metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ3-tert-butano­lato-tetra­thallium(I)

aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 2 November 2010; accepted 16 November 2010; online 20 November 2010)

The title compound, [Tl4(C4H9O)4], featuring a (Tl—O)4 cube, crystallizes with a quarter-mol­ecule (located on a special position of site symmetry [\overline{4}]..) and a half-mol­ecule (located on a special position of site symmetry 23.) in the asymmetric unit. The Tl—O bond distances range from 2.463 (12) to 2.506 (12) Å. All O—Tl—O bond angles are smaller than 90° whereas the Tl—O—Tl angles are wider than a recta­ngular angle.

Related literature

For the use of bulky silyl chalcogenolate ligands of the type ESiR3 and alkyl chalcogenolates E(alk­yl) (E = O, S, Se, Te) with especially bulky alkoxides to stabilize transition metal centres, see: Wolczanski (2009[Wolczanski, P. T. (2009). Chem. Commun. pp. 740-757.]); Kückmann et al. (2005[Kückmann, T. I., Hermsen, M., Bolte, M., Wagner, M. & Lerner, H.-W. (2005). Inorg. Chem. 44, 3449-3458.], 2008[Kückmann, T. I., Schödel, F., Sänger, I., Bolte, M., Wagner, M. & Lerner, H.-W. (2008). Organometallics, 27, 3272-3278.], 2010[Kückmann, T. I., Schödel, F., Sänger, I., Bolte, M., Wagner, M. & Lerner, H.-W. (2010). Eur. J. Inorg. Chem. pp. 468-475.]). For substitution reactions of transition metal atoms, see: Kern et al. (2008[Kern, B., Vitze, H., Bolte, M., Wagner, M. & Lerner, H.-W. (2008). Z. Anorg. Allg. Chem. 634, 1830-1832.]); Lerner et al. (2002[Lerner, H.-W., Scholz, S. & Bolte, M. (2002). Organometallics, 21, 3827-3830.], 2005[Lerner, H.-W., Scholz, S., Wiberg, N., Polborn, K., Bolte, M. & Wagner, M. (2005). Z. Anorg. Allg. Chem. 631, 1863-1870.]). The title compound was prepared according to a slightly changed published procedure, see: Schmidbaur et al. (1968[Schmidbaur, H., Bergfeld, M. & Schindler, F. (1968). Z. Anorg. Allg. Chem. 363, 73-83.]).

[Scheme 1]

Experimental

Crystal data
  • [Tl4(C4H9O)4]

  • Mr = 1109.93

  • Cubic, [P \overline 43n ]

  • a = 17.1500 (15) Å

  • V = 5044.2 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 25.49 mm−1

  • T = 173 K

  • 0.21 × 0.18 × 0.10 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.075, Tmax = 0.185

  • 13612 measured reflections

  • 1489 independent reflections

  • 1226 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.083

  • S = 1.00

  • 1489 reflections

  • 73 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.77 e Å−3

  • Δρmin = −1.01 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 711 Friedel pairs

  • Flack parameter: 0.00 (7)

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In a number of recent studies bulky silyl chalcogenolate ligands of the type ESiR3- and alkyl chalcogenolates E(alkyl)- (E = O, S, Se, Te) with especially bulky alkoxides have been used to stabilize transition metal centers (Wolczanski, 2009; Kückmann et al. 2005, 2008, 2010). In macromolecular chemistry, these ligands have also found application. Chalcogen-based ligands offer a variety of possible binding modes. Chalcogenolates are often found bridging two or more metal ions. Normally, transition metal complexes possess 6 e- thiolate ligands in a µ3-binding mode. Recently, however, we have shown that the anion of the mixed-valence Mn(I/II) complex Na(thf)6[(OC)3Mn(µ-SSitBu3)3MnSSitBu3] contains a terminal thiolate ligand with a linear Mn—S—Si unit (Kückmann et al. 2008). The prerequisite for six-electron donation (2 σ- and 4 π-electrons) comparable with Cp- is thus fulfilled. One approach is to create such complexes by substitution reactions of transition metal halogenides with alkali metal alkoxides as M+[OC(CH3)3]- or alkali metal siloxides M+[OSiR3]- (Kern et al. 2008; Lerner et al. 2005, 2002). In most cases the reactions that occur between alkali metal alkoxides and transition metal halides are not quantitative. Another approach to complexes with chalcogen coordination is to start from thallium alkoxides which react almost quantitatively with transition metal chlorides due to the poor solubility of TlCl. In this paper we report the synthesis and the crystal structure of [TlOtBu]4. The title compound [TlOtBu]4 was prepared according to a slightly changed published procedure (Schmidbaur et al. 1968), as shown in Fig. 2. The following modifications have been made in our approach: thallium ethoxide was used instead of thallium methoxide and potassium tert-butoxide was substituted for sodium tert-butoxide.

Related literature top

For the use of bulky silyl chalcogenolate ligands of the type ESiR3- and alkyl chalcogenolates E(alkyl)- (E = O, S, Se, Te) with especially bulky alkoxides to stabilize transition metal centers, see: Wolczanski (2009); Kückmann et al. (2005, 2008, 2010). For substitution reactions of transition metal halogenides with alkali metal alkoxides as M+[OC(CH3)3]- or alkali metal siloxides M+[OSiR3]-, see: Kern et al. (2008); Lerner et al. (2002, 2005). The title compound was prepared according to a slightly changed published procedure, see: Schmidbaur et al. (1968).

Experimental top

In a flame-dried vial 1.1 ml thallium ethoxide (3.77 g, 15.1 mmol) was added to 1.70 g potassium tert-butoxide (15.1 mmol) in 50 ml benzene. After flame-sealing, the vial was heated to 80 °C for four days. The vial was opened, the crude reaction mixture filtered hot under an nitrogen atmosphere, the solid residue was washed with 20 ml benzene and the combined filtrates evaporated to dryness. The remaining colorless solid was suspended in ether and allowed to settle. A sample of the supernatant was transferred to a flame-dried Schlenk vessel and stored at -35°C. After two days colorless crystals of the composition [TlOtBu]4 deposited and were separated from the mother liquor (Yield 15%).

Refinement top

H atoms were located in a difference map, but geometrically positioned and refined using a riding model with fixed individual displacement parameters [U(H) = 1.5 Ueq(C)] and with C—H = 0.98 Å.

Structure description top

In a number of recent studies bulky silyl chalcogenolate ligands of the type ESiR3- and alkyl chalcogenolates E(alkyl)- (E = O, S, Se, Te) with especially bulky alkoxides have been used to stabilize transition metal centers (Wolczanski, 2009; Kückmann et al. 2005, 2008, 2010). In macromolecular chemistry, these ligands have also found application. Chalcogen-based ligands offer a variety of possible binding modes. Chalcogenolates are often found bridging two or more metal ions. Normally, transition metal complexes possess 6 e- thiolate ligands in a µ3-binding mode. Recently, however, we have shown that the anion of the mixed-valence Mn(I/II) complex Na(thf)6[(OC)3Mn(µ-SSitBu3)3MnSSitBu3] contains a terminal thiolate ligand with a linear Mn—S—Si unit (Kückmann et al. 2008). The prerequisite for six-electron donation (2 σ- and 4 π-electrons) comparable with Cp- is thus fulfilled. One approach is to create such complexes by substitution reactions of transition metal halogenides with alkali metal alkoxides as M+[OC(CH3)3]- or alkali metal siloxides M+[OSiR3]- (Kern et al. 2008; Lerner et al. 2005, 2002). In most cases the reactions that occur between alkali metal alkoxides and transition metal halides are not quantitative. Another approach to complexes with chalcogen coordination is to start from thallium alkoxides which react almost quantitatively with transition metal chlorides due to the poor solubility of TlCl. In this paper we report the synthesis and the crystal structure of [TlOtBu]4. The title compound [TlOtBu]4 was prepared according to a slightly changed published procedure (Schmidbaur et al. 1968), as shown in Fig. 2. The following modifications have been made in our approach: thallium ethoxide was used instead of thallium methoxide and potassium tert-butoxide was substituted for sodium tert-butoxide.

For the use of bulky silyl chalcogenolate ligands of the type ESiR3- and alkyl chalcogenolates E(alkyl)- (E = O, S, Se, Te) with especially bulky alkoxides to stabilize transition metal centers, see: Wolczanski (2009); Kückmann et al. (2005, 2008, 2010). For substitution reactions of transition metal halogenides with alkali metal alkoxides as M+[OC(CH3)3]- or alkali metal siloxides M+[OSiR3]-, see: Kern et al. (2008); Lerner et al. (2002, 2005). The title compound was prepared according to a slightly changed published procedure, see: Schmidbaur et al. (1968).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of one of the two independent molecules of the title compound with the atom numbering scheme for the symmetry independent atoms; displacement ellipsoids are at the 50% probability level; H atoms are omitted for clarity.
[Figure 2] Fig. 2. Preparation of the title compound.
Tetra-µ3-tert-butanolato-tetrathallium(I) top
Crystal data top
[Tl4(C4H9O)4]Dx = 2.923 Mg m3
Mr = 1109.93Mo Kα radiation, λ = 0.71073 Å
Cubic, P43nCell parameters from 7201 reflections
Hall symbol: P -4n 2 3θ = 3.4–25.9°
a = 17.1500 (15) ŵ = 25.49 mm1
V = 5044.2 (8) Å3T = 173 K
Z = 8Plate, colourless
F(000) = 39040.21 × 0.18 × 0.10 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
1489 independent reflections
Radiation source: fine-focus sealed tube1226 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
ω scansθmax = 25.0°, θmin = 3.4°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 1820
Tmin = 0.075, Tmax = 0.185k = 1920
13612 measured reflectionsl = 2018
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.037P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
1489 reflectionsΔρmax = 1.77 e Å3
73 parametersΔρmin = 1.01 e Å3
6 restraintsAbsolute structure: Flack (1983), 711 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (7)
Crystal data top
[Tl4(C4H9O)4]Z = 8
Mr = 1109.93Mo Kα radiation
Cubic, P43nµ = 25.49 mm1
a = 17.1500 (15) ÅT = 173 K
V = 5044.2 (8) Å30.21 × 0.18 × 0.10 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
1489 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
1226 reflections with I > 2σ(I)
Tmin = 0.075, Tmax = 0.185Rint = 0.084
13612 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.083Δρmax = 1.77 e Å3
S = 1.00Δρmin = 1.01 e Å3
1489 reflectionsAbsolute structure: Flack (1983), 711 Friedel pairs
73 parametersAbsolute structure parameter: 0.00 (7)
6 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tl10.66760 (4)0.91953 (4)0.57229 (3)0.02168 (17)
O10.8130 (7)0.9310 (7)0.5635 (7)0.022 (2)
C10.8550 (13)0.8777 (10)0.6115 (13)0.029 (4)
C20.9386 (12)0.8950 (18)0.6078 (19)0.059 (8)
H2A0.94780.94850.62560.088*
H2B0.95690.88950.55390.088*
H2C0.96710.85860.64140.088*
C30.8400 (19)0.7958 (10)0.583 (2)0.059 (7)
H3A0.78390.78530.58440.089*
H3B0.86690.75880.61770.089*
H3C0.85960.79010.53010.089*
C40.8261 (16)0.8852 (14)0.6961 (12)0.041 (6)
H4A0.83680.93800.71530.061*
H4B0.85330.84720.72900.061*
H4C0.76980.87530.69800.061*
Tl1A0.42129 (4)0.42129 (4)0.42129 (4)0.0223 (2)
O1A0.5652 (6)0.4348 (6)0.4348 (6)0.020 (4)
C1A0.6118 (13)0.3882 (13)0.3882 (13)0.020 (7)
C2A0.6960 (12)0.3942 (13)0.4110 (14)0.035 (5)
H2A10.71250.44880.40860.053*
H2A20.72770.36310.37510.053*
H2A30.70270.37460.46430.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tl10.0231 (3)0.0211 (3)0.0208 (3)0.0047 (3)0.0036 (3)0.0011 (3)
O10.031 (6)0.020 (6)0.015 (6)0.005 (5)0.005 (5)0.009 (5)
C10.036 (10)0.016 (9)0.034 (12)0.012 (8)0.009 (9)0.003 (8)
C20.023 (10)0.065 (16)0.09 (2)0.006 (12)0.006 (13)0.040 (14)
C30.09 (2)0.007 (8)0.08 (2)0.007 (11)0.018 (18)0.008 (12)
C40.063 (16)0.041 (13)0.019 (10)0.018 (11)0.007 (10)0.003 (8)
Tl1A0.0223 (2)0.0223 (2)0.0223 (2)0.0035 (3)0.0035 (3)0.0035 (3)
O1A0.020 (4)0.020 (4)0.020 (4)0.005 (5)0.005 (5)0.005 (5)
C1A0.020 (7)0.020 (7)0.020 (7)0.003 (8)0.003 (8)0.003 (8)
C2A0.025 (8)0.041 (8)0.041 (9)0.011 (6)0.007 (7)0.010 (7)
Geometric parameters (Å, º) top
Tl1—O1i2.463 (12)C4—H4A0.9800
Tl1—O1ii2.493 (11)C4—H4B0.9800
Tl1—O12.506 (12)C4—H4C0.9800
O1—C11.42 (2)Tl1A—O1A2.490 (8)
O1—Tl1ii2.463 (12)Tl1A—O1Aiii2.490 (8)
O1—Tl1i2.492 (11)Tl1A—O1Aiv2.490 (8)
C1—C21.47 (3)O1A—C1A1.38 (4)
C1—C31.51 (3)O1A—Tl1Aiii2.490 (8)
C1—C41.54 (3)O1A—Tl1Aiv2.490 (8)
C2—H2A0.9800C1A—C2Av1.50 (2)
C2—H2B0.9800C1A—C2Avi1.50 (2)
C2—H2C0.9800C1A—C2A1.50 (2)
C3—H3A0.9800C2A—H2A10.9800
C3—H3B0.9800C2A—H2A20.9800
C3—H3C0.9800C2A—H2A30.9800
O1i—Tl1—O1ii81.0 (4)H3B—C3—H3C109.5
O1i—Tl1—O178.3 (4)C1—C4—H4A109.5
O1ii—Tl1—O177.8 (4)C1—C4—H4B109.5
O1i—Tl1—Tl1vii41.8 (3)H4A—C4—H4B109.5
O1ii—Tl1—Tl1vii41.2 (3)C1—C4—H4C109.5
O1—Tl1—Tl1vii84.3 (2)H4A—C4—H4C109.5
C1—O1—Tl1ii119.7 (10)H4B—C4—H4C109.5
C1—O1—Tl1i119.3 (11)O1A—Tl1A—O1Aiii78.9 (6)
Tl1ii—O1—Tl1i97.0 (4)O1A—Tl1A—O1Aiv78.9 (6)
C1—O1—Tl1114.7 (11)O1Aiii—Tl1A—O1Aiv78.9 (6)
Tl1ii—O1—Tl1101.8 (4)C1A—O1A—Tl1Aiii117.7 (11)
Tl1i—O1—Tl1101.0 (4)C1A—O1A—Tl1Aiv117.7 (11)
O1—C1—C2109.8 (17)Tl1Aiii—O1A—Tl1Aiv100.1 (5)
O1—C1—C3109.2 (17)C1A—O1A—Tl1A117.7 (11)
C2—C1—C3110 (2)Tl1Aiii—O1A—Tl1A100.1 (5)
O1—C1—C4109.1 (16)Tl1Aiv—O1A—Tl1A100.1 (5)
C2—C1—C4110 (2)O1A—C1A—C2Av111.4 (15)
C3—C1—C4109 (2)O1A—C1A—C2Avi111.4 (15)
C1—C2—H2A109.5C2Av—C1A—C2Avi107.4 (16)
C1—C2—H2B109.5O1A—C1A—C2A111.4 (15)
H2A—C2—H2B109.5C2Av—C1A—C2A107.4 (16)
C1—C2—H2C109.5C2Avi—C1A—C2A107.4 (16)
H2A—C2—H2C109.5C1A—C2A—H2A1109.5
H2B—C2—H2C109.5C1A—C2A—H2A2109.5
C1—C3—H3A109.5H2A1—C2A—H2A2109.5
C1—C3—H3B109.5C1A—C2A—H2A3109.5
H3A—C3—H3B109.5H2A1—C2A—H2A3109.5
C1—C3—H3C109.5H2A2—C2A—H2A3109.5
H3A—C3—H3C109.5
O1i—Tl1—O1—C1137.9 (13)Tl1—O1—C1—C453.8 (18)
O1ii—Tl1—O1—C1139.0 (13)O1Aiii—Tl1A—O1A—C1A139.7 (13)
Tl1vii—Tl1—O1—C1179.8 (12)O1Aiv—Tl1A—O1A—C1A139.7 (13)
O1i—Tl1—O1—Tl1ii91.4 (5)O1Aiii—Tl1A—O1A—Tl1Aiii10.8 (5)
O1ii—Tl1—O1—Tl1ii8.2 (4)O1Aiv—Tl1A—O1A—Tl1Aiii91.49 (15)
Tl1vii—Tl1—O1—Tl1ii49.5 (3)O1Aiii—Tl1A—O1A—Tl1Aiv91.49 (15)
O1i—Tl1—O1—Tl1i8.2 (4)O1Aiv—Tl1A—O1A—Tl1Aiv10.8 (5)
O1ii—Tl1—O1—Tl1i91.4 (5)Tl1Aiii—O1A—C1A—C2Av68.4 (10)
Tl1vii—Tl1—O1—Tl1i50.1 (3)Tl1Aiv—O1A—C1A—C2Av171.6 (10)
Tl1ii—O1—C1—C253 (2)Tl1A—O1A—C1A—C2Av51.6 (10)
Tl1i—O1—C1—C266 (2)Tl1Aiii—O1A—C1A—C2Avi171.6 (10)
Tl1—O1—C1—C2174.2 (19)Tl1Aiv—O1A—C1A—C2Avi51.6 (10)
Tl1ii—O1—C1—C3173.5 (18)Tl1A—O1A—C1A—C2Avi68.4 (10)
Tl1i—O1—C1—C355 (2)Tl1Aiii—O1A—C1A—C2A51.6 (10)
Tl1—O1—C1—C365 (2)Tl1Aiv—O1A—C1A—C2A68.4 (10)
Tl1ii—O1—C1—C467.6 (19)Tl1A—O1A—C1A—C2A171.6 (10)
Tl1i—O1—C1—C4173.7 (14)
Symmetry codes: (i) x+3/2, z+3/2, y1/2; (ii) x+3/2, z+1/2, y+3/2; (iii) x+1, y, z+1; (iv) x+1, y+1, z; (v) z+1, x+1, y; (vi) y+1, z, x+1; (vii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Tl4(C4H9O)4]
Mr1109.93
Crystal system, space groupCubic, P43n
Temperature (K)173
a (Å)17.1500 (15)
V3)5044.2 (8)
Z8
Radiation typeMo Kα
µ (mm1)25.49
Crystal size (mm)0.21 × 0.18 × 0.10
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.075, 0.185
No. of measured, independent and
observed [I > 2σ(I)] reflections
13612, 1489, 1226
Rint0.084
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.083, 1.00
No. of reflections1489
No. of parameters73
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.77, 1.01
Absolute structureFlack (1983), 711 Friedel pairs
Absolute structure parameter0.00 (7)

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

 

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKern, B., Vitze, H., Bolte, M., Wagner, M. & Lerner, H.-W. (2008). Z. Anorg. Allg. Chem. 634, 1830–1832.  Web of Science CSD CrossRef CAS Google Scholar
First citationKückmann, T. I., Hermsen, M., Bolte, M., Wagner, M. & Lerner, H.-W. (2005). Inorg. Chem. 44, 3449–3458.  Web of Science PubMed Google Scholar
First citationKückmann, T. I., Schödel, F., Sänger, I., Bolte, M., Wagner, M. & Lerner, H.-W. (2008). Organometallics, 27, 3272–3278.  Google Scholar
First citationKückmann, T. I., Schödel, F., Sänger, I., Bolte, M., Wagner, M. & Lerner, H.-W. (2010). Eur. J. Inorg. Chem. pp. 468–475.  Web of Science CSD CrossRef Google Scholar
First citationLerner, H.-W., Scholz, S. & Bolte, M. (2002). Organometallics, 21, 3827–3830.  Web of Science CSD CrossRef CAS Google Scholar
First citationLerner, H.-W., Scholz, S., Wiberg, N., Polborn, K., Bolte, M. & Wagner, M. (2005). Z. Anorg. Allg. Chem. 631, 1863–1870.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchmidbaur, H., Bergfeld, M. & Schindler, F. (1968). Z. Anorg. Allg. Chem. 363, 73–83.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWolczanski, P. T. (2009). Chem. Commun. pp. 740–757.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds