atoms, with C—H distances of 0.93 Å (aromatic) and 0.97 Å (CH2) and were refined with Uiso(H) =1.2Ueq(C). All other non-H atoms were refined anisotropically.

Structure description top

Benzoxazolin-2-one and its derivatives were found in rye seedlings, roots of Coix Lacryma Jobi L. and Scoporia dulcus and possess physiological activity (Tang et al., 1975; Chen & Chen, 1976; Smissman et al., 1957). Acylation of benzoxazolin-2-ones using FeCl3.6H2O as a catalyst, in low yields, has been demonstrated (Mukhamedov et al., 1994). Our efforts toward acylation of benzoxazolin-2-one derivatives, containing an additional aromatic ring, has led to the synthesis of the title compound, (I), C21H14ClNO3.

In the title compound,(I), the benzoxazolone ring system is planar with an r.m.s. deviation of 0.022 Å. The dihedral angles between the mean planes of the benzoxazolone ring system and benzyl plane (r.m.s.deviation of 0.023Å) is 65.92 (13)° (Fig. 2). The carbonyl group is twisted by 61.6 (3)° relative to the mean plane of the chlorophenyl group. The dihedral angle between the benzoxazolone ring system and chlorophenyl plane (r.m.s. deviation of 0.045 Å) is 75.38 (10)°. Bond distances and angles are in normal ranges (Allen et al., 1987). The observed structure is stabilized by weak C—H···O hydrogen bonds (Table 1). In addition, weak C–H···π-ring intermolecular interactions are also observed (Fig. 3) [H11A···Cg1ii = 2.92Å; C11···Cg1ii = 3.474 (7)Å; C11—H11A···Cg1ii = 119°; where Cg1 = C16–C21; ii = -1/2 +x, 1/2 - y, 1/2 + z].

For the natural source of benzoxazolin-2-one and its derivatives, see: Tang et al. (1975); Chen & Chen (1976); Smissman et al. (1957). For the synthesis of benzoxazolin-2-one derivatives, see: Honkanen et al. (1961); Bredenberg et al. (1962); Mukhamedov et al. (1994). For related structures, see: Groth (1973); Işık et al. (2004). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4 (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The reaction scheme for (I).
[Figure 2] Fig. 2. The molecular structure of the title compound,(I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 3] Fig. 3. Packing diagram of the title compound, showing weak C—H···O hydrogen bonds and weak C–H···π-ring intermolecular interactions (dashed lines).
3-Benzyl-6-(2-chlorobenzoyl)-1,3-benzoxazol-2(3H)-one top
Crystal data top
C21H14ClNO3F(000) = 752
Mr = 363.78Dx = 1.408 Mg m3
Monoclinic, P21/nMelting point: 401(2) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 13.391 (7) ÅCell parameters from 32 reflections
b = 7.317 (6) Åθ = 5–15°
c = 18.611 (9) ŵ = 0.24 mm1
β = 109.72 (4)°T = 293 K
V = 1716.6 (19) Å3Plate, colourless
Z = 40.80 × 0.40 × 0.07 mm
Data collection top
Stoe Stadi-4 four-circle
diffractometer
Rint = 0.099
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.6°
Graphite monochromatorh = 1514
Scan width (ω) = 0.90 – 1.71, scan ratio 2θ:ω = 1.00 I(Net) and sigma(I) calculated according to Blessing (1987)k = 08
3452 measured reflectionsl = 022
2987 independent reflections3 standard reflections every 60 min
1866 reflections with I > 2σ(I) intensity decay: 3.7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.205H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0725P)2 + 2.8897P]
where P = (Fo2 + 2Fc2)/3
2987 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C21H14ClNO3V = 1716.6 (19) Å3
Mr = 363.78Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.391 (7) ŵ = 0.24 mm1
b = 7.317 (6) ÅT = 293 K
c = 18.611 (9) Å0.80 × 0.40 × 0.07 mm
β = 109.72 (4)°
Data collection top
Stoe Stadi-4 four-circle
diffractometer
Rint = 0.099
3452 measured reflections3 standard reflections every 60 min
2987 independent reflections intensity decay: 3.7%
1866 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.205H-atom parameters constrained
S = 1.06Δρmax = 0.28 e Å3
2987 reflectionsΔρmin = 0.32 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.88491 (10)0.2399 (2)0.04201 (8)0.0687 (4)
O10.6161 (3)0.7278 (4)0.13219 (19)0.0572 (9)
O20.6094 (3)0.8327 (5)0.2452 (2)0.0766 (11)
O30.6181 (3)0.3656 (5)0.10981 (19)0.0663 (10)
C20.6132 (4)0.7045 (7)0.2053 (3)0.0559 (12)
N30.6172 (3)0.5233 (5)0.2211 (2)0.0519 (10)
C4A0.6211 (3)0.4250 (6)0.1587 (3)0.0490 (11)
C40.6275 (3)0.2415 (6)0.1450 (3)0.0489 (11)
H4A0.62620.15380.18080.059*
C50.6361 (3)0.1930 (6)0.0752 (3)0.0506 (11)
H5A0.64000.06990.06400.061*
C60.6391 (3)0.3256 (6)0.0204 (2)0.0460 (11)
C70.6294 (3)0.5111 (6)0.0358 (3)0.0500 (11)
H7A0.62830.60100.00020.060*
C7A0.6219 (3)0.5538 (6)0.1039 (3)0.0485 (11)
C80.6265 (4)0.4485 (8)0.2965 (3)0.0615 (13)
H8A0.64850.54600.33390.074*
H8B0.68210.35680.31010.074*
C90.5278 (4)0.3645 (6)0.3019 (2)0.0497 (11)
C100.4392 (4)0.4682 (7)0.2953 (3)0.0591 (13)
H10A0.43870.59170.28330.071*
C110.3516 (4)0.3913 (9)0.3061 (3)0.0722 (16)
H11A0.29270.46330.30210.087*
C120.3507 (5)0.2090 (9)0.3226 (3)0.0807 (17)
H12A0.29140.15700.32970.097*
C130.4371 (6)0.1042 (8)0.3286 (3)0.0806 (17)
H13A0.43600.02000.33900.097*
C140.5260 (5)0.1800 (8)0.3196 (3)0.0698 (15)
H14A0.58520.10760.32530.084*
C150.6501 (3)0.2713 (6)0.0531 (2)0.0451 (10)
C160.7044 (4)0.0938 (6)0.0560 (3)0.0505 (11)
C170.8106 (4)0.0622 (7)0.0113 (3)0.0518 (11)
C180.8569 (5)0.1045 (8)0.0133 (3)0.0679 (15)
H18A0.92670.12600.01750.081*
C190.8000 (6)0.2389 (8)0.0608 (4)0.0817 (19)
H19A0.83170.35150.06170.098*
C200.6969 (6)0.2108 (8)0.1073 (3)0.0741 (17)
H20A0.65930.30250.13980.089*
C210.6500 (5)0.0431 (7)0.1046 (3)0.0653 (14)
H21A0.58060.02240.13620.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0556 (7)0.0825 (10)0.0667 (8)0.0025 (7)0.0188 (6)0.0065 (7)
O10.070 (2)0.0443 (19)0.067 (2)0.0005 (15)0.0354 (17)0.0036 (16)
O20.093 (3)0.063 (2)0.084 (3)0.004 (2)0.043 (2)0.019 (2)
O30.080 (2)0.071 (2)0.051 (2)0.0075 (19)0.0250 (17)0.0077 (18)
C20.047 (3)0.057 (3)0.064 (3)0.001 (2)0.019 (2)0.010 (3)
N30.057 (2)0.050 (2)0.052 (2)0.0041 (18)0.0221 (18)0.0039 (18)
C4A0.044 (3)0.049 (3)0.058 (3)0.002 (2)0.022 (2)0.000 (2)
C40.050 (3)0.046 (3)0.055 (3)0.000 (2)0.023 (2)0.002 (2)
C50.052 (3)0.049 (3)0.057 (3)0.001 (2)0.027 (2)0.002 (2)
C60.044 (2)0.047 (3)0.049 (3)0.003 (2)0.019 (2)0.005 (2)
C70.050 (3)0.049 (3)0.056 (3)0.001 (2)0.025 (2)0.007 (2)
C7A0.048 (3)0.044 (3)0.060 (3)0.000 (2)0.027 (2)0.002 (2)
C80.052 (3)0.080 (4)0.050 (3)0.010 (3)0.015 (2)0.009 (3)
C90.057 (3)0.054 (3)0.041 (2)0.002 (2)0.020 (2)0.005 (2)
C100.059 (3)0.062 (3)0.062 (3)0.010 (2)0.027 (2)0.002 (2)
C110.069 (4)0.097 (5)0.060 (3)0.002 (3)0.034 (3)0.013 (3)
C120.091 (5)0.087 (5)0.075 (4)0.022 (4)0.041 (3)0.007 (3)
C130.115 (5)0.059 (4)0.077 (4)0.009 (4)0.045 (4)0.006 (3)
C140.096 (4)0.059 (3)0.063 (3)0.013 (3)0.038 (3)0.000 (3)
C150.041 (2)0.058 (3)0.040 (2)0.001 (2)0.0185 (18)0.003 (2)
C160.056 (3)0.052 (3)0.053 (3)0.003 (2)0.031 (2)0.001 (2)
C170.059 (3)0.056 (3)0.049 (3)0.001 (2)0.028 (2)0.001 (2)
C180.082 (4)0.064 (4)0.071 (4)0.016 (3)0.044 (3)0.009 (3)
C190.122 (6)0.049 (3)0.102 (5)0.013 (4)0.073 (5)0.006 (3)
C200.119 (5)0.060 (4)0.066 (4)0.022 (3)0.059 (4)0.015 (3)
C210.075 (4)0.064 (4)0.064 (3)0.015 (3)0.033 (3)0.013 (3)
Geometric parameters (Å, º) top
Cl1—C171.732 (5)C9—C141.392 (7)
O1—C21.384 (6)C10—C111.376 (7)
O1—C7A1.390 (5)C10—H10A0.9300
O2—C21.209 (6)C11—C121.370 (8)
O3—C151.212 (5)C11—H11A0.9300
C2—N31.355 (6)C12—C131.360 (9)
N3—C4A1.381 (6)C12—H12A0.9300
N3—C81.472 (6)C13—C141.374 (8)
C4A—C41.375 (6)C13—H13A0.9300
C4A—C7A1.392 (6)C14—H14A0.9300
C4—C51.388 (6)C15—C161.498 (6)
C4—H4A0.9300C16—C211.381 (7)
C5—C61.417 (6)C16—C171.403 (6)
C5—H5A0.9300C17—C181.375 (7)
C6—C71.402 (6)C18—C191.370 (8)
C6—C151.480 (6)C18—H18A0.9300
C7—C7A1.341 (6)C19—C201.375 (9)
C7—H7A0.9300C19—H19A0.9300
C8—C91.491 (7)C20—C211.386 (8)
C8—H8A0.9700C20—H20A0.9300
C8—H8B0.9700C21—H21A0.9300
C9—C101.378 (6)
C2—O1—C7A106.5 (4)C11—C10—H10A119.6
O2—C2—N3129.2 (5)C9—C10—H10A119.6
O2—C2—O1122.0 (5)C12—C11—C10120.2 (6)
N3—C2—O1108.8 (4)C12—C11—H11A119.9
C2—N3—C4A109.7 (4)C10—C11—H11A119.9
C2—N3—C8123.8 (4)C13—C12—C11119.7 (6)
C4A—N3—C8126.3 (4)C13—C12—H12A120.1
C4—C4A—N3133.4 (4)C11—C12—H12A120.1
C4—C4A—C7A120.5 (4)C12—C13—C14120.7 (6)
N3—C4A—C7A106.0 (4)C12—C13—H13A119.7
C4A—C4—C5117.0 (4)C14—C13—H13A119.7
C4A—C4—H4A121.5C13—C14—C9120.4 (5)
C5—C4—H4A121.5C13—C14—H14A119.8
C4—C5—C6122.0 (4)C9—C14—H14A119.8
C4—C5—H5A119.0O3—C15—C6122.4 (4)
C6—C5—H5A119.0O3—C15—C16119.7 (4)
C7—C6—C5119.3 (4)C6—C15—C16117.8 (4)
C7—C6—C15119.6 (4)C21—C16—C17118.2 (5)
C5—C6—C15121.1 (4)C21—C16—C15119.8 (4)
C7A—C7—C6117.3 (4)C17—C16—C15121.9 (4)
C7A—C7—H7A121.3C18—C17—C16120.4 (5)
C6—C7—H7A121.3C18—C17—Cl1120.3 (4)
C7—C7A—O1127.1 (4)C16—C17—Cl1119.2 (4)
C7—C7A—C4A123.9 (4)C19—C18—C17119.8 (6)
O1—C7A—C4A109.1 (4)C19—C18—H18A120.1
N3—C8—C9115.2 (4)C17—C18—H18A120.1
N3—C8—H8A108.5C18—C19—C20121.4 (5)
C9—C8—H8A108.5C18—C19—H19A119.3
N3—C8—H8B108.5C20—C19—H19A119.3
C9—C8—H8B108.5C19—C20—C21118.7 (5)
H8A—C8—H8B107.5C19—C20—H20A120.6
C10—C9—C14118.1 (5)C21—C20—H20A120.6
C10—C9—C8121.5 (5)C16—C21—C20121.4 (6)
C14—C9—C8120.2 (5)C16—C21—H21A119.3
C11—C10—C9120.9 (5)C20—C21—H21A119.3
C7A—O1—C2—O2179.0 (4)N3—C8—C9—C14118.2 (5)
C7A—O1—C2—N30.1 (5)C14—C9—C10—C110.2 (7)
O2—C2—N3—C4A179.8 (5)C8—C9—C10—C11175.1 (4)
O1—C2—N3—C4A1.0 (5)C9—C10—C11—C120.9 (8)
O2—C2—N3—C85.2 (8)C10—C11—C12—C130.3 (9)
O1—C2—N3—C8173.6 (4)C11—C12—C13—C141.1 (9)
C2—N3—C4A—C4178.8 (5)C12—C13—C14—C91.8 (9)
C8—N3—C4A—C44.4 (8)C10—C9—C14—C131.2 (7)
C2—N3—C4A—C7A1.5 (5)C8—C9—C14—C13176.5 (5)
C8—N3—C4A—C7A173.0 (4)C7—C6—C15—O324.5 (6)
N3—C4A—C4—C5176.3 (4)C5—C6—C15—O3154.4 (4)
C7A—C4A—C4—C50.8 (7)C7—C6—C15—C16154.7 (4)
C4A—C4—C5—C60.5 (6)C5—C6—C15—C1626.4 (6)
C4—C5—C6—C72.2 (6)O3—C15—C16—C2161.6 (6)
C4—C5—C6—C15178.9 (4)C6—C15—C16—C21119.1 (5)
C5—C6—C7—C7A2.6 (6)O3—C15—C16—C17117.3 (5)
C15—C6—C7—C7A178.6 (4)C6—C15—C16—C1762.0 (5)
C6—C7—C7A—O1177.2 (4)C21—C16—C17—C183.3 (7)
C6—C7—C7A—C4A1.3 (7)C15—C16—C17—C18177.8 (4)
C2—O1—C7A—C7177.9 (4)C21—C16—C17—Cl1172.8 (4)
C2—O1—C7A—C4A0.8 (5)C15—C16—C17—Cl16.1 (6)
C4—C4A—C7A—C70.4 (7)C16—C17—C18—C191.8 (7)
N3—C4A—C7A—C7177.4 (4)Cl1—C17—C18—C19174.2 (4)
C4—C4A—C7A—O1179.2 (4)C17—C18—C19—C200.3 (8)
N3—C4A—C7A—O11.4 (5)C18—C19—C20—C210.9 (8)
C2—N3—C8—C9106.2 (5)C17—C16—C21—C202.8 (7)
C4A—N3—C8—C980.1 (6)C15—C16—C21—C20178.3 (4)
N3—C8—C9—C1066.6 (6)C19—C20—C21—C160.7 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14A···O2i0.932.593.266 (8)130
C20—H20A···O3i0.932.593.269 (8)130
C11—H11A···Cg1ii0.932.923.474 (7)119
Symmetry codes: (i) x, y1, z; (ii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H14ClNO3
Mr363.78
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.391 (7), 7.317 (6), 18.611 (9)
β (°) 109.72 (4)
V3)1716.6 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.80 × 0.40 × 0.07
Data collection
DiffractometerStoe Stadi-4 four-circle
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3452, 2987, 1866
Rint0.099
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.205, 1.06
No. of reflections2987
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.32

Computer programs: STADI4 (Stoe & Cie, 1997), X-RED (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Bruker, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14A···O2i0.932.5903.266 (8)130
C20—H20A···O3i0.932.5903.269 (8)130
C11—H11A···Cg1ii0.932.923.474 (7)119
Symmetry codes: (i) x, y1, z; (ii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant FA–F3–T012).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBredenberg, J. B., Honkanen, E. & Virtanen, A. I. (1962). Acta Chem. Scand. 16, 135–141.  CrossRef Web of Science Google Scholar
First citationBruker (1998). XP. Bruker AXS Ins., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Ch. M. & Chen, M. T. (1976). Phytochemistry, 15, 1997–1999.  CrossRef CAS Web of Science Google Scholar
First citationGroth, P. (1973). Acta Chem. Scand. 15, 945–969.  CrossRef Web of Science Google Scholar
First citationHonkanen, E. & Virtanen, A. I. (1961). Acta Chem. Scand. 15, 221–222.  CrossRef CAS Web of Science Google Scholar
First citationIşık, Ş., Köysal, Y., Yavuz, M., Köksal, M. & Erdoğan, H. (2004). Acta Cryst. E60, o2321–o2323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMukhamedov, N. S., Kristallovich, E. L., Plugar, V. N., Giyasov, K., Aliyev, N. A. & Abdullayev, N. D. (1994). Chem. Heterocycl. Compd, 30, 982–984.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmissman, E., Lapidus, B. & Beck, D. (1957). J. Am. Chem. Soc. 79, 4697–4699.  CrossRef CAS Web of Science Google Scholar
First citationStoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTang, Ch. S., Chang, H., Hoo, D. & &Yanagihara, K. H. (1975). Phytochemistry, 14, 2077–2079.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds