organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(propane-1,2-di­ammonium) benzene-1,2,4,5-tetra­carboxyl­ate dihydrate

aDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: majdolashrafi.m@gmail.com

(Received 24 September 2010; accepted 28 October 2010; online 6 November 2010)

In the crystal of the title hydrated molecular salt, 2C3H12N22+·C10H2O84−·2H2O, the packing is stabilized by extensive N—H⋯O and O—H⋯O hydrogen-bonding inter­actions involving all three species, forming a supra­molecular three-dimensional structure. The tetraanion is generated by inversion.

Related literature

For proton transfer systems, see: Aghabozorg et al. (2008[Aghabozorg, H., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, o1045-o1046.]); Arora & Pedireddi (2003[Arora, K. K. & Pedireddi, V. R. (2003). J. Org. Chem. 68, 9177-9185.]). For related structures, see: Wang et al. (2005[Wang, C., Yin, M., Li, M., Ma, X. & Sun, J. (2005). J. Wuhan Univ. Technol. 20, 38-42.]); Ma et al. (2005[Ma, L., Zhao, B. & Wang, L. (2005). Anal. Sci. 21, x85-x86.]); Mrvos-Sermek et al. (1996[Mrvos-Sermek, D., Popovic, Z. & Matkovic-Calogovic, D. (1996). Acta Cryst. C52, 2538-2541.]); Rafizadeh et al. (2006[Rafizadeh, M., Aghayan, H. & Amani, V. (2006). Acta Cryst. E62, o5034-o5035.]).

[Scheme 1]

Experimental

Crystal data
  • 2C3H12N22+·C10H2O84−·2H2O

  • Mr = 438.44

  • Monoclinic, P 21 /n

  • a = 10.427 (2) Å

  • b = 7.6955 (15) Å

  • c = 12.854 (3) Å

  • β = 101.61 (3)°

  • V = 1010.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.49 × 0.40 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.940, Tmax = 0.990

  • 8157 measured reflections

  • 3038 independent reflections

  • 2727 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.07

  • 3038 reflections

  • 146 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—H1W⋯O1i 0.85 (2) 1.91 (2) 2.7596 (17) 172 (2)
OW1—H2W⋯O1iv 0.81 (2) 2.20 (2) 2.9845 (19) 167 (2)
N1—H1A⋯O2ii 0.89 1.98 2.8289 (15) 159
N1—H1B⋯O2i 0.89 1.91 2.7910 (13) 168
N1—H1C⋯O3iii 0.89 1.94 2.8130 (14) 168
N2—H2A⋯O4iii 0.89 1.95 2.8146 (14) 165
N2—H2B⋯OW1v 0.89 1.87 2.7574 (17) 172
N2—H2C⋯O4ii 0.89 1.91 2.7918 (14) 171
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x, y-1, z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) x-1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Several proton transfer systems using benzene- 1,2,4,5-tetracarboxylic acid (H4BTC), with nitrogen donor molecules, such as 1,10-phenanthroline, 1,7-phenanthroline, phenazine, 4-(N,N-dimethylamino)pyridine, 1,2-bis(4-pyridyl) ethene and 1,2-bis(4-pyridyl)ethane, have been synthesized and characterized by X-ray diffraction methods (Aghabozorg et al. 2008, Arora & Pedireddi, 2003). R%elated crystal structures of (H2BTC)(Hphen)2- (H4BTC) (where phen is 1,10-phenanthroline; Wang et al., 2005), (H3BTC)(Hbipy).3H2O (where bipy is 2,20-bipyridine; Ma et al., 2005), (H2BTC)(Hbipy)2(H4BTC) (Mrvos-Sermek et al., 1996) and (BTC)(H2en)2.2H2O (Rafizadeh et al. 2006) have been reported previously.

In the title compound, (C3H12N2)22+ (C10H2O8)4-. 2H2O, the asymmetric unit contains two diprotonated propane-1,2-diamine cations, one tetraanionic deprotonated anion form of benzene-1,2,4,5-tetracarboxylic acid and two water molecules (Fig. 1). The dication forms from the transfer of a single proton from each of the carboxyl groups to a propane-1,2-diamine molecule. The negative charges of one of the tetraanionic 1,2,4,5-benzenetetracarboxylate groups, is thereby neutralized by a doubly protonated propane-1,2-diammonium fragment. Crystal packing is stabilized by extensive N—H···O and O—H···O hydrogen bonding interactions involving all three species forming a supramolecular 3-D structure (Fig. 2).

Related literature top

For proton transfer systems, see: Aghabozorg et al. (2008); Arora & Pedireddi, (2003). For related structures, see: Wang et al. (2005); Ma et al. (2005); Mrvos-Sermek et al. (1996); Rafizadeh et al. (2006).

Experimental top

Propane-1,2-diamine (12.6 mmol) was added to a solution of benzene-1,2,4,5-tetracarboxylic acid (1.65 g, 6.3 mmol) in ethanol (30 ml) at room temperature. The milky precipitated product was recrystallized from water. After one week, colorless plate crystals of (I) were isolated (yield 87.1%, decomposition < 420 K)

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93, 0.98Å (CH), 0.97Å (CH2) 0.96Å (CH3) or 0.89Å (NH). Isotropic displacement parameters for these atoms were set to 1.5 times (NH), 1.2 (CH, CH2, CH3) times Ueq of the parent atom. Water H atoms atoms were located in a difference Fourier map and refined isotropically without restraint.

Structure description top

Several proton transfer systems using benzene- 1,2,4,5-tetracarboxylic acid (H4BTC), with nitrogen donor molecules, such as 1,10-phenanthroline, 1,7-phenanthroline, phenazine, 4-(N,N-dimethylamino)pyridine, 1,2-bis(4-pyridyl) ethene and 1,2-bis(4-pyridyl)ethane, have been synthesized and characterized by X-ray diffraction methods (Aghabozorg et al. 2008, Arora & Pedireddi, 2003). R%elated crystal structures of (H2BTC)(Hphen)2- (H4BTC) (where phen is 1,10-phenanthroline; Wang et al., 2005), (H3BTC)(Hbipy).3H2O (where bipy is 2,20-bipyridine; Ma et al., 2005), (H2BTC)(Hbipy)2(H4BTC) (Mrvos-Sermek et al., 1996) and (BTC)(H2en)2.2H2O (Rafizadeh et al. 2006) have been reported previously.

In the title compound, (C3H12N2)22+ (C10H2O8)4-. 2H2O, the asymmetric unit contains two diprotonated propane-1,2-diamine cations, one tetraanionic deprotonated anion form of benzene-1,2,4,5-tetracarboxylic acid and two water molecules (Fig. 1). The dication forms from the transfer of a single proton from each of the carboxyl groups to a propane-1,2-diamine molecule. The negative charges of one of the tetraanionic 1,2,4,5-benzenetetracarboxylate groups, is thereby neutralized by a doubly protonated propane-1,2-diammonium fragment. Crystal packing is stabilized by extensive N—H···O and O—H···O hydrogen bonding interactions involving all three species forming a supramolecular 3-D structure (Fig. 2).

For proton transfer systems, see: Aghabozorg et al. (2008); Arora & Pedireddi, (2003). For related structures, see: Wang et al. (2005); Ma et al. (2005); Mrvos-Sermek et al. (1996); Rafizadeh et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing if the title compound viewed down the a axis. Dashed lines indicate N—H···O and O—H···O hydrogen bonding interactions involving cation, anion and water species forming a supermolecular 3-D structure.
Bis(propane-1,2-diammonium) benzene-1,2,4,5-tetracarboxylate dihydrate top
Crystal data top
2C3H12N22+·C10H2O84·2H2OF(000) = 468
Mr = 438.44Dx = 1.441 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8157 reflections
a = 10.427 (2) Åθ = 2.3–30.5°
b = 7.6955 (15) ŵ = 0.12 mm1
c = 12.854 (3) ÅT = 298 K
β = 101.61 (3)°Plate, colorless
V = 1010.3 (3) Å30.49 × 0.40 × 0.08 mm
Z = 2
Data collection top
Bruker SMART CD area-detector
diffractometer
3038 independent reflections
Radiation source: fine-focus sealed tube2727 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 30.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1414
Tmin = 0.940, Tmax = 0.990k = 1010
8157 measured reflectionsl = 1518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.3092P]
where P = (Fo2 + 2Fc2)/3
3038 reflections(Δ/σ)max = 0.004
146 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
2C3H12N22+·C10H2O84·2H2OV = 1010.3 (3) Å3
Mr = 438.44Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.427 (2) ŵ = 0.12 mm1
b = 7.6955 (15) ÅT = 298 K
c = 12.854 (3) Å0.49 × 0.40 × 0.08 mm
β = 101.61 (3)°
Data collection top
Bruker SMART CD area-detector
diffractometer
3038 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
2727 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.990Rint = 0.026
8157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.39 e Å3
3038 reflectionsΔρmin = 0.19 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.25868 (9)0.83996 (13)1.05876 (8)0.01914 (19)
C20.12279 (9)0.91697 (12)1.02583 (7)0.01626 (18)
C30.06315 (9)0.94408 (12)0.91926 (7)0.01595 (17)
C40.12422 (9)0.88991 (13)0.82686 (7)0.01717 (18)
C50.05822 (9)1.02713 (13)0.89486 (7)0.01784 (18)
H50.09711.04570.82400.021*
C60.39782 (14)0.3316 (2)1.09027 (10)0.0389 (3)
H6A0.35870.23081.11500.047*
H6B0.37280.43321.12460.047*
H6C0.49140.32001.10670.047*
C70.35129 (11)0.34862 (15)0.97084 (9)0.0245 (2)
H70.38990.45410.94750.029*
C80.20338 (10)0.36693 (14)0.94363 (9)0.0241 (2)
H8A0.16450.27350.97740.029*
H8B0.17890.47580.97230.029*
N10.39794 (8)0.19628 (13)0.91649 (7)0.02395 (19)
H1A0.35940.10010.93330.036*
H1B0.48430.18610.93730.036*
H1C0.37790.21200.84650.036*
N20.14955 (9)0.36274 (12)0.82766 (7)0.02209 (18)
H2A0.19970.42680.79420.033*
H2B0.06850.40530.81470.033*
H2C0.14810.25360.80460.033*
O10.28549 (8)0.75595 (13)1.14363 (7)0.0344 (2)
O20.33872 (7)0.87232 (12)0.99958 (7)0.0302 (2)
O30.12767 (9)0.73323 (10)0.80446 (7)0.02951 (19)
O40.16276 (8)1.01227 (10)0.77470 (6)0.02490 (18)
OW10.89422 (11)0.47495 (18)0.80452 (13)0.0566 (4)
H1W0.833 (2)0.408 (3)0.8154 (16)0.052 (5)*
H2W0.869 (2)0.559 (3)0.769 (2)0.065 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0145 (4)0.0196 (4)0.0234 (4)0.0020 (3)0.0040 (3)0.0006 (3)
C20.0141 (4)0.0176 (4)0.0179 (4)0.0015 (3)0.0053 (3)0.0012 (3)
C30.0154 (4)0.0171 (4)0.0167 (4)0.0003 (3)0.0067 (3)0.0010 (3)
C40.0160 (4)0.0199 (4)0.0167 (4)0.0015 (3)0.0059 (3)0.0016 (3)
C50.0161 (4)0.0230 (4)0.0148 (4)0.0020 (3)0.0040 (3)0.0008 (3)
C60.0414 (7)0.0510 (8)0.0217 (5)0.0021 (6)0.0002 (5)0.0028 (5)
C70.0240 (5)0.0262 (5)0.0229 (5)0.0040 (4)0.0038 (4)0.0001 (4)
C80.0241 (5)0.0253 (5)0.0243 (5)0.0013 (4)0.0086 (4)0.0007 (4)
N10.0187 (4)0.0302 (5)0.0234 (4)0.0020 (3)0.0052 (3)0.0036 (3)
N20.0202 (4)0.0208 (4)0.0257 (4)0.0013 (3)0.0058 (3)0.0023 (3)
O10.0243 (4)0.0431 (5)0.0355 (5)0.0087 (3)0.0055 (3)0.0183 (4)
O20.0167 (3)0.0416 (5)0.0345 (4)0.0056 (3)0.0107 (3)0.0097 (4)
O30.0440 (5)0.0192 (4)0.0302 (4)0.0002 (3)0.0189 (3)0.0043 (3)
O40.0322 (4)0.0211 (4)0.0262 (4)0.0002 (3)0.0174 (3)0.0001 (3)
OW10.0266 (5)0.0496 (7)0.0948 (10)0.0052 (5)0.0151 (5)0.0303 (7)
Geometric parameters (Å, º) top
O1—C11.2504 (14)C1—C21.5155 (14)
O2—C11.2620 (13)C2—C5i1.3978 (13)
O3—C41.2418 (13)C2—C31.4014 (13)
O4—C41.2673 (13)C3—C51.3959 (14)
OW1—H1W0.85 (2)C3—C41.5147 (13)
OW1—H2W0.81 (2)C5—H50.9300
N1—C71.4953 (15)C6—C71.5197 (17)
N2—C81.4837 (15)C7—C81.5178 (16)
N1—H1B0.8900C6—H6B0.9600
N1—H1C0.8900C6—H6C0.9600
N1—H1A0.8900C6—H6A0.9600
N2—H2C0.8900C7—H70.9800
N2—H2B0.8900C8—H8B0.9700
N2—H2A0.8900C8—H8A0.9700
O1···OW1ii2.7596 (17)C3···H8Avi2.7900
O1···OW1iii2.9845 (19)C4···H2Cvi2.8300
OW1···O1iv2.9845 (19)C4···H1Avi3.0300
OW1···O3v3.1427 (17)C4···H2Aix2.6500
OW1···N2v2.7574 (17)C4···H1Cix2.6100
OW1···O1ii2.7596 (17)C5···H8Avi3.0200
O2···C42.8198 (14)C6···H7ii2.8800
O2···O33.1713 (14)C7···H7ii3.0900
O2···N1vi2.8289 (15)H1W···H2Bv2.4600
O2···N1ii2.7910 (13)H1W···O1ii1.91 (2)
O3···C83.3468 (16)H1W···C1ii2.79 (2)
O3···O23.1713 (14)H1A···C4xii3.0300
O3···C13.3806 (16)H1A···O2xii1.9800
O3···N22.8710 (14)H1A···H6A2.5400
O3···OW1vii3.1427 (17)H1A···H8A2.5900
O3···O4viii3.0979 (14)H1A···C1xii2.9000
O3···N1ix2.8130 (14)H1A···O4xii2.6700
O4···N2vi2.7918 (14)H1B···O1ii2.8400
O4···N2ix2.8146 (14)H1B···C1ii2.6800
O4···N1vi3.0889 (14)H1B···O2ii1.9100
O4···C7ix3.3738 (16)H1B···H6C2.4000
O4···O3ix3.0979 (14)H1C···O4xii2.7200
O1···H1Bii2.8400H1C···C4viii2.6100
O1···H6B2.6700H1C···O3viii1.9400
O1···H5i2.5900H1C···O4viii2.7700
O1···H2Wiii2.20 (2)H1C···H2A2.4800
O1···H1Wii1.91 (2)H1C···H2C2.3700
OW1···H6Ax2.8700H1C···N22.6200
OW1···H2Bv1.8700H2W···C1iv2.83 (2)
O2···H1Avi1.9800H2W···H2Bv2.3600
O2···H6Cii2.8600H2W···O1iv2.20 (2)
O2···H1Bii1.9100H2A···O4viii1.9500
O3···H8B2.9000H2A···N12.9300
O3···H2Aix2.8300H2A···O32.4900
O3···H1Cix1.9400H2A···C4viii2.6500
O3···H2A2.4900H2A···O3viii2.8300
O3···H2B2.6100H2A···H1C2.4800
O4···H2Aix1.9500H2A···H72.5100
O4···H1Cix2.7700H2B···O32.6100
O4···H52.9200H2B···H2Wvii2.3600
O4···H7ix2.8300H2B···OW1vii1.8700
O4···H6Cxi2.8200H2B···H1Wvii2.4600
O4···H2Cvi1.9100H2C···C3xii3.0300
O4···H1Avi2.6700H2C···N12.7500
O4···H1Cvi2.7200H2C···H1C2.3700
N1···N22.9090 (15)H2C···O4xii1.9100
N1···O2xii2.8289 (15)H2C···C4xii2.8300
N1···O4xii3.0889 (14)H5···O1i2.5900
N1···C4viii3.4304 (15)H5···H6Bxi2.5200
N1···O2ii2.7910 (13)H5···O42.9200
N1···O3viii2.8130 (14)H6A···OW1xiii2.8700
N2···O4viii2.8146 (14)H6A···H1A2.5400
N2···O32.8710 (14)H6A···H8A2.4300
N2···O4xii2.7918 (14)H6B···H5xiv2.5200
N2···N12.9090 (15)H6B···H8B2.5400
N2···C4viii3.3822 (15)H6B···O12.6700
N2···OW1vii2.7574 (17)H6C···O2ii2.8600
N1···H2C2.7500H6C···H7ii2.3200
N1···H2A2.9300H6C···H1B2.4000
N2···H1C2.6200H6C···O4xiv2.8200
C1···O33.3806 (16)H7···H6Cii2.3200
C3···C8vi3.5554 (16)H7···H7ii2.5200
C4···N1ix3.4304 (15)H7···C7ii3.0900
C4···O22.8198 (14)H7···H2A2.5100
C4···N2ix3.3822 (15)H7···O4viii2.8300
C7···O4viii3.3738 (16)H7···C6ii2.8800
C8···O33.3468 (16)H8A···H6A2.4300
C8···C3xii3.5554 (16)H8A···C3xii2.7900
C1···H1Bii2.6800H8A···C5xii3.0200
C1···H2Wiii2.83 (2)H8A···C2xii2.8700
C1···H1Avi2.9000H8A···H1A2.5900
C1···H8B3.0700H8B···C13.0700
C1···H1Wii2.79 (2)H8B···H6B2.5400
C2···H8Avi2.8700H8B···O32.9000
C3···H2Cvi3.0300
H1W—OW1—H2W114 (2)O3—C4—O4124.87 (10)
H1A—N1—H1C109.00O4—C4—C3116.01 (9)
H1B—N1—H1C109.00C2i—C5—C3121.67 (9)
C7—N1—H1C109.00C3—C5—H5119.00
C7—N1—H1A109.00C2i—C5—H5119.00
C7—N1—H1B109.00C6—C7—C8110.11 (10)
H1A—N1—H1B109.00N1—C7—C6109.67 (10)
C8—N2—H2A109.00N1—C7—C8112.09 (9)
H2A—N2—H2C110.00N2—C8—C7113.01 (9)
C8—N2—H2C109.00C7—C6—H6B109.00
H2A—N2—H2B109.00C7—C6—H6C110.00
C8—N2—H2B109.00H6A—C6—H6B109.00
H2B—N2—H2C109.00H6A—C6—H6C109.00
O2—C1—C2116.68 (9)H6B—C6—H6C109.00
O1—C1—O2124.68 (10)C7—C6—H6A109.00
O1—C1—C2118.57 (9)N1—C7—H7108.00
C1—C2—C3122.50 (9)C8—C7—H7108.00
C3—C2—C5i118.88 (9)C6—C7—H7108.00
C1—C2—C5i118.50 (9)N2—C8—H8A109.00
C2—C3—C4123.48 (9)N2—C8—H8B109.00
C2—C3—C5119.45 (9)C7—C8—H8B109.00
C4—C3—C5117.07 (8)H8A—C8—H8B108.00
O3—C4—C3119.04 (9)C7—C8—H8A109.00
O1—C1—C2—C5i32.71 (14)C5i—C2—C3—C50.53 (14)
O2—C1—C2—C331.49 (14)C5—C3—C4—O3107.87 (11)
O1—C1—C2—C3151.38 (10)C4—C3—C5—C2i179.74 (9)
O2—C1—C2—C5i144.42 (10)C5—C3—C4—O468.84 (12)
C1—C2—C3—C43.77 (15)C2—C3—C5—C2i0.54 (15)
C1—C2—C3—C5175.37 (9)C2—C3—C4—O4110.32 (11)
C3—C2—C5i—C3i0.54 (15)C2—C3—C4—O372.98 (13)
C1—C2—C5i—C3i175.52 (9)N1—C7—C8—N250.66 (12)
C5i—C2—C3—C4179.67 (9)C6—C7—C8—N2173.04 (10)
Symmetry codes: (i) x, y+2, z+2; (ii) x+1, y+1, z+2; (iii) x1/2, y+3/2, z+1/2; (iv) x+1/2, y+3/2, z1/2; (v) x+1, y, z; (vi) x, y+1, z; (vii) x1, y, z; (viii) x+1/2, y1/2, z+3/2; (ix) x+1/2, y+1/2, z+3/2; (x) x+1/2, y+1/2, z1/2; (xi) x1/2, y+3/2, z1/2; (xii) x, y1, z; (xiii) x1/2, y+1/2, z+1/2; (xiv) x+1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H1W···O1ii0.85 (2)1.91 (2)2.7596 (17)172 (2)
N1—H1A···O2xii0.891.982.8289 (15)159
N1—H1B···O2ii0.891.912.7910 (13)168
N1—H1C···O3viii0.891.942.8130 (14)168
OW1—H2W···O1iv0.81 (2)2.20 (2)2.9845 (19)167 (2)
N2—H2A···O4viii0.891.952.8146 (14)165
N2—H2B···OW1vii0.891.872.7574 (17)172
N2—H2C···O4xii0.891.912.7918 (14)171
Symmetry codes: (ii) x+1, y+1, z+2; (iv) x+1/2, y+3/2, z1/2; (vii) x1, y, z; (viii) x+1/2, y1/2, z+3/2; (xii) x, y1, z.

Experimental details

Crystal data
Chemical formula2C3H12N22+·C10H2O84·2H2O
Mr438.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.427 (2), 7.6955 (15), 12.854 (3)
β (°) 101.61 (3)
V3)1010.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.49 × 0.40 × 0.08
Data collection
DiffractometerBruker SMART CD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.940, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
8157, 3038, 2727
Rint0.026
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.07
No. of reflections3038
No. of parameters146
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.19

Computer programs: SMART (Bruker, 2007), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H1W···O1i0.85 (2)1.91 (2)2.7596 (17)172 (2)
N1—H1A···O2ii0.89001.98002.8289 (15)159.00
N1—H1B···O2i0.89001.91002.7910 (13)168.00
N1—H1C···O3iii0.89001.94002.8130 (14)168.00
OW1—H2W···O1iv0.81 (2)2.20 (2)2.9845 (19)167 (2)
N2—H2A···O4iii0.89001.95002.8146 (14)165.00
N2—H2B···OW1v0.89001.87002.7574 (17)172.00
N2—H2C···O4ii0.89001.91002.7918 (14)171.00
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y1, z; (iii) x+1/2, y1/2, z+3/2; (iv) x+1/2, y+3/2, z1/2; (v) x1, y, z.
 

Acknowledgements

The authors are grateful to Islamic Azad University, North Tehran Branch for financial support.

References

First citationAghabozorg, H., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, o1045–o1046.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArora, K. K. & Pedireddi, V. R. (2003). J. Org. Chem. 68, 9177–9185.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMa, L., Zhao, B. & Wang, L. (2005). Anal. Sci. 21, x85–x86.  CSD CrossRef Google Scholar
First citationMrvos-Sermek, D., Popovic, Z. & Matkovic-Calogovic, D. (1996). Acta Cryst. C52, 2538–2541.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRafizadeh, M., Aghayan, H. & Amani, V. (2006). Acta Cryst. E62, o5034–o5035.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C., Yin, M., Li, M., Ma, X. & Sun, J. (2005). J. Wuhan Univ. Technol. 20, 38–42.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds