metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­magnesium(II) bis­­(pyridinium-2,6-di­carboxyl­ate)

aDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: heidari.sanaz3335@yahoo.com

(Received 11 October 2010; accepted 11 November 2010; online 17 November 2010)

In the title compound, [Mg(H2O)6](C7H4NO4)2, a single six-coordinate Mg2+ cation (site symmetry 2/m) is bonded to six water mol­ecules in a distorted octa­hedral geometry. The crystal packing between the complex cation and the zwitterionic organic cation (m symmetry) is stabilized by inter­molecular O—H⋯O hydrogen bonds and weak inter­molecular C—H⋯O inter­actions.

Related literature

For background to proton-transfer compounds, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]). For related structures, see: Aghabozorg et al. (2005[Aghabozorg, H., Akbari Saei, A. & Ramezanipour, F. (2005). Acta Cryst. E61, o3242-o3244.]); Grossel et al. (2006[Grossel, M. C., Dwyer, A. N., Hursthouse, M. B. & Orton, J. B. (2006). CrystEngComm, 8, 123-128.]); Ptasiewicz-Bak & Leciejewicz (2003[Ptasiewicz-Bak, H. & Leciejewicz, J. (2003). J. Coord. Chem. 56, 173-180.]); Dale et al. (2003[Dale, S. H., Elsegood, M. R. J. & Kainth, S. (2003). Acta Cryst. C59, m505-m508.]); Yang et al. (2005[Yang, Q., Gao, S. & Huo, L.-H. (2005). Acta Cryst. E61, m277-m278.]); Kariuki & Jones (1989[Kariuki, B. M. & Jones, W. (1989). Acta Cryst. C45, 1297-1299.])

[Scheme 1]

Experimental

Crystal data
  • [Mg(H2O)6](C7H4NO4)2

  • Mr = 464.63

  • Monoclinic, C 2/m

  • a = 13.432 (3) Å

  • b = 11.108 (2) Å

  • c = 6.5845 (13) Å

  • β = 92.79 (3)°

  • V = 981.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 298 K

  • 0.35 × 0.30 × 0.15 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-RED and X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.940, Tmax = 0.973

  • 5499 measured reflections

  • 1383 independent reflections

  • 1178 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.095

  • S = 1.12

  • 1383 reflections

  • 94 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.862 (19) 1.834 (19) 2.6940 (14) 174.6 (19)
O4—H4⋯O2 0.85 (2) 1.93 (2) 2.7758 (14) 171 (2)
O5—H5⋯O2i 0.89 (2) 1.92 (2) 2.7960 (14) 167.5 (19)
C1—H1⋯O5ii 0.93 2.58 3.308 (3) 136
Symmetry codes: (i) x, y, z-1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyridine-2,6-dicarboxylic acid is commonly used as proton donor in proton transfer systems (Aghabozorg et al. 2008). It has been reported that the carboxylate groups are deprotonated and the pyridine ring is protonated in compounds containing pyridine-2,6-dicarboxylic acid( Aghabozorg et al. 2005; Grossel et al. 2006). In addition, the formation of a six-coordinated magnesium (II) ion by water molecules in aqueous solution in the presence of poly carboxylic acids has been observed (Dale et al. 2003; Ptasiewicz-Bak & Leciejewicz 2003; Yang et al. 2005). The structure of hexa-aquamagnesium(II) pyrazine-2,6-dicarboxylate, [Mg(H2O)6][pz-2,6-dc], has also been reported which exhibits hydrogen bonding between the cationic magnesium species and a pyrazine-2,6-dicarboxylate anion (Ptasiewicz-Bak & Leciejewicz 2003).

In the title compound, [Mg(H2O)6][pyH-2,6-dc]2, the cation is comprised of a six-coordinate MgII ion bound by water molecules in a distorted octahedral geometry. The dianion is comprised of a pyridine-2,6-dicarboxylic acid group (Fig. 1). Bond lengths and angles for Mg—O are in normal ranges. Crystal packing is stabilized by O—H···O intra and intermolecular hydrogen bonds and weak C—H···O intermolecular hydrogen bond interactions with the coordinated water molecules (Fig. 2). The pyridine ring in the dianion is protonated and the two carboxylic acid groups are deprotonated forming a proton transfer fragment.

Related literature top

For background to proton-transfer compounds, see: Aghabozorg et al. (2008). For related structures, see: Aghabozorg et al. (2005); Grossel et al. (2006); Ptasiewicz-Bak & Leciejewicz (2003); Dale et al. (2003); Yang et al. (2005); Kariuki & Jones (1989)

Experimental top

A solution of pyridine-2,6-dicarboxylic acid (pydcH2) (0.1671 g, 1 mmol) in ethanol (20 ml) was added to a solution of pyridazine (pydz) (0.072 ml, 1 mmol) in ethanol (8 ml) and stirred for 2 hrs. Then an aqueous solution of Mg(NO3)2.6H2O (0.1282 g, 0.5 mmol) was added to mixture of pydcH2-pydz and stirred for 1 h. 1 mL DMSO was then added to the mixture to clear the solution and stirred for more 2 hrs. Slow evaporation of the resulting solution gave colorless crystals of the title compound after three weeks which were suitable for X-ray analysis (decomposition > 260 °C).

Refinement top

The hydrogen atoms from the water molecules and pyridinium group were found in a difference Fourier map and refined isotropically without restraint. The C—H protons of the aromatic ring were positioned geometrically and refined as riding atoms, with C–H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Pyridine-2,6-dicarboxylic acid is commonly used as proton donor in proton transfer systems (Aghabozorg et al. 2008). It has been reported that the carboxylate groups are deprotonated and the pyridine ring is protonated in compounds containing pyridine-2,6-dicarboxylic acid( Aghabozorg et al. 2005; Grossel et al. 2006). In addition, the formation of a six-coordinated magnesium (II) ion by water molecules in aqueous solution in the presence of poly carboxylic acids has been observed (Dale et al. 2003; Ptasiewicz-Bak & Leciejewicz 2003; Yang et al. 2005). The structure of hexa-aquamagnesium(II) pyrazine-2,6-dicarboxylate, [Mg(H2O)6][pz-2,6-dc], has also been reported which exhibits hydrogen bonding between the cationic magnesium species and a pyrazine-2,6-dicarboxylate anion (Ptasiewicz-Bak & Leciejewicz 2003).

In the title compound, [Mg(H2O)6][pyH-2,6-dc]2, the cation is comprised of a six-coordinate MgII ion bound by water molecules in a distorted octahedral geometry. The dianion is comprised of a pyridine-2,6-dicarboxylic acid group (Fig. 1). Bond lengths and angles for Mg—O are in normal ranges. Crystal packing is stabilized by O—H···O intra and intermolecular hydrogen bonds and weak C—H···O intermolecular hydrogen bond interactions with the coordinated water molecules (Fig. 2). The pyridine ring in the dianion is protonated and the two carboxylic acid groups are deprotonated forming a proton transfer fragment.

For background to proton-transfer compounds, see: Aghabozorg et al. (2008). For related structures, see: Aghabozorg et al. (2005); Grossel et al. (2006); Ptasiewicz-Bak & Leciejewicz (2003); Dale et al. (2003); Yang et al. (2005); Kariuki & Jones (1989)

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of [Mg(H2O)6][pyH-2,6-dc]2 with displacement ellipsoids drawn at 30% probability level. Symmetry codes: (i: x, 1 - y, z; ii: 1 - x, y, -z; iv: 1 - x, -y, -z).
[Figure 2] Fig. 2. The packing diagram of [Mg(H2O)6][pyH-2,6-dc]2 viewed down the c-axis. The intra and intermolecular O—H···O and intermolecular C—H···O hydrogen bonds are shown as blue and green dashed lines, respectively.
Hexaaquamagnesium(II) bis(pyridinium-2,6-dicarboxylate) top
Crystal data top
[Mg(H2O)6](C7H4NO4)2F(000) = 484.0
Mr = 464.63Dx = 1.572 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 1383 reflections
a = 13.432 (3) Åθ = 2.4–29.1°
b = 11.108 (2) ŵ = 0.17 mm1
c = 6.5845 (13) ÅT = 298 K
β = 92.79 (3)°Plate, colorless
V = 981.3 (3) Å30.35 × 0.30 × 0.15 mm
Z = 2
Data collection top
Stoe IPDS II
diffractometer
1383 independent reflections
Radiation source: fine-focus sealed tube1178 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 0.15 pixels mm-1θmax = 29.1°, θmin = 2.4°
rotation method scansh = 1718
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie, 2005)
k = 1415
Tmin = 0.940, Tmax = 0.973l = 98
5499 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.5177P]
where P = (Fo2 + 2Fc2)/3
1383 reflections(Δ/σ)max = 0.001
94 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
[Mg(H2O)6](C7H4NO4)2V = 981.3 (3) Å3
Mr = 464.63Z = 2
Monoclinic, C2/mMo Kα radiation
a = 13.432 (3) ŵ = 0.17 mm1
b = 11.108 (2) ÅT = 298 K
c = 6.5845 (13) Å0.35 × 0.30 × 0.15 mm
β = 92.79 (3)°
Data collection top
Stoe IPDS II
diffractometer
1383 independent reflections
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie, 2005)
1178 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.973Rint = 0.031
5499 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.33 e Å3
1383 reflectionsΔρmin = 0.18 e Å3
94 parameters
Special details top

Experimental. shape of crystal determined optically

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.50000.00000.00000.0249 (2)
O10.40364 (11)0.31353 (9)0.27234 (16)0.0499 (3)
O20.36594 (9)0.18375 (8)0.51657 (15)0.0396 (3)
O30.50000.18182 (12)0.00000.0360 (3)
O40.41819 (12)0.00000.2566 (2)0.0357 (3)
O50.36739 (11)0.00000.1931 (2)0.0341 (3)
N10.37142 (12)0.50000.4931 (2)0.0257 (3)
C10.31770 (16)0.50000.8796 (3)0.0347 (4)
H10.29890.50001.01370.042*
C20.33156 (11)0.39121 (12)0.78070 (19)0.0312 (3)
H20.32250.31860.84760.037*
C30.35898 (9)0.39277 (10)0.58164 (18)0.0253 (3)
C40.37779 (11)0.28571 (11)0.4447 (2)0.0310 (3)
H30.4708 (14)0.2281 (19)0.084 (3)0.053 (5)*
H40.4046 (15)0.0617 (19)0.327 (3)0.057 (6)*
H50.3664 (16)0.0661 (19)0.270 (3)0.065 (6)*
H1A0.3899 (19)0.50000.366 (4)0.046 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0367 (5)0.0173 (4)0.0211 (4)0.0000.0062 (3)0.000
O10.0892 (9)0.0278 (5)0.0351 (5)0.0102 (5)0.0267 (6)0.0011 (4)
O20.0626 (7)0.0192 (4)0.0374 (5)0.0041 (4)0.0054 (5)0.0011 (4)
O30.0602 (10)0.0177 (6)0.0315 (7)0.0000.0172 (6)0.000
O40.0566 (9)0.0226 (6)0.0296 (7)0.0000.0179 (6)0.000
O50.0467 (8)0.0295 (7)0.0262 (6)0.0000.0034 (6)0.000
N10.0353 (8)0.0203 (7)0.0220 (6)0.0000.0081 (6)0.000
C10.0486 (12)0.0344 (10)0.0217 (8)0.0000.0080 (7)0.000
C20.0422 (8)0.0253 (6)0.0265 (6)0.0000 (5)0.0059 (5)0.0048 (5)
C30.0303 (6)0.0192 (5)0.0267 (5)0.0018 (4)0.0036 (4)0.0007 (4)
C40.0410 (7)0.0210 (6)0.0312 (6)0.0050 (5)0.0048 (5)0.0027 (5)
Geometric parameters (Å, º) top
Mg1—O3i2.0197 (14)O5—H50.89 (2)
Mg1—O32.0197 (14)N1—C3ii1.3401 (13)
Mg1—O4i2.0601 (15)N1—C31.3401 (13)
Mg1—O42.0601 (15)N1—H1A0.89 (3)
Mg1—O5i2.1375 (16)C1—C21.3897 (16)
Mg1—O52.1375 (16)C1—C2ii1.3897 (16)
O1—C41.2422 (17)C1—H10.9300
O2—C41.2406 (16)C2—C31.3788 (17)
O3—H30.862 (19)C2—H20.9300
O4—H40.85 (2)C3—C41.5208 (17)
O3i—Mg1—O3180.0Mg1—O5—H5109.1 (13)
O3i—Mg1—O4i90.0C3ii—N1—C3125.46 (15)
O3—Mg1—O4i90.0C3ii—N1—H1A117.27 (8)
O3i—Mg1—O490.0C3—N1—H1A117.27 (8)
O3—Mg1—O490.0C2—C1—C2ii120.82 (17)
O4i—Mg1—O4180.00 (8)C2—C1—H1119.6
O3i—Mg1—O5i90.0C2ii—C1—H1119.6
O3—Mg1—O5i90.0C3—C2—C1118.87 (12)
O4i—Mg1—O5i91.46 (6)C3—C2—H2120.6
O4—Mg1—O5i88.54 (6)C1—C2—H2120.6
O3i—Mg1—O590.0N1—C3—C2117.99 (12)
O3—Mg1—O590.0N1—C3—C4114.17 (11)
O4i—Mg1—O588.54 (6)C2—C3—C4127.84 (11)
O4—Mg1—O591.46 (6)O2—C4—O1128.49 (12)
O5i—Mg1—O5180.00 (8)O2—C4—C3117.37 (12)
Mg1—O3—H3126.6 (13)O1—C4—C3114.14 (11)
Mg1—O4—H4125.5 (14)
C2ii—C1—C2—C30.3 (3)N1—C3—C4—O2178.85 (14)
C3ii—N1—C3—C20.3 (3)C2—C3—C4—O21.3 (2)
C3ii—N1—C3—C4179.77 (12)N1—C3—C4—O11.23 (19)
C1—C2—C3—N10.3 (2)C2—C3—C4—O1178.66 (14)
C1—C2—C3—C4179.83 (15)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.862 (19)1.834 (19)2.6940 (14)174.6 (19)
O4—H4···O20.85 (2)1.93 (2)2.7758 (14)171 (2)
O5—H5···O2iii0.89 (2)1.92 (2)2.7960 (14)167.5 (19)
C1—H1···O5iv0.932.583.308 (3)136
Symmetry codes: (iii) x, y, z1; (iv) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Mg(H2O)6](C7H4NO4)2
Mr464.63
Crystal system, space groupMonoclinic, C2/m
Temperature (K)298
a, b, c (Å)13.432 (3), 11.108 (2), 6.5845 (13)
β (°) 92.79 (3)
V3)981.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.35 × 0.30 × 0.15
Data collection
DiffractometerStoe IPDS II
Absorption correctionNumerical
(X-RED and X-SHAPE; Stoe & Cie, 2005)
Tmin, Tmax0.940, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
5499, 1383, 1178
Rint0.031
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.095, 1.12
No. of reflections1383
No. of parameters94
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.18

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.862 (19)1.834 (19)2.6940 (14)174.6 (19)
O4—H4···O20.85 (2)1.93 (2)2.7758 (14)171 (2)
O5—H5···O2i0.89 (2)1.92 (2)2.7960 (14)167.5 (19)
C1—H1···O5ii0.932.583.308 (3)135.8
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors are grateful to the Islamic Azad University, North Branch, for financial support of this work.

References

First citationAghabozorg, H., Akbari Saei, A. & Ramezanipour, F. (2005). Acta Cryst. E61, o3242–o3244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationDale, S. H., Elsegood, M. R. J. & Kainth, S. (2003). Acta Cryst. C59, m505–m508.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGrossel, M. C., Dwyer, A. N., Hursthouse, M. B. & Orton, J. B. (2006). CrystEngComm, 8, 123–128.  Web of Science CrossRef CAS Google Scholar
First citationKariuki, B. M. & Jones, W. (1989). Acta Cryst. C45, 1297–1299.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPtasiewicz-Bak, H. & Leciejewicz, J. (2003). J. Coord. Chem. 56, 173–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYang, Q., Gao, S. & Huo, L.-H. (2005). Acta Cryst. E61, m277–m278.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds