organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3-Fluoro-4-meth­­oxy­phen­yl)-1-(4-meth­­oxy­phen­yl)-5-(3,4,5-trimeth­­oxy­phen­yl)-1H-imidazole

aNanjing SanHome Pharmaceutical Institute, Nanjing 210038, People's Republic of China
*Correspondence e-mail: uniquemeng@126.com

(Received 5 September 2010; accepted 1 November 2010; online 6 November 2010)

In the title mol­ecule, C26H25FN2O5, the fluoro­meth­oxy-, meth­oxy- and trimeth­oxy-substituted benzene rings form dihedral angles of 12.65 (2), 84.15 (2) and 55.67 (2)°, respectively, with the imidazole ring. The crystal structure is stabilized weak inter­molecular C—H⋯F and C—H⋯O hydrogen bonds.

Related literature

For general background to the pharmacological activity of imidazole derivatives, see: Bellina et al. (2006[Bellina, F., Cauteruccio, S., Monti, S. & Rossi, R. (2006). Bioorg. Med. Chem. Lett. 16, 5757-5762.], 2007[Bellina, F., Cauteruccio, S. & Rossi, R. (2007). Tetrahedron, 63, 4571-4624.]); Cai et al. (2009[Cai, J. L., Li, S., Zhou, C. H., Gan, L. L. & Wu, J. (2009). J. New. Drugs. Chin. 18, 598-608.]). For background to synthetic methods for imidizoles, see: Bräuer et al. (2005[Bräuer, S., Almstetter, M., Antuch, W., Behnke, D., Taube, R., Furer, P. & Hess, S. (2005). J. Comb. Chem. 7, 218-226.]), Wang et al. (2002[Wang, L., Woods, K. W., Li, Q., Barr, K. J., McCroskey, R. W., Hannick, S. M., Gherke, L., Credo, R. B., Hui, Y. H., Marsh, K., Warner, R., Lee, J. Y., Nicolette, Z. M., Frost, D., Rosenberg, S. H. & &Sham, H. L. (2002). J. Med. Chem. 45, 1697-1711.]).

[Scheme 1]

Experimental

Crystal data
  • C26H25FN2O5

  • Mr = 464.48

  • Triclinic, [P \overline 1]

  • a = 9.795 (2) Å

  • b = 10.202 (2) Å

  • c = 13.008 (3) Å

  • α = 104.76 (3)°

  • β = 109.81 (3)°

  • γ = 91.45 (3)°

  • V = 1173.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.972, Tmax = 0.981

  • 4540 measured reflections

  • 4269 independent reflections

  • 2838 reflections with I > 2σ(I)

  • Rint = 0.024

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.178

  • S = 1.00

  • 4269 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O3i 0.93 2.51 3.346 (4) 150
C26—H26A⋯Fii 0.96 2.52 3.326 (6) 142
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Imidazole derivatives have been shown to exhibit interesting biological activities such as antimicrobial, anticryptococcal, inhibition of nitric oxide synthase, as inhibitors of p38 MAP kinase and cytotoxic activities (Bellina et al., 2006; Bellina et al., 2007; Cai et al., 2009). Owing to these wide range of pharmacological and biological activities, the synthesis of imidazoles has become important (Bräuer et al.,2005; Wang et al., 2002). Herein we present the crystal structure of the title compound (I).

The molecular structure of (I) is shown in Fig. 1. The dihedral angles that the fluoromethoxy, methoxy and trimethoxy-substituted, benzene rings form with the imidazole ring are 12.65 (2), 84.15 (2) and 55.67 (2)Å, respectively. The crystal structure is stabilized weak intermolecular C—H···F and C—H···N hydrogen bonds. .

Related literature top

For general background to the pharmacological activity of imidazole derivatives, see: Bellina et al. (2006, 2007); Cai et al.(2009). For background to synthetic methods for imidizoles, see: Bräuer et al. (2005), Wang et al. (2002).

Experimental top

To a solution of 4-methoxyaniline in (2.46 g, 20 mmol) in 5 ml/mmol methanol 3,4,5-trimethoxybenzaldehyde (3.92 g, 20 mmol) was added and stirred at room temperature. After 2 h the mixture was treated with 3,4,5-Trimethoxyphenyl(tosyl)methyl isocyanide (7.20 g, 20 mmol) and triethylamine (4.04 g, 40 mmol) and then heated under reflux for 8 h until the conversion of the starting material was complete. For the plate syntheses the reaction mixtures were heated on a sealed deep-well plate in a water bath at 323 K overnight. Aqueous workup was performed in the case of single reactions by adding ethyl acetate and washing the organic layer with 1 M aqueous HCl solution and aqueous NaCl solution. The organic layers were dried over anhydrous sodium sulfate and filtered. The filtrates were concentrated under vacuum, and purified using chromatographic methods described below. (Yield: 4.80 g, 51.9%; white solid; Mp. 429–430 K).

Refinement top

All the hydrogen atoms were placed in caculated positions with C—H = 0.93Å (aromatic) and 0.96Å (methyl) and Uiso(H) = 1.2Ueq(C) (aromatic C) and 1.5Ueq(C) (methyl C).

Structure description top

Imidazole derivatives have been shown to exhibit interesting biological activities such as antimicrobial, anticryptococcal, inhibition of nitric oxide synthase, as inhibitors of p38 MAP kinase and cytotoxic activities (Bellina et al., 2006; Bellina et al., 2007; Cai et al., 2009). Owing to these wide range of pharmacological and biological activities, the synthesis of imidazoles has become important (Bräuer et al.,2005; Wang et al., 2002). Herein we present the crystal structure of the title compound (I).

The molecular structure of (I) is shown in Fig. 1. The dihedral angles that the fluoromethoxy, methoxy and trimethoxy-substituted, benzene rings form with the imidazole ring are 12.65 (2), 84.15 (2) and 55.67 (2)Å, respectively. The crystal structure is stabilized weak intermolecular C—H···F and C—H···N hydrogen bonds. .

For general background to the pharmacological activity of imidazole derivatives, see: Bellina et al. (2006, 2007); Cai et al.(2009). For background to synthetic methods for imidizoles, see: Bräuer et al. (2005), Wang et al. (2002).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
4-(3-Fluoro-4-methoxyphenyl)-1-(4-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)- 1H-imidazole top
Crystal data top
C26H25FN2O5Z = 2
Mr = 464.48F(000) = 488
Triclinic, P1Dx = 1.314 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.795 (2) ÅCell parameters from 25 reflections
b = 10.202 (2) Åθ = 9–13°
c = 13.008 (3) ŵ = 0.10 mm1
α = 104.76 (3)°T = 293 K
β = 109.81 (3)°Block, colourless
γ = 91.45 (3)°0.30 × 0.20 × 0.20 mm
V = 1173.7 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2838 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.3°, θmin = 1.7°
ω/–2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.972, Tmax = 0.981l = 1514
4540 measured reflections3 standard reflections every 200 reflections
4269 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.070P)2 + 1.1P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4269 reflectionsΔρmax = 0.23 e Å3
308 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.063 (5)
Crystal data top
C26H25FN2O5γ = 91.45 (3)°
Mr = 464.48V = 1173.7 (4) Å3
Triclinic, P1Z = 2
a = 9.795 (2) ÅMo Kα radiation
b = 10.202 (2) ŵ = 0.10 mm1
c = 13.008 (3) ÅT = 293 K
α = 104.76 (3)°0.30 × 0.20 × 0.20 mm
β = 109.81 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2838 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.024
Tmin = 0.972, Tmax = 0.9813 standard reflections every 200 reflections
4540 measured reflections intensity decay: 1%
4269 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
4269 reflectionsΔρmin = 0.24 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F0.1298 (3)0.7973 (2)0.06705 (17)0.0787 (7)
N10.2523 (3)0.9865 (2)0.5152 (2)0.0456 (6)
O10.5861 (3)1.1432 (3)0.9767 (2)0.0814 (8)
C10.5238 (6)1.2059 (5)1.0579 (3)0.0915 (14)
H1A0.59751.22931.13270.137*
H1B0.44601.14371.05430.137*
H1C0.48591.28721.04170.137*
N20.1490 (3)1.0175 (2)0.3441 (2)0.0504 (7)
O20.2366 (3)0.5452 (3)0.0943 (2)0.0697 (7)
C20.4976 (4)1.1028 (3)0.8645 (3)0.0549 (8)
O30.3163 (3)0.3936 (2)0.44874 (19)0.0619 (7)
C30.5629 (4)1.0514 (4)0.7881 (3)0.0702 (11)
H3A0.66251.04360.81410.084*
O40.2214 (3)0.4035 (2)0.61811 (19)0.0558 (6)
C40.4832 (4)1.0104 (4)0.6723 (3)0.0607 (9)
H4A0.52870.97530.62070.073*
O50.1123 (3)0.6229 (2)0.7079 (2)0.0610 (7)
C50.3357 (3)1.0222 (3)0.6343 (3)0.0447 (7)
C60.2704 (4)1.0724 (3)0.7116 (3)0.0544 (8)
H6A0.17071.07950.68610.065*
C70.3502 (4)1.1125 (3)0.8265 (3)0.0575 (9)
H7A0.30461.14620.87820.069*
C80.1876 (3)0.8580 (3)0.4414 (2)0.0423 (7)
C90.1239 (3)0.8803 (3)0.3364 (3)0.0429 (7)
C100.2242 (4)1.0762 (3)0.4503 (3)0.0520 (8)
H10A0.25571.16940.47950.062*
C110.0325 (3)0.7870 (3)0.2272 (3)0.0432 (7)
C120.0271 (4)0.6560 (3)0.2128 (3)0.0491 (8)
H12A0.00590.62300.27620.059*
C130.1153 (4)0.5736 (3)0.1099 (3)0.0552 (8)
H13A0.15270.48640.10450.066*
C140.1503 (4)0.6184 (3)0.0124 (3)0.0528 (8)
C150.0923 (4)0.7503 (3)0.0273 (3)0.0516 (8)
C160.0043 (4)0.8328 (3)0.1282 (3)0.0482 (8)
H16A0.03250.91990.13310.058*
C170.2849 (5)0.4069 (4)0.1106 (3)0.0742 (11)
H17A0.34440.36640.18900.111*
H17B0.34120.40230.06360.111*
H17C0.20180.35820.09010.111*
C180.1942 (3)0.7367 (3)0.4859 (2)0.0424 (7)
C190.1424 (3)0.7387 (3)0.5724 (3)0.0464 (7)
H19A0.09950.81330.59990.056*
C200.1548 (3)0.6278 (3)0.6190 (3)0.0455 (7)
C210.2126 (3)0.5149 (3)0.5745 (3)0.0444 (7)
C220.2609 (3)0.5107 (3)0.4851 (3)0.0457 (7)
C230.2545 (3)0.6233 (3)0.4415 (3)0.0451 (7)
H23A0.29010.62270.38360.054*
C240.3521 (5)0.3753 (4)0.3498 (3)0.0719 (11)
H24A0.38970.28940.33410.108*
H24B0.42480.44800.36160.108*
H24C0.26610.37610.28650.108*
C250.3515 (5)0.4118 (4)0.7100 (3)0.0786 (12)
H25A0.35070.33180.73590.118*
H25B0.35950.49150.77080.118*
H25C0.43340.41760.68590.118*
C260.0553 (5)0.7381 (4)0.7569 (4)0.0830 (13)
H26A0.02990.72190.81810.125*
H26B0.03020.75400.70020.125*
H26C0.12760.81660.78580.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F0.1042 (17)0.0838 (15)0.0550 (12)0.0114 (13)0.0226 (12)0.0389 (11)
N10.0594 (16)0.0340 (13)0.0464 (15)0.0092 (11)0.0185 (13)0.0167 (11)
O10.0788 (19)0.0852 (19)0.0605 (17)0.0057 (15)0.0072 (15)0.0113 (14)
C10.123 (4)0.085 (3)0.052 (2)0.019 (3)0.024 (3)0.005 (2)
N20.0684 (18)0.0358 (13)0.0547 (17)0.0137 (12)0.0234 (14)0.0232 (12)
O20.0814 (18)0.0646 (16)0.0522 (15)0.0070 (13)0.0110 (13)0.0156 (12)
C20.061 (2)0.0477 (19)0.0484 (19)0.0045 (16)0.0119 (17)0.0108 (15)
O30.1000 (19)0.0350 (12)0.0610 (15)0.0220 (12)0.0352 (14)0.0209 (10)
C30.049 (2)0.083 (3)0.071 (3)0.0134 (19)0.0136 (19)0.020 (2)
O40.0710 (15)0.0387 (11)0.0615 (14)0.0044 (10)0.0172 (12)0.0295 (10)
C40.060 (2)0.065 (2)0.062 (2)0.0126 (17)0.0282 (19)0.0176 (18)
O50.0809 (17)0.0573 (14)0.0681 (15)0.0218 (12)0.0422 (13)0.0346 (12)
C50.0514 (19)0.0316 (15)0.0519 (18)0.0052 (13)0.0165 (15)0.0155 (13)
C60.0480 (19)0.054 (2)0.061 (2)0.0133 (15)0.0212 (17)0.0119 (16)
C70.065 (2)0.054 (2)0.054 (2)0.0107 (17)0.0245 (18)0.0133 (16)
C80.0473 (17)0.0326 (15)0.0496 (18)0.0093 (13)0.0179 (14)0.0149 (13)
C90.0481 (18)0.0360 (15)0.0533 (18)0.0134 (13)0.0222 (15)0.0211 (14)
C100.071 (2)0.0333 (16)0.057 (2)0.0118 (15)0.0236 (18)0.0201 (15)
C110.0494 (18)0.0431 (17)0.0466 (17)0.0145 (14)0.0221 (14)0.0212 (14)
C120.059 (2)0.0487 (18)0.0434 (18)0.0085 (15)0.0148 (15)0.0235 (15)
C130.058 (2)0.0478 (19)0.057 (2)0.0069 (16)0.0150 (17)0.0185 (16)
C140.053 (2)0.058 (2)0.0455 (19)0.0140 (16)0.0131 (16)0.0155 (16)
C150.066 (2)0.059 (2)0.0451 (19)0.0219 (17)0.0278 (17)0.0281 (16)
C160.059 (2)0.0453 (17)0.0514 (19)0.0146 (15)0.0286 (16)0.0203 (15)
C170.074 (3)0.064 (2)0.067 (2)0.009 (2)0.009 (2)0.0104 (19)
C180.0471 (17)0.0318 (15)0.0469 (17)0.0044 (13)0.0122 (14)0.0149 (13)
C190.0529 (19)0.0378 (16)0.0532 (18)0.0113 (14)0.0210 (15)0.0177 (14)
C200.0471 (18)0.0424 (17)0.0512 (18)0.0032 (14)0.0172 (15)0.0207 (14)
C210.0501 (18)0.0338 (15)0.0476 (17)0.0015 (13)0.0099 (14)0.0194 (13)
C220.0550 (19)0.0325 (15)0.0460 (17)0.0070 (13)0.0115 (15)0.0138 (13)
C230.0574 (19)0.0376 (16)0.0449 (17)0.0096 (14)0.0184 (15)0.0187 (13)
C240.107 (3)0.052 (2)0.069 (2)0.026 (2)0.045 (2)0.0175 (18)
C250.082 (3)0.073 (3)0.081 (3)0.006 (2)0.005 (2)0.053 (2)
C260.108 (3)0.092 (3)0.094 (3)0.049 (3)0.067 (3)0.056 (3)
Geometric parameters (Å, º) top
F—C151.369 (3)C9—C111.459 (4)
N1—C101.369 (4)C10—H10A0.9300
N1—C81.395 (4)C11—C121.387 (4)
N1—C51.429 (4)C11—C161.416 (4)
O1—C21.367 (4)C12—C131.360 (4)
O1—C11.418 (5)C12—H12A0.9300
C1—H1A0.9600C13—C141.394 (4)
C1—H1B0.9600C13—H13A0.9300
C1—H1C0.9600C14—C151.387 (5)
N2—C101.295 (4)C15—C161.345 (5)
N2—C91.388 (4)C16—H16A0.9300
O2—C141.358 (4)C17—H17A0.9600
O2—C171.417 (4)C17—H17B0.9600
C2—C31.361 (5)C17—H17C0.9600
C2—C71.374 (5)C18—C191.379 (4)
O3—C221.365 (4)C18—C231.395 (4)
O3—C241.415 (4)C19—C201.403 (4)
C3—C41.385 (5)C19—H19A0.9300
C3—H3A0.9300C20—C211.377 (4)
O4—C211.386 (3)C21—C221.389 (4)
O4—C251.404 (4)C22—C231.398 (4)
C4—C51.380 (5)C23—H23A0.9300
C4—H4A0.9300C24—H24A0.9600
O5—C201.366 (4)C24—H24B0.9600
O5—C261.411 (4)C24—H24C0.9600
C5—C61.367 (4)C25—H25A0.9600
C6—C71.376 (5)C25—H25B0.9600
C6—H6A0.9300C25—H25C0.9600
C7—H7A0.9300C26—H26A0.9600
C8—C91.377 (4)C26—H26B0.9600
C8—C181.488 (4)C26—H26C0.9600
C10—N1—C8106.4 (2)O2—C14—C15117.8 (3)
C10—N1—C5124.9 (3)O2—C14—C13125.8 (3)
C8—N1—C5128.6 (2)C15—C14—C13116.4 (3)
C2—O1—C1118.1 (3)C16—C15—F119.4 (3)
O1—C1—H1A109.5C16—C15—C14123.6 (3)
O1—C1—H1B109.5F—C15—C14117.0 (3)
H1A—C1—H1B109.5C15—C16—C11120.1 (3)
O1—C1—H1C109.5C15—C16—H16A120.0
H1A—C1—H1C109.5C11—C16—H16A120.0
H1B—C1—H1C109.5O2—C17—H17A109.5
C10—N2—C9105.5 (2)O2—C17—H17B109.5
C14—O2—C17117.4 (3)H17A—C17—H17B109.5
C3—C2—O1116.5 (3)O2—C17—H17C109.5
C3—C2—C7119.7 (3)H17A—C17—H17C109.5
O1—C2—C7123.8 (3)H17B—C17—H17C109.5
C22—O3—C24118.2 (2)C19—C18—C23120.5 (3)
C2—C3—C4120.9 (3)C19—C18—C8119.3 (3)
C2—C3—H3A119.5C23—C18—C8120.1 (3)
C4—C3—H3A119.5C18—C19—C20119.9 (3)
C21—O4—C25113.7 (2)C18—C19—H19A120.1
C5—C4—C3119.3 (3)C20—C19—H19A120.1
C5—C4—H4A120.4O5—C20—C21116.2 (3)
C3—C4—H4A120.4O5—C20—C19124.1 (3)
C20—O5—C26117.6 (3)C21—C20—C19119.7 (3)
C6—C5—C4119.5 (3)C20—C21—O4120.0 (3)
C6—C5—N1120.1 (3)C20—C21—C22120.6 (3)
C4—C5—N1120.4 (3)O4—C21—C22119.4 (3)
C5—C6—C7120.9 (3)O3—C22—C21115.0 (3)
C5—C6—H6A119.6O3—C22—C23125.1 (3)
C7—C6—H6A119.6C21—C22—C23119.8 (3)
C2—C7—C6119.7 (3)C18—C23—C22119.3 (3)
C2—C7—H7A120.1C18—C23—H23A120.3
C6—C7—H7A120.1C22—C23—H23A120.3
C9—C8—N1104.9 (2)O3—C24—H24A109.5
C9—C8—C18134.8 (3)O3—C24—H24B109.5
N1—C8—C18120.2 (3)H24A—C24—H24B109.5
C8—C9—N2110.4 (3)O3—C24—H24C109.5
C8—C9—C11130.6 (3)H24A—C24—H24C109.5
N2—C9—C11118.9 (3)H24B—C24—H24C109.5
N2—C10—N1112.8 (3)O4—C25—H25A109.5
N2—C10—H10A123.6O4—C25—H25B109.5
N1—C10—H10A123.6H25A—C25—H25B109.5
C12—C11—C16116.3 (3)O4—C25—H25C109.5
C12—C11—C9124.6 (3)H25A—C25—H25C109.5
C16—C11—C9119.0 (3)H25B—C25—H25C109.5
C13—C12—C11122.8 (3)O5—C26—H26A109.5
C13—C12—H12A118.6O5—C26—H26B109.5
C11—C12—H12A118.6H26A—C26—H26B109.5
C12—C13—C14120.7 (3)O5—C26—H26C109.5
C12—C13—H13A119.6H26A—C26—H26C109.5
C14—C13—H13A119.6H26B—C26—H26C109.5
C1—O1—C2—C3175.7 (4)C17—O2—C14—C136.2 (5)
C1—O1—C2—C73.7 (5)C12—C13—C14—O2179.9 (3)
O1—C2—C3—C4178.6 (3)C12—C13—C14—C151.0 (5)
C7—C2—C3—C40.9 (6)O2—C14—C15—C16179.3 (3)
C2—C3—C4—C50.1 (6)C13—C14—C15—C161.4 (5)
C3—C4—C5—C60.9 (5)O2—C14—C15—F1.4 (5)
C3—C4—C5—N1177.2 (3)C13—C14—C15—F177.9 (3)
C10—N1—C5—C683.9 (4)F—C15—C16—C11178.4 (3)
C8—N1—C5—C697.9 (4)C14—C15—C16—C110.9 (5)
C10—N1—C5—C494.1 (4)C12—C11—C16—C150.1 (4)
C8—N1—C5—C484.1 (4)C9—C11—C16—C15177.8 (3)
C4—C5—C6—C70.7 (5)C9—C8—C18—C19121.5 (4)
N1—C5—C6—C7177.3 (3)N1—C8—C18—C1955.6 (4)
C3—C2—C7—C61.1 (5)C9—C8—C18—C2359.6 (5)
O1—C2—C7—C6178.4 (3)N1—C8—C18—C23123.3 (3)
C5—C6—C7—C20.3 (5)C23—C18—C19—C202.1 (5)
C10—N1—C8—C90.3 (3)C8—C18—C19—C20176.8 (3)
C5—N1—C8—C9178.7 (3)C26—O5—C20—C21178.7 (3)
C10—N1—C8—C18178.2 (3)C26—O5—C20—C191.3 (5)
C5—N1—C8—C183.4 (5)C18—C19—C20—O5177.2 (3)
N1—C8—C9—N20.5 (3)C18—C19—C20—C212.9 (5)
C18—C8—C9—N2177.9 (3)O5—C20—C21—O41.7 (4)
N1—C8—C9—C11175.5 (3)C19—C20—C21—O4178.2 (3)
C18—C8—C9—C112.0 (6)O5—C20—C21—C22179.1 (3)
C10—N2—C9—C80.5 (4)C19—C20—C21—C221.0 (5)
C10—N2—C9—C11176.0 (3)C25—O4—C21—C2088.7 (4)
C9—N2—C10—N10.4 (4)C25—O4—C21—C2292.1 (4)
C8—N1—C10—N20.1 (4)C24—O3—C22—C21172.9 (3)
C5—N1—C10—N2178.5 (3)C24—O3—C22—C239.1 (5)
C8—C9—C11—C1210.4 (5)C20—C21—C22—O3179.8 (3)
N2—C9—C11—C12165.3 (3)O4—C21—C22—O31.0 (4)
C8—C9—C11—C16172.2 (3)C20—C21—C22—C231.7 (5)
N2—C9—C11—C1612.1 (4)O4—C21—C22—C23179.1 (3)
C16—C11—C12—C130.6 (5)C19—C18—C23—C220.6 (4)
C9—C11—C12—C13178.1 (3)C8—C18—C23—C22179.4 (3)
C11—C12—C13—C140.0 (5)O3—C22—C23—C18179.6 (3)
C17—O2—C14—C15174.6 (3)C21—C22—C23—C182.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O3i0.932.513.346 (4)150
C26—H26A···Fii0.962.523.326 (6)142
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC26H25FN2O5
Mr464.48
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.795 (2), 10.202 (2), 13.008 (3)
α, β, γ (°)104.76 (3), 109.81 (3), 91.45 (3)
V3)1173.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.972, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
4540, 4269, 2838
Rint0.024
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.178, 1.00
No. of reflections4269
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.24

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O3i0.932.513.346 (4)150
C26—H26A···Fii0.962.523.326 (6)142
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1.
 

References

First citationBellina, F., Cauteruccio, S., Monti, S. & Rossi, R. (2006). Bioorg. Med. Chem. Lett. 16, 5757–5762.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBellina, F., Cauteruccio, S. & Rossi, R. (2007). Tetrahedron, 63, 4571–4624.  Web of Science CrossRef CAS Google Scholar
First citationBräuer, S., Almstetter, M., Antuch, W., Behnke, D., Taube, R., Furer, P. & Hess, S. (2005). J. Comb. Chem. 7, 218–226.  Web of Science PubMed Google Scholar
First citationCai, J. L., Li, S., Zhou, C. H., Gan, L. L. & Wu, J. (2009). J. New. Drugs. Chin. 18, 598–608.  CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Woods, K. W., Li, Q., Barr, K. J., McCroskey, R. W., Hannick, S. M., Gherke, L., Credo, R. B., Hui, Y. H., Marsh, K., Warner, R., Lee, J. Y., Nicolette, Z. M., Frost, D., Rosenberg, S. H. & &Sham, H. L. (2002). J. Med. Chem. 45, 1697–1711.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds