organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(4-hy­dr­oxy-1-methyl-2-oxo-1,2-di­hydro­quinolin-3-yl)acetate

aSTC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenina ave., Kharkiv 61001, Ukraine, and bNational University of Pharmacy, 4 Blyukhera ave., Kharkiv 61002, Ukraine
*Correspondence e-mail: sveta@xray.isc.kharkov.com

(Received 13 October 2010; accepted 10 November 2010; online 17 November 2010)

In the title compound, C13H13NO4, the bicyclic quinolone fragment and the ester group are approximately orthogonal, making a dihedral angle of 83.3 (2)° and an intramolecular C—H⋯O interaction occurs. In the crystal, inter­molecular O—H⋯O hydrogen bonding generates a zigzag chain along the c axis.

Related literature

Esters of 4-hy­droxy-2-oxo-1,2-dihydro­quinolin-3-acetic acids reveal appreciable biological activity, see: Ukrainets et al. (2010[Ukrainets, I. V., Mospanova, E. V., Davidenko, A. A., Tkach, A. A. & Gorokhova, O. V. (2010). Khim. Geterotsikl. Soedin. pp. 1173-1184.]). For a related structure, see: Ukrainets et al. (2009[Ukrainets, I. V., Shishkina, S. V., Shishkin, O. V., Davidenko, A. A. & Tkach, A. A. (2009). Acta Cryst. E65, o968.]). For van der Waals radii, see: Zefirov (1997[Zefirov, Yu. V. (1997). Kristallografiya, 42, 936-958.]). For reference bond lengths, see: Bürgi & Dunitz (1994[Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767-784. Weinheim: VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO4

  • Mr = 247.24

  • Monoclinic, P 21 /c

  • a = 9.0792 (6) Å

  • b = 11.4904 (6) Å

  • c = 11.4071 (7) Å

  • β = 105.272 (7)°

  • V = 1148.00 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Oxford Xcalibur3 diffractometer

  • 11774 measured reflections

  • 3295 independent reflections

  • 1454 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.082

  • S = 0.72

  • 3295 reflections

  • 169 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.921 (17) 1.760 (17) 2.6456 (12) 160.2 (15)
C10—H10A⋯O1i 0.97 2.48 3.3335 (16) 147
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP (Siemens, 1998[Siemens (1998). XP. Siemens Analytical X-ray Division Inc., Karlsruhe, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Esters of 4-hydroxy-2-oxo-1,2-dihydroquinolin-3-acetic acids reveal appreciable biological activity (Ukrainets et al., 2010). It is interesting that the ethyl ester possesses stronger anti-inflammory activity than methyl ester. On the contrary, the methyl ester has pronounced analgetic activity. In this paper we report the molecular and crystal structure of the (4-hydroxy-1-methyl-2-oxo-1,2- dihydroquinolin-3-yl)-acetic acid methyl ester (I) (Fig. 1) with a comparative analysis with previously studied ethyl analogue (II) (Ukrainets et al., 2009). In contrast to II the bicyclic fragment of I is not strictly planar (the C1—N1—C9—C8 torsion angle is -5.8 (2) °). The planar ester group at the C10 atom is orthogonal to the plane of quinoline ring (the C7—C8—C10—C11 torsion angle is 93.9 (1) °) and the C8—C10—C11—O3 torsion angle is -19.7 (2) °. The C9—O1 bond (1.251 (1) Å) is elongated comparing with its mean value (1.210 Å; Bürgi & Dunitz, 1994) owing to the formation of the intermolecular hydrogen bond O2—H2O···O1 (Table 1). The presence of this hydrogen bond determines the orientation of the hydrogen atom of hydroxy group despite of repulsion with one of hydrogen atoms of neighbouring methylene group: the H10a···H2O distance is 2.09 Å [the van der Waals radii sum is 2.34 Å (Zefirov, 1997)]. In the crystal packing the molecules are connected by the O2—H2O···O1 intermolecular hydrogen bond into a zigzag chain along the [0 0 1] direction (Table 1, Fig. 2). Neighbouring chains are connected by the C-H···π interactions between the methyl group at N1-pyridyl atom and C1···C6 aromatic ring [-x, 1-y, 1-z; H···Cg distance (Cg is centre of aromatic ring) is 3.28 Å, C-H···Cg bond angle is 125 °].

Related literature top

Esters of 4-hydroxy-2-oxo-1,2-dihydroquinolin-3-acetic acids reveal appreciable

biological activity, see: Ukrainets et al. (2010). For a related structure, see: Ukrainets et al. (2009). For van der Waals radii, see: Zefirov (1997). For reference bond lengths, see: Bürgi & Dunitz (1994).

Experimental top

(4-hydroxy-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)-acetic acid is synthesised using the published method (Ukrainets et al., 2010). Yield 96%; m.p. 452-454 K.

Refinement top

All hydrogen atoms were located from electron density difference maps and were refined in the riding mode approximation with Uiso constrained to be 1.5 times Ueq of the carrier atom for the methyl group and 1.2 times Ueq of the carrier atom for the other atoms. The hydrogen atom of the hydroxyl group was refined in an isotropic mode.

Structure description top

Esters of 4-hydroxy-2-oxo-1,2-dihydroquinolin-3-acetic acids reveal appreciable biological activity (Ukrainets et al., 2010). It is interesting that the ethyl ester possesses stronger anti-inflammory activity than methyl ester. On the contrary, the methyl ester has pronounced analgetic activity. In this paper we report the molecular and crystal structure of the (4-hydroxy-1-methyl-2-oxo-1,2- dihydroquinolin-3-yl)-acetic acid methyl ester (I) (Fig. 1) with a comparative analysis with previously studied ethyl analogue (II) (Ukrainets et al., 2009). In contrast to II the bicyclic fragment of I is not strictly planar (the C1—N1—C9—C8 torsion angle is -5.8 (2) °). The planar ester group at the C10 atom is orthogonal to the plane of quinoline ring (the C7—C8—C10—C11 torsion angle is 93.9 (1) °) and the C8—C10—C11—O3 torsion angle is -19.7 (2) °. The C9—O1 bond (1.251 (1) Å) is elongated comparing with its mean value (1.210 Å; Bürgi & Dunitz, 1994) owing to the formation of the intermolecular hydrogen bond O2—H2O···O1 (Table 1). The presence of this hydrogen bond determines the orientation of the hydrogen atom of hydroxy group despite of repulsion with one of hydrogen atoms of neighbouring methylene group: the H10a···H2O distance is 2.09 Å [the van der Waals radii sum is 2.34 Å (Zefirov, 1997)]. In the crystal packing the molecules are connected by the O2—H2O···O1 intermolecular hydrogen bond into a zigzag chain along the [0 0 1] direction (Table 1, Fig. 2). Neighbouring chains are connected by the C-H···π interactions between the methyl group at N1-pyridyl atom and C1···C6 aromatic ring [-x, 1-y, 1-z; H···Cg distance (Cg is centre of aromatic ring) is 3.28 Å, C-H···Cg bond angle is 125 °].

Esters of 4-hydroxy-2-oxo-1,2-dihydroquinolin-3-acetic acids reveal appreciable

biological activity, see: Ukrainets et al. (2010). For a related structure, see: Ukrainets et al. (2009). For van der Waals radii, see: Zefirov (1997). For reference bond lengths, see: Bürgi & Dunitz (1994).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP (Siemens, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with atomic membering. All atoms are shown with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title molecules. The hydrogen bonds are shown by dashed lines.
Methyl 2-(4-hydroxy-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)acetate top
Crystal data top
C13H13NO4F(000) = 520
Mr = 247.24Dx = 1.431 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.0792 (6) ÅCell parameters from 3049 reflections
b = 11.4904 (6) Åθ = 2.9–32.1°
c = 11.4071 (7) ŵ = 0.11 mm1
β = 105.272 (7)°T = 293 K
V = 1148.00 (12) Å3Block, colourless
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Oxford Xcalibur3
diffractometer
1454 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.031
Graphite monochromatorθmax = 30.0°, θmin = 2.9°
Detector resolution: 16.1827 pixels mm-1h = 1212
ω scansk = 1516
11774 measured reflectionsl = 1616
3295 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 0.72 w = 1/[σ2(Fo2) + (0.044P)2]
where P = (Fo2 + 2Fc2)/3
3295 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C13H13NO4V = 1148.00 (12) Å3
Mr = 247.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0792 (6) ŵ = 0.11 mm1
b = 11.4904 (6) ÅT = 293 K
c = 11.4071 (7) Å0.20 × 0.10 × 0.10 mm
β = 105.272 (7)°
Data collection top
Oxford Xcalibur3
diffractometer
1454 reflections with I > 2σ(I)
11774 measured reflectionsRint = 0.031
3295 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 0.72Δρmax = 0.14 e Å3
3295 reflectionsΔρmin = 0.14 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.27207 (11)0.49052 (8)0.49471 (8)0.0442 (3)
O10.39749 (11)0.33292 (7)0.44953 (8)0.0582 (3)
O20.26304 (11)0.34913 (8)0.82386 (8)0.0565 (3)
H2O0.3143 (18)0.2811 (15)0.8511 (15)0.100 (6)*
O30.19057 (12)0.11214 (7)0.58965 (9)0.0613 (3)
O40.41580 (10)0.02233 (7)0.61834 (8)0.0576 (3)
C10.19562 (14)0.54717 (10)0.56935 (11)0.0412 (3)
C20.11931 (15)0.65295 (10)0.53520 (13)0.0538 (4)
H20.12040.68770.46180.065*
C30.04276 (16)0.70527 (12)0.61044 (14)0.0615 (4)
H30.00730.77550.58730.074*
C40.03911 (16)0.65520 (11)0.71953 (14)0.0591 (4)
H40.01320.69160.76930.071*
C50.11239 (14)0.55205 (11)0.75432 (12)0.0500 (3)
H50.10930.51830.82770.060*
C60.19244 (13)0.49640 (9)0.68027 (10)0.0404 (3)
C70.27042 (13)0.38819 (10)0.71437 (10)0.0411 (3)
C80.34114 (14)0.33278 (9)0.63922 (11)0.0416 (3)
C90.33855 (14)0.38309 (10)0.52337 (11)0.0433 (3)
C100.42339 (14)0.21863 (10)0.66808 (12)0.0487 (3)
H10B0.51130.21920.63480.058*
H10A0.46070.21120.75560.058*
C110.32703 (16)0.11471 (10)0.61955 (11)0.0439 (3)
C120.33896 (18)0.08538 (12)0.57708 (14)0.0681 (4)
H12C0.26410.10040.62090.102*
H12B0.41200.14770.59100.102*
H12A0.28950.08000.49180.102*
C130.27996 (17)0.54417 (12)0.38000 (11)0.0600 (4)
H13C0.31990.62170.39530.090*
H13B0.17950.54720.32540.090*
H13A0.34560.49880.34420.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0566 (7)0.0417 (6)0.0338 (6)0.0103 (5)0.0112 (5)0.0002 (4)
O10.0705 (6)0.0588 (6)0.0493 (6)0.0083 (5)0.0230 (5)0.0177 (4)
O20.0725 (7)0.0558 (6)0.0474 (6)0.0058 (5)0.0269 (5)0.0123 (5)
O30.0581 (6)0.0474 (6)0.0775 (7)0.0025 (5)0.0159 (5)0.0014 (4)
O40.0650 (6)0.0387 (5)0.0674 (6)0.0057 (4)0.0144 (5)0.0046 (4)
C10.0428 (7)0.0371 (7)0.0410 (7)0.0088 (5)0.0064 (5)0.0028 (5)
C20.0580 (9)0.0469 (8)0.0511 (9)0.0068 (7)0.0049 (7)0.0062 (6)
C30.0560 (9)0.0444 (8)0.0781 (11)0.0047 (7)0.0071 (8)0.0007 (7)
C40.0554 (9)0.0539 (9)0.0672 (10)0.0045 (7)0.0150 (7)0.0136 (7)
C50.0506 (8)0.0524 (8)0.0467 (8)0.0019 (6)0.0125 (6)0.0069 (6)
C60.0444 (7)0.0354 (6)0.0403 (7)0.0057 (5)0.0090 (5)0.0048 (5)
C70.0478 (7)0.0382 (7)0.0375 (7)0.0080 (6)0.0117 (6)0.0002 (5)
C80.0464 (7)0.0355 (6)0.0435 (7)0.0070 (5)0.0127 (6)0.0027 (5)
C90.0468 (7)0.0417 (7)0.0423 (8)0.0117 (6)0.0131 (6)0.0099 (5)
C100.0529 (8)0.0414 (7)0.0537 (8)0.0001 (6)0.0174 (6)0.0016 (6)
C110.0577 (9)0.0385 (7)0.0377 (7)0.0003 (7)0.0164 (6)0.0019 (5)
C120.0916 (11)0.0384 (8)0.0681 (10)0.0022 (7)0.0100 (8)0.0086 (6)
C130.0731 (10)0.0644 (9)0.0426 (8)0.0146 (7)0.0152 (7)0.0062 (6)
Geometric parameters (Å, º) top
N1—C91.3751 (15)C4—H40.9300
N1—C11.3936 (15)C5—C61.4049 (16)
N1—C131.4652 (15)C5—H50.9300
O1—C91.2512 (14)C6—C71.4330 (16)
O2—C71.3454 (14)C7—C81.3574 (16)
O2—H2O0.921 (17)C8—C91.4370 (17)
O3—C111.1957 (14)C8—C101.5023 (15)
O4—C111.3351 (14)C10—C111.4975 (17)
O4—C121.4378 (15)C10—H10B0.9700
C1—C61.4005 (16)C10—H10A0.9700
C1—C21.4025 (17)C12—H12C0.9600
C2—C31.3766 (19)C12—H12B0.9600
C2—H20.9300C12—H12A0.9600
C3—C41.379 (2)C13—H13C0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.3660 (17)C13—H13A0.9600
C9—N1—C1122.15 (10)C7—C8—C10124.17 (11)
C9—N1—C13117.93 (11)C9—C8—C10116.07 (11)
C1—N1—C13119.90 (11)O1—C9—N1119.49 (11)
C7—O2—H2O116.9 (10)O1—C9—C8121.83 (12)
C11—O4—C12116.46 (10)N1—C9—C8118.66 (11)
N1—C1—C6119.31 (11)C11—C10—C8114.01 (10)
N1—C1—C2121.62 (11)C11—C10—H10B108.8
C6—C1—C2119.06 (12)C8—C10—H10B108.8
C3—C2—C1119.92 (13)C11—C10—H10A108.8
C3—C2—H2120.0C8—C10—H10A108.8
C1—C2—H2120.0H10B—C10—H10A107.6
C2—C3—C4121.09 (13)O3—C11—O4124.09 (11)
C2—C3—H3119.5O3—C11—C10125.86 (11)
C4—C3—H3119.5O4—C11—C10110.01 (11)
C5—C4—C3119.90 (13)O4—C12—H12C109.5
C5—C4—H4120.1O4—C12—H12B109.5
C3—C4—H4120.1H12C—C12—H12B109.5
C4—C5—C6120.65 (13)O4—C12—H12A109.5
C4—C5—H5119.7H12C—C12—H12A109.5
C6—C5—H5119.7H12B—C12—H12A109.5
C1—C6—C5119.38 (11)N1—C13—H13C109.5
C1—C6—C7118.71 (11)N1—C13—H13B109.5
C5—C6—C7121.91 (11)H13C—C13—H13B109.5
O2—C7—C8125.26 (11)N1—C13—H13A109.5
O2—C7—C6113.55 (10)H13C—C13—H13A109.5
C8—C7—C6121.18 (11)H13B—C13—H13A109.5
C7—C8—C9119.75 (11)
C9—N1—C1—C63.30 (16)O2—C7—C8—C9178.97 (10)
C13—N1—C1—C6178.30 (10)C6—C7—C8—C90.14 (17)
C9—N1—C1—C2175.55 (11)O2—C7—C8—C100.41 (19)
C13—N1—C1—C22.85 (17)C6—C7—C8—C10179.24 (10)
N1—C1—C2—C3178.85 (11)C1—N1—C9—O1175.57 (11)
C6—C1—C2—C30.01 (17)C13—N1—C9—O12.86 (16)
C1—C2—C3—C40.2 (2)C1—N1—C9—C85.80 (16)
C2—C3—C4—C50.0 (2)C13—N1—C9—C8175.77 (11)
C3—C4—C5—C60.3 (2)C7—C8—C9—O1177.38 (11)
N1—C1—C6—C5178.52 (11)C10—C8—C9—O12.05 (17)
C2—C1—C6—C50.36 (16)C7—C8—C9—N14.03 (17)
N1—C1—C6—C70.99 (15)C10—C8—C9—N1176.54 (10)
C2—C1—C6—C7179.87 (11)C7—C8—C10—C1193.90 (14)
C4—C5—C6—C10.53 (18)C9—C8—C10—C1185.50 (13)
C4—C5—C6—C7179.98 (11)C12—O4—C11—O30.54 (18)
C1—C6—C7—O2178.39 (10)C12—O4—C11—C10178.27 (11)
C5—C6—C7—O22.12 (16)C8—C10—C11—O319.67 (18)
C1—C6—C7—C82.65 (16)C8—C10—C11—O4162.65 (10)
C5—C6—C7—C8176.84 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.921 (17)1.760 (17)2.6456 (12)160.2 (15)
C10—H10A···O1i0.972.483.3335 (16)147
C5—H5···O20.932.402.7138 (16)100
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H13NO4
Mr247.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.0792 (6), 11.4904 (6), 11.4071 (7)
β (°) 105.272 (7)
V3)1148.00 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerOxford Xcalibur3
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11774, 3295, 1454
Rint0.031
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.082, 0.72
No. of reflections3295
No. of parameters169
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXTL (Sheldrick, 2008), XP (Siemens, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.921 (17)1.760 (17)2.6456 (12)160.2 (15)
C10—H10A···O1i0.972.483.3335 (16)146.8
Symmetry code: (i) x, y+1/2, z+1/2.
 

References

First citationBürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767–784. Weinheim: VCH.  Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1998). XP. Siemens Analytical X-ray Division Inc., Karlsruhe, Germany.  Google Scholar
First citationUkrainets, I. V., Mospanova, E. V., Davidenko, A. A., Tkach, A. A. & Gorokhova, O. V. (2010). Khim. Geterotsikl. Soedin. pp. 1173–1184.  Google Scholar
First citationUkrainets, I. V., Shishkina, S. V., Shishkin, O. V., Davidenko, A. A. & Tkach, A. A. (2009). Acta Cryst. E65, o968.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZefirov, Yu. V. (1997). Kristallografiya, 42, 936–958.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds