organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1β,10α:4β,5α-Diep­­oxy-7αH-germacran-6β-ol monohydrate

aSchool of Life Science, Foshan University, Foshan 528231, People's Republic of China, bSchool of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China, and cShanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 20032, People's Republic of China
*Correspondence e-mail: yangquan7208@vip.163.com

(Received 28 September 2010; accepted 17 November 2010; online 20 November 2010)

In the title compound, C15H26O3·H2O, a sesquiterpenoid mol­ecule with a germacrene backbone that contains two epoxide groups and one hydroxyl group. Inter­molecular O—H⋯O hydrogen bonds between the ep­oxy groups and solvent water mol­ecules give rise to an infinite three-dimensional supra­molecular structure.

Related literature

For the biosystematic and ecological evaluation of the title compound, see: Al Yousuf et al. (1999[Al Yousuf, M. H., Bashir, A. K., Crabb, T. A., Blunden, G. & Yang, M.-H. (1999). Biochem. System. Ecol. 27, 107-109.]). For the isolation, see Li et al. (2009[Li, S. M., Yang, X. W., Li, Y. L., Shen, Y. H., Feng, L., Wang, Y. H., Zeng, H. W., Liu, X. H., Zhang, C. S., Long, C. L. & Zhang, W. D. (2009). Planta Med. 75, 1591-1596.]). For the determination of its absolute structure, see: Aguilar-Guadarrama & Rios (2004[Aguilar-Guadarrama, A. B. & Rios, M. Y. (2004). J. Nat. Prod. 67, 914-917.]), Moodley et al. (2004[Moodley, N., Mulholland, D. A. & Crouch, N. R. (2004). J. Nat. Prod. 67, 918-920.]). For related structures, see Takahashi et al. (1983[Takahashi, T., Nemoto, H., Tsuji, J. & Miura, I. (1983). Tetrahedron Lett. 24, 3485-3488.]), Barrero et al. (1999[Barrero, A. F., Herrador, M. M., Quilez, J. F., Alvarez-Manzaneda, R., Portal, D., Gavin, J. A., Gravalos, D. G., Simmonds, M. S. J. & Blaney, W. M. (1999). Phytochemistry, 51, 529-541.]).

[Scheme 1]

Experimental

Crystal data
  • C15H26O3·H2O

  • Mr = 272.37

  • Orthorhombic, P 21 21 21

  • a = 8.087 (2) Å

  • b = 11.380 (3) Å

  • c = 16.943 (5) Å

  • V = 1559.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.31 × 0.13 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.757, Tmax = 1.000

  • 8291 measured reflections

  • 1759 independent reflections

  • 1281 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.148

  • S = 1.06

  • 1759 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H3⋯O4i 0.82 2.03 2.819 (4) 160
O4—H4⋯O2ii 0.94 (6) 1.92 (6) 2.836 (5) 164 (5)
O4—H4C⋯O3 0.93 (4) 2.10 (5) 3.013 (4) 166 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Terpenoids are large naturally-occuring organic molecules derived from five-carbon isoprene units assembled and modified in numerous ways. A sesquiterpenoid is a 15-carbon modified multicyclic terpenoid hydrocarbon molecule that differs from one another in its functional groups. The title compound, C15H26O3, H2O, is a sesquiterpenoid molecule with a germacrene backbone that contains two epoxide groups at the 1–10 and 4–5 ring positions and one alcohol group at the C6 position, respectively (Fig. 1). Crystal packing hss been stabilized as a result of a single water molecule that has crystallized in the unit cell giving rise to O—H···O intermolecular hydrogen bonds between the epoxy groups and the adjacent water molecules (Table 1). This forms an infinite 3-D supramolecular structure (Fig. 2).

Related literature top

For the biosystematic and ecological evaluation of the title compound, see: Al Yousuf et al. (1999). For the synthesis, see Li et al. (2009). For the determination of its absolute structure, see: Aguilar-Guadarrama & Rios (2004), Moodley et al. (2004). For related structures, see Takahashi et al. (1983), Barrero et al. (1999).

Experimental top

The title compound was synthesized by the method of Li et al. (2009). It was purified by repeated column chromatography over silica gel, ODS, and sephadex LH-20. It was then dissolved in a mixed solution of chloroform and methanol (ca 5:1). Colorless needle-like crystals were formed by slow evaporation of the solution in air.

Refinement top

All the H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H (methine) distances of 0.98 Å, C—H (methylene) 0.97 Å, C—H (methyl) 0.96Å, and an O—H distance of 0.82 Å, with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(O). A rotating group model was used for the OH group.

Structure description top

Terpenoids are large naturally-occuring organic molecules derived from five-carbon isoprene units assembled and modified in numerous ways. A sesquiterpenoid is a 15-carbon modified multicyclic terpenoid hydrocarbon molecule that differs from one another in its functional groups. The title compound, C15H26O3, H2O, is a sesquiterpenoid molecule with a germacrene backbone that contains two epoxide groups at the 1–10 and 4–5 ring positions and one alcohol group at the C6 position, respectively (Fig. 1). Crystal packing hss been stabilized as a result of a single water molecule that has crystallized in the unit cell giving rise to O—H···O intermolecular hydrogen bonds between the epoxy groups and the adjacent water molecules (Table 1). This forms an infinite 3-D supramolecular structure (Fig. 2).

For the biosystematic and ecological evaluation of the title compound, see: Al Yousuf et al. (1999). For the synthesis, see Li et al. (2009). For the determination of its absolute structure, see: Aguilar-Guadarrama & Rios (2004), Moodley et al. (2004). For related structures, see Takahashi et al. (1983), Barrero et al. (1999).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis. Dashed lines indicate O—H—O hydrogen bonds.
1β,10α:4β,5α-Diepoxy-7αH-germacran-6β-ol monohydrate top
Crystal data top
C15H26O3·H2OF(000) = 600
Mr = 272.37Dx = 1.160 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1361 reflections
a = 8.087 (2) Åθ = 4.8–39.9°
b = 11.380 (3) ŵ = 0.08 mm1
c = 16.943 (5) ÅT = 293 K
V = 1559.2 (8) Å3Prismatic, colorless
Z = 40.31 × 0.13 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1759 independent reflections
Radiation source: fine-focus sealed tube1281 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
φ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 99
Tmin = 0.757, Tmax = 1.000k = 1411
8291 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0727P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.005
1759 reflectionsΔρmax = 0.16 e Å3
186 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (3)
Crystal data top
C15H26O3·H2OV = 1559.2 (8) Å3
Mr = 272.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.087 (2) ŵ = 0.08 mm1
b = 11.380 (3) ÅT = 293 K
c = 16.943 (5) Å0.31 × 0.13 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1759 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1281 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 1.000Rint = 0.080
8291 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.16 e Å3
1759 reflectionsΔρmin = 0.15 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3976 (4)1.2287 (2)0.77838 (15)0.0499 (8)
O20.3551 (4)1.2022 (2)0.59240 (17)0.0540 (9)
H30.40811.20050.55120.081*
O30.1549 (4)0.7702 (2)0.79520 (15)0.0519 (8)
O40.0212 (5)0.7428 (3)0.9509 (2)0.0686 (11)
C10.2708 (6)0.8691 (3)0.7992 (2)0.0402 (10)
H10.37810.85460.77420.048*
C20.2798 (6)0.9355 (3)0.8767 (2)0.0505 (12)
H2A0.37500.90790.90630.061*
H2B0.18180.91800.90750.061*
C30.2933 (6)1.0692 (3)0.8662 (2)0.0527 (12)
H3A0.18441.10060.85450.063*
H3B0.33031.10380.91540.063*
C40.4113 (6)1.1048 (3)0.8008 (2)0.0420 (10)
C50.3410 (5)1.1380 (3)0.7247 (2)0.0396 (10)
H50.22041.13040.72200.048*
C60.4256 (5)1.1207 (3)0.64782 (19)0.0402 (10)
H60.54331.13860.65420.048*
C70.4075 (5)0.9917 (3)0.6206 (2)0.0432 (11)
H70.45110.94300.66350.052*
C80.2216 (5)0.9560 (4)0.6100 (2)0.0482 (11)
H8A0.15341.02300.62400.058*
H8B0.20260.93930.55460.058*
C90.1633 (7)0.8502 (4)0.6583 (2)0.0534 (12)
H9A0.06300.81980.63440.064*
H9B0.24670.78920.65470.064*
C100.1297 (5)0.8741 (3)0.7439 (2)0.0427 (10)
C110.5160 (6)0.9655 (4)0.5473 (2)0.0539 (12)
H110.47101.01090.50310.065*
C120.6958 (6)1.0003 (6)0.5569 (3)0.090 (2)
H12A0.74040.96320.60310.134*
H12B0.70361.08410.56250.134*
H12C0.75720.97580.51140.134*
C130.5033 (9)0.8344 (4)0.5254 (3)0.088 (2)
H13A0.39150.81620.51080.133*
H13B0.53480.78740.57000.133*
H13C0.57560.81790.48190.133*
C140.0276 (6)0.9371 (4)0.7621 (3)0.0664 (14)
H14A0.03421.00730.73090.100*
H14B0.02990.95750.81710.100*
H14C0.11980.88700.75020.100*
C150.5860 (6)1.0613 (4)0.8082 (2)0.0536 (12)
H15A0.62881.08230.85920.080*
H15B0.65301.09650.76790.080*
H15C0.58780.97740.80240.080*
H40.133 (8)0.744 (5)0.935 (3)0.09 (2)*
H4C0.024 (6)0.740 (4)0.900 (3)0.069 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.065 (2)0.0368 (15)0.0480 (15)0.0061 (14)0.0068 (15)0.0068 (13)
O20.061 (2)0.0475 (18)0.0531 (17)0.0085 (16)0.0069 (16)0.0150 (14)
O30.065 (2)0.0356 (15)0.0556 (16)0.0072 (14)0.0096 (16)0.0006 (14)
O40.059 (3)0.089 (3)0.058 (2)0.023 (2)0.0027 (19)0.021 (2)
C10.049 (3)0.033 (2)0.039 (2)0.0066 (19)0.010 (2)0.0017 (18)
C20.068 (3)0.046 (3)0.038 (2)0.009 (2)0.013 (2)0.0009 (19)
C30.068 (3)0.049 (3)0.042 (2)0.009 (2)0.017 (2)0.011 (2)
C40.055 (3)0.034 (2)0.037 (2)0.003 (2)0.006 (2)0.0017 (17)
C50.039 (2)0.038 (2)0.042 (2)0.0011 (18)0.0045 (19)0.0060 (18)
C60.040 (3)0.043 (2)0.038 (2)0.006 (2)0.0017 (19)0.0019 (18)
C70.058 (3)0.042 (2)0.0298 (17)0.015 (2)0.0041 (19)0.0029 (17)
C80.066 (3)0.042 (2)0.037 (2)0.007 (2)0.014 (2)0.0026 (18)
C90.067 (3)0.041 (3)0.052 (3)0.002 (2)0.006 (2)0.002 (2)
C100.045 (3)0.035 (2)0.048 (2)0.0069 (19)0.004 (2)0.0018 (18)
C110.071 (3)0.058 (3)0.033 (2)0.020 (3)0.003 (2)0.000 (2)
C120.058 (4)0.138 (5)0.073 (3)0.026 (4)0.018 (3)0.015 (4)
C130.147 (6)0.067 (3)0.051 (3)0.042 (4)0.007 (4)0.013 (2)
C140.046 (3)0.056 (3)0.097 (3)0.003 (2)0.007 (3)0.002 (3)
C150.055 (3)0.060 (3)0.046 (2)0.011 (2)0.006 (2)0.002 (2)
Geometric parameters (Å, º) top
O1—C51.450 (4)C7—C81.568 (6)
O1—C41.464 (4)C7—H70.9800
O2—C61.438 (4)C8—C91.529 (5)
O2—H30.8200C8—H8A0.9700
O3—C11.467 (5)C8—H8B0.9700
O3—C101.481 (4)C9—C101.501 (5)
O4—H40.94 (6)C9—H9A0.9700
O4—H4C0.93 (4)C9—H9B0.9700
C1—C101.477 (6)C10—C141.492 (6)
C1—C21.517 (5)C11—C121.516 (7)
C1—H10.9800C11—C131.541 (6)
C2—C31.536 (5)C11—H110.9800
C2—H2A0.9700C12—H12A0.9600
C2—H2B0.9700C12—H12B0.9600
C3—C41.518 (5)C12—H12C0.9600
C3—H3A0.9700C13—H13A0.9600
C3—H3B0.9700C13—H13B0.9600
C4—C51.459 (5)C13—H13C0.9600
C4—C151.502 (6)C14—H14A0.9600
C5—C61.484 (5)C14—H14B0.9600
C5—H50.9800C14—H14C0.9600
C6—C71.545 (5)C15—H15A0.9600
C6—H60.9800C15—H15B0.9600
C7—C111.550 (6)C15—H15C0.9600
C5—O1—C460.1 (2)C9—C8—C7116.0 (3)
C6—O2—H3109.5C9—C8—H8A108.3
C1—O3—C1060.1 (2)C7—C8—H8A108.3
C1—O3—H4C114.1 (12)C9—C8—H8B108.3
C10—O3—H4C124.0 (13)C7—C8—H8B108.3
H4—O4—H4C96 (4)H8A—C8—H8B107.4
O3—C1—C1060.4 (2)C10—C9—C8115.4 (3)
O3—C1—C2116.9 (3)C10—C9—H9A108.4
C10—C1—C2124.6 (4)C8—C9—H9A108.4
O3—C1—H1114.6C10—C9—H9B108.4
C10—C1—H1114.6C8—C9—H9B108.4
C2—C1—H1114.6H9A—C9—H9B107.5
C1—C2—C3113.3 (3)C1—C10—O359.4 (2)
C1—C2—H2A108.9C1—C10—C14123.1 (3)
C3—C2—H2A108.9O3—C10—C14112.3 (3)
C1—C2—H2B108.9C1—C10—C9117.8 (4)
C3—C2—H2B108.9O3—C10—C9113.4 (3)
H2A—C2—H2B107.7C14—C10—C9116.2 (4)
C4—C3—C2113.2 (3)C12—C11—C13110.1 (5)
C4—C3—H3A108.9C12—C11—C7114.0 (4)
C2—C3—H3A108.9C13—C11—C7110.0 (4)
C4—C3—H3B108.9C12—C11—H11107.5
C2—C3—H3B108.9C13—C11—H11107.5
H3A—C3—H3B107.7C7—C11—H11107.5
C5—C4—O159.5 (2)C11—C12—H12A109.5
C5—C4—C15121.8 (3)C11—C12—H12B109.5
O1—C4—C15114.2 (4)H12A—C12—H12B109.5
C5—C4—C3118.0 (4)C11—C12—H12C109.5
O1—C4—C3113.5 (3)H12A—C12—H12C109.5
C15—C4—C3116.2 (4)H12B—C12—H12C109.5
O1—C5—C460.5 (2)C11—C13—H13A109.5
O1—C5—C6120.0 (3)C11—C13—H13B109.5
C4—C5—C6124.1 (4)H13A—C13—H13B109.5
O1—C5—H5114.0C11—C13—H13C109.5
C4—C5—H5114.0H13A—C13—H13C109.5
C6—C5—H5114.0H13B—C13—H13C109.5
O2—C6—C5107.7 (3)C10—C14—H14A109.5
O2—C6—C7112.4 (3)C10—C14—H14B109.5
C5—C6—C7110.2 (3)H14A—C14—H14B109.5
O2—C6—H6108.8C10—C14—H14C109.5
C5—C6—H6108.8H14A—C14—H14C109.5
C7—C6—H6108.8H14B—C14—H14C109.5
C6—C7—C11111.6 (3)C4—C15—H15A109.5
C6—C7—C8111.8 (3)C4—C15—H15B109.5
C11—C7—C8113.7 (3)H15A—C15—H15B109.5
C6—C7—H7106.4C4—C15—H15C109.5
C11—C7—H7106.4H15A—C15—H15C109.5
C8—C7—H7106.4H15B—C15—H15C109.5
H4C—O3—C1—C10116.7 (14)O2—C6—C7—C860.0 (4)
C10—O3—C1—C2116.3 (4)C5—C6—C7—C860.0 (4)
H4C—O3—C1—C20.4 (14)C6—C7—C8—C9123.0 (3)
O3—C1—C2—C3139.3 (4)C11—C7—C8—C9109.5 (4)
C10—C1—C2—C368.2 (5)C7—C8—C9—C1077.7 (5)
C1—C2—C3—C442.3 (6)C2—C1—C10—O3104.0 (4)
C5—O1—C4—C15113.9 (4)O3—C1—C10—C1498.1 (4)
C5—O1—C4—C3109.7 (4)C2—C1—C10—C145.8 (6)
C2—C3—C4—C5100.5 (5)O3—C1—C10—C9102.2 (4)
C2—C3—C4—O1167.1 (4)C2—C1—C10—C9153.9 (4)
C2—C3—C4—C1557.4 (5)H4C—O3—C10—C1100.5 (15)
C4—O1—C5—C6114.7 (4)C1—O3—C10—C14116.3 (4)
C15—C4—C5—O1101.2 (4)H4C—O3—C10—C1415.8 (15)
C3—C4—C5—O1102.2 (4)C1—O3—C10—C9109.5 (4)
O1—C4—C5—C6108.0 (4)H4C—O3—C10—C9150.0 (15)
C15—C4—C5—C66.8 (6)C8—C9—C10—C185.0 (5)
C3—C4—C5—C6149.8 (4)C8—C9—C10—O3151.5 (4)
O1—C5—C6—O284.7 (4)C8—C9—C10—C1476.1 (5)
C4—C5—C6—O2157.4 (3)C6—C7—C11—C1252.2 (5)
O1—C5—C6—C7152.4 (3)C8—C7—C11—C12179.8 (4)
C4—C5—C6—C779.7 (5)C6—C7—C11—C13176.3 (4)
O2—C6—C7—C1168.5 (4)C8—C7—C11—C1356.2 (5)
C5—C6—C7—C11171.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H3···O4i0.822.032.819 (4)160
O4—H4···O2ii0.94 (6)1.92 (6)2.836 (5)164 (5)
O4—H4C···O30.93 (4)2.10 (5)3.013 (4)166 (4)
Symmetry codes: (i) x+1/2, y+2, z1/2; (ii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H26O3·H2O
Mr272.37
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.087 (2), 11.380 (3), 16.943 (5)
V3)1559.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.31 × 0.13 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.757, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8291, 1759, 1281
Rint0.080
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.148, 1.06
No. of reflections1759
No. of parameters186
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H3···O4i0.822.032.819 (4)159.9
O4—H4···O2ii0.94 (6)1.92 (6)2.836 (5)164 (5)
O4—H4C···O30.93 (4)2.10 (5)3.013 (4)166 (4)
Symmetry codes: (i) x+1/2, y+2, z1/2; (ii) x, y1/2, z+3/2.
 

Acknowledgements

This work was supported financially by a grant from the Guangdong Pharmaceutical University Foundation for Young Teachers.

References

First citationAguilar-Guadarrama, A. B. & Rios, M. Y. (2004). J. Nat. Prod. 67, 914–917.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAl Yousuf, M. H., Bashir, A. K., Crabb, T. A., Blunden, G. & Yang, M.-H. (1999). Biochem. System. Ecol. 27, 107–109.  Web of Science CrossRef CAS Google Scholar
First citationBarrero, A. F., Herrador, M. M., Quilez, J. F., Alvarez-Manzaneda, R., Portal, D., Gavin, J. A., Gravalos, D. G., Simmonds, M. S. J. & Blaney, W. M. (1999). Phytochemistry, 51, 529–541.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, S. M., Yang, X. W., Li, Y. L., Shen, Y. H., Feng, L., Wang, Y. H., Zeng, H. W., Liu, X. H., Zhang, C. S., Long, C. L. & Zhang, W. D. (2009). Planta Med. 75, 1591–1596.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoodley, N., Mulholland, D. A. & Crouch, N. R. (2004). J. Nat. Prod. 67, 918–920.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, T., Nemoto, H., Tsuji, J. & Miura, I. (1983). Tetrahedron Lett. 24, 3485–3488.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds