organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3,6-Trihy­dr­oxy-7-meth­­oxy-2,8-bis­­(3-methyl­but-2-en­yl)-9H-xanthen-9-one

aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
*Correspondence e-mail: gwen@science.upm.edu.my

(Received 23 November 2010; accepted 24 November 2010; online 30 November 2010)

The title compound (trivial name α-mangostin), C24H26O6, isolated from Cratoxylum glaucum, is characterized by a xanthone skeleton of three fused six-membered rings and two 3-methyl­but-2-enyl side chains. The three rings in the structure are nearly coplanar, with an r.m.s. deviation for the tricyclic ring system of 0.0014 Å. The two 3-methyl­but-2-enyl side chains are in (+)-synclinal and (-)-anti­clinal conformations. Intra­molecular O—H⋯O and C—H⋯O inter­actions occur. The crystal structure is stabilized by inter­molecular O—H⋯O, C—H⋯O and C—H⋯π inter­actions.

Related literature

For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Prpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Marek et al. (2003[Marek, J., Veselá, D., Lišková, M. & Žemlička, M. (2003). Acta Cryst. C59, o127-o128.]); Ndjakou et al. (2007[Ndjakou Lenta, B., Devkota, K. P., Neumann, B., Tsamo, E. & Sewald, N. (2007). Acta Cryst. E63, o1629-o1631.]); Boonnak et al. (2007[Boonnak, N., Fun, H.-K., Chantrapromma, S. & Karalai, C. (2007). Acta Cryst. E63, o3958-o3959.]). For the biological activity of Cratoxylum species, see: Boonnak et al. (2006[Boonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Fun, H.-K., Kanjana-Opas, A. & Laphookhieo, S. (2006). Tetrahedron, 62, 8850-8859.]); Bennett et al. (1993[Bennett, G. J., Harrison, L. J., Sia, G. L. & Sim, K. Y. (1993). Phytochemistry, 32, 1245-1251.]); Nguyen & Harrison (1998[Nguyen, L. H. D. & Harrison, L. J. (1998). Phytochemistry, 50, 471-476.]); Boonsri et al. (2006[Boonsri, S., Karalai, C., Ponglimanont, C., Kanjana-opas, A. & Chantrapromma, K. (2006). Phytochemistry, 67, 723-727.]); Reutrakul et al. (2006[Reutrakul, V., Chanakul, W., Pohmakotr, M., Jaipetch, T., Yoosook, C., Kasisit, J., Napaswat, C., Santisuk, T., Prabpai, S., Kongsaeree, P. & Tuchinda, P. (2006). Planta Med. 72, 1433-1435.]).

[Scheme 1]

Experimental

Crystal data
  • C24H26O6

  • Mr = 410.47

  • Orthorhombic, P b c n

  • a = 14.6818 (3) Å

  • b = 9.53505 (19) Å

  • c = 29.8893 (6) Å

  • V = 4184.24 (14) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.77 mm−1

  • T = 150 K

  • 0.11 × 0.10 × 0.04 mm

Data collection
  • Oxford Diffraction Gemini E diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.926, Tmax = 0.970

  • 13773 measured reflections

  • 4032 independent reflections

  • 2812 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.113

  • S = 0.88

  • 4018 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

CgA is the mid-point of the C14=C15 double bond.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H132⋯O5 0.94 2.24 2.885 (3) 125
C14—H141⋯O10i 0.96 2.36 3.304 (3) 168
O21—H211⋯O5 0.85 1.71 2.499 (3) 155
O10—H101⋯O21ii 0.84 1.88 2.691 (3) 164
O30—H301⋯CgA 0.86 2.38 3.227 (3) 166
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Cratoxylum is a small genus which comprises of six species indigenous to Southeast Asia (Boonnak et al., 2006). The stem bark of the species has been applied in traditional medicine in Malaysia (Bennett et al., 1993). Reports indicated that the bark, roots and leaves have been used in folk medicine to treat fevers, cough, diarrhoea, itches, ulcers and abdominal complaints (Nguyen & Harrison, 1998). Antibacterial, cytotoxic and anti-HIV constituents have also been reported in recent studies on Cratoxylum species (Boonsri et al., 2006; Reutrakul et al., 2006). In this report, the X-ray crystallographic structure for the title compound 1,3,6-trihydroxy-7-methoxy-2,8-bis(3-methylbut-2-enyl)-4aH-xanthen-9(9aH)-one, α-mangostin (I) isolated from Cratoxylum glaucum is reported.

Bond distances and angles in the title compound (Fig. 1) are in a normal range (Allen et al., 1987) and are comparable with those for closely related structures (Marek et al., 2003; Ndjakou et al., 2007; Boonnak et al., 2007). The tricyclic ring system (rings A, B and C) is nearly planar (r. m. s. deviation of 0.0014 Å). Atoms O10, O18, O21 and O30 deviate from this plane by 0.045, 0.056, 0.025 and 0.071 Å, respectively. The dihedral angle between the rings A and B is 1.51°, and between the rings B and C is 1.73°.

The orientations of two 3-methylbut-2-enyl side chains are defined by their respective torsion angles: the first side chain towards the ring A with the atom sequence C11—C12—C13—C14 of 80.19° [116.4° in similar compound (Ndjakou et al., 2007)] indicating a (+)-synclinal conformation; the second side chain towards the ring C with the atom sequence C20—C22—C23—C24 of -87.62°, indicating a (-)-anticlinal conformation. The average value of C—O1 bond lengths in pyranoid ring B is 1.368 Å. The crystal structure is stabilised by intra- and intermolecular O—H···O and C—H···O hydrogen bonding (Table 1, Figs. 2 and 3). In addition to classical hydrogen bonds, there is a contact from hydroxyl group O30—H301 to centroid (Cg A) of the C14C15 (H301···Cg A= 2.384 Å, O30···Cg A=3.227 Å and O30—H301···Cg A = 166.2.

Related literature top

For standard bond lengths, see Allen et al. (1987). For related structures, see: Marek et al. (2003); Ndjakou et al. (2007); Boonnak et al. (2007). For the biological activity of Cratoxylum species, see: Boonnak et al. (2006); Bennett et al. (1993); Nguyen & Harrison (1998); Boonsri et al. (2006); Reutrakul et al. (2006).

Experimental top

The stem bark (3.75 kg) of Cratoxylum glaucum was ground and extracted with n-hexane, ethyl acetate and methanol. Fractionation of the ethyl acetate extract with vacuum liquid chromatography over Merck 7731 silica gel produced 25 fractions. Fraction 8 was subjected to further purification by column chromatography (Merck Kieselgel No. 1.09385.1000). These columns were eluted with hexane, hexane/ethyl acetate, ethyl acetate/methanol in a step-wise gradual increment in polarity. The yellow amorphous powder obtained from fraction 6 was dissolved in chloroform and left for a month before orange crystals were obtained. The melting point was 452-453 K.

Refinement top

The H atoms were all observed in a difference map, but those attached to carbon atoms were positioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Structure description top

Cratoxylum is a small genus which comprises of six species indigenous to Southeast Asia (Boonnak et al., 2006). The stem bark of the species has been applied in traditional medicine in Malaysia (Bennett et al., 1993). Reports indicated that the bark, roots and leaves have been used in folk medicine to treat fevers, cough, diarrhoea, itches, ulcers and abdominal complaints (Nguyen & Harrison, 1998). Antibacterial, cytotoxic and anti-HIV constituents have also been reported in recent studies on Cratoxylum species (Boonsri et al., 2006; Reutrakul et al., 2006). In this report, the X-ray crystallographic structure for the title compound 1,3,6-trihydroxy-7-methoxy-2,8-bis(3-methylbut-2-enyl)-4aH-xanthen-9(9aH)-one, α-mangostin (I) isolated from Cratoxylum glaucum is reported.

Bond distances and angles in the title compound (Fig. 1) are in a normal range (Allen et al., 1987) and are comparable with those for closely related structures (Marek et al., 2003; Ndjakou et al., 2007; Boonnak et al., 2007). The tricyclic ring system (rings A, B and C) is nearly planar (r. m. s. deviation of 0.0014 Å). Atoms O10, O18, O21 and O30 deviate from this plane by 0.045, 0.056, 0.025 and 0.071 Å, respectively. The dihedral angle between the rings A and B is 1.51°, and between the rings B and C is 1.73°.

The orientations of two 3-methylbut-2-enyl side chains are defined by their respective torsion angles: the first side chain towards the ring A with the atom sequence C11—C12—C13—C14 of 80.19° [116.4° in similar compound (Ndjakou et al., 2007)] indicating a (+)-synclinal conformation; the second side chain towards the ring C with the atom sequence C20—C22—C23—C24 of -87.62°, indicating a (-)-anticlinal conformation. The average value of C—O1 bond lengths in pyranoid ring B is 1.368 Å. The crystal structure is stabilised by intra- and intermolecular O—H···O and C—H···O hydrogen bonding (Table 1, Figs. 2 and 3). In addition to classical hydrogen bonds, there is a contact from hydroxyl group O30—H301 to centroid (Cg A) of the C14C15 (H301···Cg A= 2.384 Å, O30···Cg A=3.227 Å and O30—H301···Cg A = 166.2.

For standard bond lengths, see Allen et al. (1987). For related structures, see: Marek et al. (2003); Ndjakou et al. (2007); Boonnak et al. (2007). For the biological activity of Cratoxylum species, see: Boonnak et al. (2006); Bennett et al. (1993); Nguyen & Harrison (1998); Boonsri et al. (2006); Reutrakul et al. (2006).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of I with atom numbering and displacement ellipsoids at 50% probablity level.
[Figure 2] Fig. 2. View of the chain of hydrogen bonding along a axis. Symmetry codes used (-x + 3/2, y - 1/2, z).
[Figure 3] Fig. 3. View of the chain of hydrogen bonding along b axis. Symmetry codes used (x + 1/2, y + 1/2, -z + 1/2).
1,3,6-Trihydroxy-7-methoxy-2,8-bis(3-methylbut-2-enyl)-9H-xanthen-9-one top
Crystal data top
C24H26O6Dx = 1.303 Mg m3
Mr = 410.47Melting point: 452 K
Orthorhombic, PbcnCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2n 2abCell parameters from 5947 reflections
a = 14.6818 (3) Åθ = 3.0–71.2°
b = 9.53505 (19) ŵ = 0.77 mm1
c = 29.8893 (6) ÅT = 150 K
V = 4184.24 (14) Å3Plate, yellow
Z = 80.11 × 0.10 × 0.04 mm
F(000) = 1744
Data collection top
Oxford Diffraction Gemini E
diffractometer
4032 independent reflections
Radiation source: sealed x-ray tube2812 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω/2θ scansθmax = 71.4°, θmin = 4.2°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
h = 1717
Tmin = 0.926, Tmax = 0.970k = 1111
13773 measured reflectionsl = 3629
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.113 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.08P)2 + 0.0P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.88(Δ/σ)max = 0.0003346
4018 reflectionsΔρmax = 0.34 e Å3
271 parametersΔρmin = 0.27 e Å3
0 restraints
Crystal data top
C24H26O6V = 4184.24 (14) Å3
Mr = 410.47Z = 8
Orthorhombic, PbcnCu Kα radiation
a = 14.6818 (3) ŵ = 0.77 mm1
b = 9.53505 (19) ÅT = 150 K
c = 29.8893 (6) Å0.11 × 0.10 × 0.04 mm
Data collection top
Oxford Diffraction Gemini E
diffractometer
4032 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
2812 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.970Rint = 0.034
13773 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 0.88Δρmax = 0.34 e Å3
4018 reflectionsΔρmin = 0.27 e Å3
271 parameters
Special details top

Refinement. (sinθ X)2 was set to > 0.01 to eliminate reflection measured near the vicinity of the beam stop.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.87635 (7)0.30339 (12)0.25523 (4)0.0309
C20.82099 (10)0.22222 (17)0.28118 (5)0.0276
C30.72644 (10)0.23373 (17)0.27827 (5)0.0279
C40.68351 (10)0.32642 (17)0.24630 (5)0.0285
O50.59844 (7)0.32795 (13)0.24258 (4)0.0368
C60.74439 (10)0.41346 (17)0.21923 (5)0.0274
C70.83874 (10)0.39435 (17)0.22495 (5)0.0274
C80.90312 (10)0.46582 (18)0.19999 (6)0.0307
C90.87454 (10)0.55982 (17)0.16816 (6)0.0307
O100.93348 (7)0.63408 (13)0.14256 (4)0.0361
C110.78053 (10)0.58382 (17)0.16158 (5)0.0292
C120.71573 (10)0.51369 (18)0.18686 (5)0.0286
C130.61617 (10)0.55256 (18)0.17851 (6)0.0305
C140.58048 (10)0.47960 (19)0.13754 (6)0.0329
C150.54434 (11)0.5383 (2)0.10128 (6)0.0416
C160.52901 (15)0.6929 (3)0.09490 (8)0.0574
C170.51697 (14)0.4474 (3)0.06219 (7)0.0634
O180.75300 (8)0.68622 (13)0.13202 (4)0.0356
C190.76973 (12)0.6541 (2)0.08604 (6)0.0444
C200.67452 (10)0.14669 (17)0.30706 (5)0.0291
O210.58222 (7)0.15647 (13)0.30532 (4)0.0349
C220.71415 (10)0.05261 (18)0.33651 (5)0.0302
C230.65776 (11)0.03859 (19)0.36731 (6)0.0337
C240.63628 (11)0.0336 (2)0.41077 (6)0.0370
C250.65495 (12)0.0099 (2)0.45188 (7)0.0441
C260.62764 (17)0.0757 (3)0.49190 (8)0.0589
C270.7041 (2)0.1435 (3)0.46259 (9)0.0688
C280.81001 (11)0.04585 (18)0.33691 (6)0.0309
C290.86367 (10)0.12942 (18)0.30953 (6)0.0311
O300.84808 (8)0.04872 (13)0.36537 (4)0.0388
H810.96560.45020.20490.0363*
H1310.61300.65160.17550.0361*
H1320.58110.52670.20370.0360*
H1410.58570.37950.13810.0387*
H1610.55500.72360.06640.0850*
H1630.55580.74690.11920.0852*
H1620.46430.71200.09340.0857*
H1710.45510.46730.05360.0945*
H1730.55520.47120.03680.0938*
H1720.52500.34540.06870.0952*
H1910.74920.73030.06780.0666*
H1930.83290.63880.08020.0658*
H1920.73570.57100.07770.0666*
H2310.68910.12750.37250.0390*
H2320.60160.06090.35240.0393*
H2410.60650.12140.40850.0447*
H2610.67990.10010.50950.0886*
H2630.59510.16160.48330.0880*
H2620.58930.01980.51130.0878*
H2710.75620.12070.48010.1025*
H2730.72160.19430.43570.1020*
H2720.66450.20190.48080.1027*
H2910.92670.12420.31030.0351*
H2110.57070.21330.28420.0526*
H1010.98420.62990.15530.0544*
H3010.90640.03970.36480.0578*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0172 (5)0.0397 (6)0.0357 (6)0.0002 (4)0.0001 (4)0.0033 (5)
C20.0216 (7)0.0330 (9)0.0283 (8)0.0023 (6)0.0008 (6)0.0033 (7)
C30.0220 (7)0.0323 (8)0.0295 (8)0.0012 (6)0.0005 (6)0.0042 (7)
C40.0207 (7)0.0344 (8)0.0303 (8)0.0001 (6)0.0005 (6)0.0060 (7)
O50.0177 (5)0.0478 (7)0.0447 (7)0.0010 (5)0.0011 (5)0.0055 (6)
C60.0213 (7)0.0333 (8)0.0277 (8)0.0005 (6)0.0000 (6)0.0045 (6)
C70.0215 (7)0.0320 (8)0.0288 (8)0.0007 (6)0.0009 (6)0.0023 (7)
C80.0171 (6)0.0392 (9)0.0357 (9)0.0008 (6)0.0007 (6)0.0030 (7)
C90.0242 (7)0.0370 (9)0.0309 (8)0.0037 (6)0.0018 (6)0.0036 (7)
O100.0231 (5)0.0468 (7)0.0385 (7)0.0043 (5)0.0014 (5)0.0069 (5)
C110.0255 (7)0.0330 (8)0.0290 (8)0.0002 (6)0.0016 (6)0.0030 (7)
C120.0215 (7)0.0351 (9)0.0292 (8)0.0012 (6)0.0009 (6)0.0053 (7)
C130.0209 (7)0.0373 (9)0.0335 (8)0.0041 (6)0.0001 (6)0.0011 (7)
C140.0191 (7)0.0415 (9)0.0381 (9)0.0006 (6)0.0003 (6)0.0012 (8)
C150.0220 (7)0.0669 (13)0.0358 (9)0.0017 (7)0.0005 (7)0.0024 (9)
C160.0424 (10)0.0754 (15)0.0545 (13)0.0110 (10)0.0030 (9)0.0238 (12)
C170.0384 (10)0.111 (2)0.0411 (12)0.0001 (11)0.0084 (9)0.0129 (13)
O180.0296 (5)0.0420 (6)0.0351 (6)0.0015 (5)0.0008 (5)0.0037 (5)
C190.0322 (9)0.0691 (13)0.0319 (9)0.0004 (8)0.0003 (7)0.0081 (9)
C200.0205 (7)0.0361 (8)0.0309 (8)0.0021 (6)0.0009 (6)0.0076 (7)
O210.0185 (5)0.0470 (7)0.0391 (7)0.0024 (4)0.0005 (4)0.0046 (5)
C220.0272 (7)0.0342 (9)0.0292 (8)0.0025 (6)0.0003 (6)0.0042 (7)
C230.0267 (7)0.0386 (9)0.0357 (9)0.0044 (6)0.0003 (6)0.0009 (8)
C240.0295 (8)0.0401 (10)0.0413 (10)0.0016 (7)0.0025 (7)0.0018 (8)
C250.0381 (9)0.0531 (11)0.0410 (10)0.0053 (8)0.0000 (8)0.0002 (9)
C260.0679 (14)0.0683 (15)0.0405 (11)0.0041 (11)0.0055 (10)0.0038 (11)
C270.0864 (18)0.0722 (17)0.0479 (13)0.0185 (13)0.0092 (12)0.0084 (12)
C280.0278 (7)0.0343 (9)0.0305 (8)0.0011 (6)0.0035 (6)0.0018 (7)
C290.0190 (7)0.0389 (9)0.0354 (9)0.0008 (6)0.0015 (6)0.0028 (7)
O300.0273 (5)0.0451 (7)0.0439 (7)0.0007 (5)0.0033 (5)0.0092 (6)
Geometric parameters (Å, º) top
O1—C21.3644 (19)C17—H1710.962
O1—C71.370 (2)C17—H1730.972
C2—C31.395 (2)C17—H1720.999
C2—C291.376 (2)O18—C191.429 (2)
C3—C41.446 (2)C19—H1910.957
C3—C201.418 (2)C19—H1930.954
C4—O51.2540 (19)C19—H1920.969
C4—C61.464 (2)C20—O211.3594 (17)
C6—C71.408 (2)C20—C221.385 (2)
C6—C121.424 (2)O21—H2110.849
C7—C81.384 (2)C22—C231.513 (2)
C8—C91.373 (2)C22—C281.409 (2)
C8—H810.941C23—C241.503 (3)
C9—O101.3550 (19)C23—H2310.977
C9—C111.413 (2)C23—H2320.961
O10—H1010.837C24—C251.326 (3)
C11—C121.387 (2)C24—H2410.947
C11—O181.377 (2)C25—C261.503 (3)
C12—C131.5284 (19)C25—C271.499 (3)
C13—C141.503 (2)C26—H2610.959
C13—H1310.950C26—H2630.982
C13—H1320.944C26—H2620.969
C14—C151.330 (3)C27—H2710.952
C14—H1410.957C27—H2730.974
C15—C161.503 (3)C27—H2720.972
C15—C171.509 (3)C28—C291.388 (2)
C16—H1610.979C28—O301.360 (2)
C16—H1630.972C29—H2910.928
C16—H1620.968O30—H3010.860
C2—O1—C7119.65 (12)H171—C17—H173107.0
O1—C2—C3120.84 (14)C15—C17—H172112.2
O1—C2—C29116.34 (13)H171—C17—H172110.8
C3—C2—C29122.82 (15)H173—C17—H172108.1
C2—C3—C4121.52 (14)C11—O18—C19114.47 (14)
C2—C3—C20116.82 (14)O18—C19—H191109.2
C4—C3—C20121.63 (13)O18—C19—H193112.0
C3—C4—O5119.99 (14)H191—C19—H193108.6
C3—C4—C6116.46 (13)O18—C19—H192109.6
O5—C4—C6123.55 (15)H191—C19—H192108.1
C4—C6—C7117.42 (14)H193—C19—H192109.2
C4—C6—C12125.15 (13)C3—C20—O21118.21 (14)
C7—C6—C12117.41 (14)C3—C20—C22122.61 (14)
C6—C7—O1123.98 (14)O21—C20—C22119.18 (14)
C6—C7—C8122.89 (15)C20—O21—H211105.7
O1—C7—C8113.13 (13)C20—C22—C23121.94 (14)
C7—C8—C9119.11 (14)C20—C22—C28117.05 (15)
C7—C8—H81120.3C23—C22—C28121.00 (15)
C9—C8—H81120.6C22—C23—C24112.16 (14)
C8—C9—O10122.51 (14)C22—C23—H231109.8
C8—C9—C11120.06 (14)C24—C23—H231111.0
O10—C9—C11117.42 (15)C22—C23—H232108.3
C9—O10—H101106.6C24—C23—H232108.8
C9—C11—C12121.07 (15)H231—C23—H232106.7
C9—C11—O18119.40 (14)C23—C24—C25127.89 (18)
C12—C11—O18119.33 (13)C23—C24—H241116.0
C6—C12—C11119.42 (13)C25—C24—H241116.1
C6—C12—C13123.81 (14)C24—C25—C26120.8 (2)
C11—C12—C13116.76 (14)C24—C25—C27124.3 (2)
C12—C13—C14110.75 (13)C26—C25—C27114.9 (2)
C12—C13—H131107.6C25—C26—H261110.8
C14—C13—H131111.4C25—C26—H263112.1
C12—C13—H132109.2H261—C26—H263109.3
C14—C13—H132109.7C25—C26—H262109.4
H131—C13—H132108.1H261—C26—H262105.7
C13—C14—C15127.45 (17)H263—C26—H262109.4
C13—C14—H141114.8C25—C27—H271108.1
C15—C14—H141117.7C25—C27—H273111.9
C14—C15—C16125.16 (19)H271—C27—H273110.9
C14—C15—C17119.7 (2)C25—C27—H272108.6
C16—C15—C17115.16 (19)H271—C27—H272107.7
C15—C16—H161110.2H273—C27—H272109.6
C15—C16—H163111.4C22—C28—C29122.40 (15)
H161—C16—H163109.5C22—C28—O30116.51 (15)
C15—C16—H162109.7C29—C28—O30121.09 (14)
H161—C16—H162106.6C28—C29—C2118.29 (13)
H163—C16—H162109.4C28—C29—H291121.4
C15—C17—H171110.1C2—C29—H291120.3
C15—C17—H173108.5C28—O30—H301109.3
Hydrogen-bond geometry (Å, º) top
CgA is the mid-point of the C14C15 double bond.
D—H···AD—HH···AD···AD—H···A
C13—H132···O50.942.242.885 (3)125
C14—H141···O10i0.962.363.304 (3)168
O21—H211···C40.852.282.820 (3)122
O21—H211···O50.851.712.499 (3)155
O10—H101···O21ii0.841.882.691 (3)164
O30—H301···C14iii0.862.563.424 (3)178
O30—H301···C15iii0.862.383.160 (3)150
O30—H301···CgA0.862.383.227 (3)166
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H26O6
Mr410.47
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)150
a, b, c (Å)14.6818 (3), 9.53505 (19), 29.8893 (6)
V3)4184.24 (14)
Z8
Radiation typeCu Kα
µ (mm1)0.77
Crystal size (mm)0.11 × 0.10 × 0.04
Data collection
DiffractometerOxford Diffraction Gemini E
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.926, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
13773, 4032, 2812
Rint0.034
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 0.88
No. of reflections4018
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.27

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
CgA is the mid-point of the C14C15 double bond.
D—H···AD—HH···AD···AD—H···A
C13—H132···O50.942.242.885 (3)125
C14—H141···O10i0.962.363.304 (3)168
O21—H211···O50.851.712.499 (3)155
O10—H101···O21ii0.841.882.691 (3)164
O30—H301···CgA0.862.383.227 (3)166
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The author would like to acknowledge the Ministry of Science, Technology and Innovation (MOSTI) for e-science funding.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Prpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBennett, G. J., Harrison, L. J., Sia, G. L. & Sim, K. Y. (1993). Phytochemistry, 32, 1245–1251.  CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBoonnak, N., Fun, H.-K., Chantrapromma, S. & Karalai, C. (2007). Acta Cryst. E63, o3958–o3959.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Fun, H.-K., Kanjana-Opas, A. & Laphookhieo, S. (2006). Tetrahedron, 62, 8850–8859.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoonsri, S., Karalai, C., Ponglimanont, C., Kanjana-opas, A. & Chantrapromma, K. (2006). Phytochemistry, 67, 723–727.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarek, J., Veselá, D., Lišková, M. & Žemlička, M. (2003). Acta Cryst. C59, o127–o128.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNdjakou Lenta, B., Devkota, K. P., Neumann, B., Tsamo, E. & Sewald, N. (2007). Acta Cryst. E63, o1629–o1631.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNguyen, L. H. D. & Harrison, L. J. (1998). Phytochemistry, 50, 471–476.  Web of Science CrossRef Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationReutrakul, V., Chanakul, W., Pohmakotr, M., Jaipetch, T., Yoosook, C., Kasisit, J., Napaswat, C., Santisuk, T., Prabpai, S., Kongsaeree, P. & Tuchinda, P. (2006). Planta Med. 72, 1433–1435.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds