organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­nitro-N-(4-nitro­phen­yl)benzamide

aDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: ruitaozhu@126.com

(Received 20 October 2010; accepted 8 November 2010; online 13 November 2010)

In the title mol­ecule, C13H8N4O7, the amide fragment has an anti configuration. The mean planes of the two benzene rings form a dihedral angle of 7.78 (4)°. The mean planes of the three nitro groups are twisted by 6.82 (3), 5.01 (4) and 18.94 (7)° with respect to the benzene rings to which they are attached. In the crystal, mol­ecules are linked by weak inter­molecular N—H⋯O hydrogen bonds into chains along [100].

Related literature

For background to the biological activity of N-substituted benzamides and their use in synthesis, see: Saeed et al. (2010[Saeed, A., Khera, R. A. & Simpson, J. (2010). Acta Cryst. E66, o911-o912.]). For related structures, see: Raza et al. (2010[Raza, A. R., Nisar, B. & Tahir, M. N. (2010). Acta Cryst. E66, o1852.]); Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8N4O7

  • Mr = 332.23

  • Monoclinic, P 21 /c

  • a = 7.8999 (9) Å

  • b = 8.019 (1) Å

  • c = 21.111 (2) Å

  • β = 94.285 (1)°

  • V = 1333.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 298 K

  • 0.48 × 0.38 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.937, Tmax = 0.980

  • 6462 measured reflections

  • 2361 independent reflections

  • 1419 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.127

  • S = 1.01

  • 2361 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.52 3.280 (3) 147
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-substituted benzamides have numerous pharmaceutical and synthetic application (Saeed et al. 2010). In this paper, we report the structure of the title compound (I). The molecular structure of (I) is shown in Fig. 1. The bond lengths are within normal ranges (Allen et al. 1987). The amide N—H and CO bonds in the molecule comprising the crystallographic asymmetric unit are trans to each other and similar to those observed in 2-Hydroxy-N-(3-nitrophenyl)benzamide (Raza et al. 2010) and 2-chloro-N-(phenyl)-benzamide (NP2CBA) (Gowda et al., 2003). The mean planes of the two benzene rings form a dihedral angle of 7.78 (4)°. The mean planes of the three nitro groups are twisted by 6.82 (3)°, 5.01 (4)° and 18.94 (7)° with respect to the benzene rings to which they are attached. In the crystal structure, molecules are linked by weak intermolecular N-H···O hydrogen bonds in chains along [100] (see Fig. 2).

Related literature top

For background to the biological activity of N-substituted benzamides and their use in synthesis, see: Saeed et al. (2010). For related structures, see: Raza et al. (2010); Gowda et al. (2003). For standard bond-length data, see: Allen et al. (1987).

Experimental top

3,5-Dinitrobenzoyl chloride (1.15 g, 5 mmol) dissolved in tetrahydrofuran (10 ml) was added to 4-nitroaniline (0.69 g, 5 mmol) dissolved in tetrahydrofuran (5 ml), the reaction mixture was refluxed for 2 h, then cooled to ambient temperature and filtered to remove the tetrahydrofuran. The precipitate was dissolved in methanol/tetrahydrofuran/ethyl acetate (1:1:1) and the solution was allowed to stand for a few days at ambient temperature, after which time colorless plates of the title compound suitable for X-ray diffraction were obtaind.

Refinement top

H atoms were placed in idealized positions and allowed to ride on theirrespective parent atoms, with C—H = 0.93Å, N-H = 0.86Å and with Uiso(H) = 1.2Ueq(C,N).

Structure description top

N-substituted benzamides have numerous pharmaceutical and synthetic application (Saeed et al. 2010). In this paper, we report the structure of the title compound (I). The molecular structure of (I) is shown in Fig. 1. The bond lengths are within normal ranges (Allen et al. 1987). The amide N—H and CO bonds in the molecule comprising the crystallographic asymmetric unit are trans to each other and similar to those observed in 2-Hydroxy-N-(3-nitrophenyl)benzamide (Raza et al. 2010) and 2-chloro-N-(phenyl)-benzamide (NP2CBA) (Gowda et al., 2003). The mean planes of the two benzene rings form a dihedral angle of 7.78 (4)°. The mean planes of the three nitro groups are twisted by 6.82 (3)°, 5.01 (4)° and 18.94 (7)° with respect to the benzene rings to which they are attached. In the crystal structure, molecules are linked by weak intermolecular N-H···O hydrogen bonds in chains along [100] (see Fig. 2).

For background to the biological activity of N-substituted benzamides and their use in synthesis, see: Saeed et al. (2010). For related structures, see: Raza et al. (2010); Gowda et al. (2003). For standard bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) with hydrogen bonds drawn as dashed lines.
3,5-Dinitro-N-(4-nitrophenyl)benzamide top
Crystal data top
C13H8N4O7F(000) = 680
Mr = 332.23Dx = 1.655 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1593 reflections
a = 7.8999 (9) Åθ = 2.6–26.4°
b = 8.019 (1) ŵ = 0.14 mm1
c = 21.111 (2) ÅT = 298 K
β = 94.285 (1)°Plate, colorless
V = 1333.7 (3) Å30.48 × 0.38 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2361 independent reflections
Radiation source: fine-focus sealed tube1419 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
φ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.937, Tmax = 0.980k = 99
6462 measured reflectionsl = 2517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.2955P]
where P = (Fo2 + 2Fc2)/3
2361 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C13H8N4O7V = 1333.7 (3) Å3
Mr = 332.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8999 (9) ŵ = 0.14 mm1
b = 8.019 (1) ÅT = 298 K
c = 21.111 (2) Å0.48 × 0.38 × 0.15 mm
β = 94.285 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2361 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1419 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.980Rint = 0.055
6462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
2361 reflectionsΔρmin = 0.22 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.4744 (2)0.3431 (3)0.43550 (9)0.0417 (6)
H11.52920.38500.40560.050*
N20.8118 (3)0.6627 (3)0.33003 (12)0.0470 (6)
N31.3396 (3)0.6676 (4)0.22261 (10)0.0503 (7)
N41.8925 (3)0.0058 (3)0.61994 (11)0.0498 (7)
O11.2103 (2)0.3154 (3)0.46823 (9)0.0623 (7)
O20.7337 (2)0.6051 (3)0.37295 (10)0.0605 (6)
O30.7509 (3)0.7558 (3)0.28922 (11)0.0735 (8)
O41.2863 (3)0.7866 (3)0.19062 (10)0.0702 (7)
O51.4673 (3)0.5907 (3)0.21316 (9)0.0737 (8)
O62.0458 (3)0.0098 (3)0.61510 (10)0.0680 (7)
O71.8282 (3)0.0657 (4)0.66238 (11)0.0845 (9)
C11.3044 (3)0.3678 (3)0.43039 (12)0.0381 (7)
C21.2337 (3)0.4698 (3)0.37448 (11)0.0340 (6)
C31.0657 (3)0.5183 (3)0.37588 (12)0.0376 (7)
H31.00340.48650.40960.045*
C40.9913 (3)0.6136 (3)0.32735 (12)0.0362 (6)
C51.0782 (3)0.6669 (3)0.27726 (11)0.0385 (7)
H51.02720.73410.24540.046*
C61.2440 (3)0.6163 (3)0.27634 (11)0.0359 (6)
C71.3229 (3)0.5177 (3)0.32335 (11)0.0374 (7)
H71.43470.48370.32070.045*
C81.5729 (3)0.2579 (3)0.48343 (11)0.0343 (6)
C91.7451 (3)0.2441 (4)0.47600 (13)0.0434 (7)
H91.78940.28980.44030.052*
C101.8513 (3)0.1638 (4)0.52054 (12)0.0441 (7)
H101.96710.15610.51570.053*
C111.7825 (3)0.0952 (3)0.57246 (12)0.0374 (7)
C121.6121 (3)0.1071 (4)0.58118 (12)0.0419 (7)
H121.56880.05960.61680.050*
C131.5060 (3)0.1896 (4)0.53691 (11)0.0413 (7)
H131.39080.19970.54260.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0368 (12)0.0543 (17)0.0345 (12)0.0023 (11)0.0061 (9)0.0137 (11)
N20.0389 (13)0.0526 (18)0.0483 (15)0.0044 (12)0.0050 (11)0.0092 (13)
N30.0473 (15)0.071 (2)0.0325 (14)0.0119 (14)0.0026 (11)0.0005 (14)
N40.0538 (16)0.0493 (18)0.0445 (15)0.0019 (13)0.0091 (12)0.0000 (12)
O10.0413 (11)0.0895 (18)0.0571 (13)0.0032 (11)0.0099 (10)0.0337 (13)
O20.0436 (11)0.0765 (17)0.0632 (14)0.0030 (11)0.0155 (10)0.0032 (12)
O30.0575 (14)0.091 (2)0.0701 (16)0.0252 (13)0.0085 (11)0.0178 (14)
O40.0778 (16)0.0818 (19)0.0513 (14)0.0048 (14)0.0066 (11)0.0273 (13)
O50.0576 (14)0.112 (2)0.0538 (14)0.0055 (14)0.0224 (11)0.0070 (13)
O60.0534 (14)0.0822 (19)0.0665 (15)0.0147 (12)0.0085 (11)0.0043 (12)
O70.0761 (16)0.112 (2)0.0634 (16)0.0021 (15)0.0101 (12)0.0486 (15)
C10.0375 (15)0.0405 (18)0.0362 (15)0.0014 (13)0.0024 (12)0.0030 (13)
C20.0344 (14)0.0354 (17)0.0318 (14)0.0021 (12)0.0007 (11)0.0007 (12)
C30.0366 (14)0.0404 (18)0.0359 (15)0.0042 (13)0.0028 (11)0.0008 (13)
C40.0303 (13)0.0412 (18)0.0365 (15)0.0007 (12)0.0025 (11)0.0056 (13)
C50.0418 (15)0.0427 (18)0.0298 (15)0.0015 (13)0.0060 (11)0.0019 (13)
C60.0390 (15)0.0422 (18)0.0267 (14)0.0065 (13)0.0029 (11)0.0010 (12)
C70.0332 (13)0.0425 (18)0.0360 (15)0.0037 (12)0.0006 (11)0.0061 (13)
C80.0388 (15)0.0339 (17)0.0298 (14)0.0015 (12)0.0004 (11)0.0033 (12)
C90.0429 (16)0.051 (2)0.0373 (15)0.0016 (13)0.0080 (12)0.0113 (13)
C100.0410 (15)0.049 (2)0.0419 (16)0.0017 (14)0.0003 (12)0.0015 (14)
C110.0434 (15)0.0331 (17)0.0342 (15)0.0018 (12)0.0070 (12)0.0017 (12)
C120.0497 (17)0.0460 (19)0.0300 (15)0.0038 (14)0.0029 (12)0.0044 (13)
C130.0401 (15)0.0472 (19)0.0366 (15)0.0004 (13)0.0037 (12)0.0018 (14)
Geometric parameters (Å, º) top
N1—C11.354 (3)C3—H30.9300
N1—C81.407 (3)C4—C51.371 (3)
N1—H10.8600C5—C61.373 (3)
N2—O31.212 (3)C5—H50.9300
N2—O21.224 (3)C6—C71.381 (3)
N2—C41.476 (3)C7—H70.9300
N3—O51.212 (3)C8—C91.385 (3)
N3—O41.225 (3)C8—C131.394 (3)
N3—C61.467 (3)C9—C101.373 (4)
N4—O71.207 (3)C9—H90.9300
N4—O61.224 (3)C10—C111.374 (3)
N4—C111.464 (3)C10—H100.9300
O1—C11.206 (3)C11—C121.376 (3)
C1—C21.509 (3)C12—C131.377 (3)
C2—C31.386 (3)C12—H120.9300
C2—C71.386 (3)C13—H130.9300
C3—C41.375 (4)
C1—N1—C8128.3 (2)C6—C5—H5121.5
C1—N1—H1115.8C5—C6—C7122.6 (2)
C8—N1—H1115.8C5—C6—N3118.3 (2)
O3—N2—O2124.3 (2)C7—C6—N3119.1 (2)
O3—N2—C4117.9 (2)C6—C7—C2119.4 (2)
O2—N2—C4117.8 (2)C6—C7—H7120.3
O5—N3—O4124.2 (2)C2—C7—H7120.3
O5—N3—C6117.9 (3)C9—C8—C13119.7 (2)
O4—N3—C6118.0 (3)C9—C8—N1116.9 (2)
O7—N4—O6123.2 (2)C13—C8—N1123.4 (2)
O7—N4—C11118.7 (2)C10—C9—C8121.0 (2)
O6—N4—C11118.1 (2)C10—C9—H9119.5
O1—C1—N1123.6 (2)C8—C9—H9119.5
O1—C1—C2119.8 (2)C9—C10—C11118.4 (2)
N1—C1—C2116.6 (2)C9—C10—H10120.8
C3—C2—C7118.8 (2)C11—C10—H10120.8
C3—C2—C1115.8 (2)C10—C11—C12121.9 (2)
C7—C2—C1125.4 (2)C10—C11—N4119.5 (2)
C4—C3—C2119.8 (2)C12—C11—N4118.6 (2)
C4—C3—H3120.1C11—C12—C13119.6 (2)
C2—C3—H3120.1C11—C12—H12120.2
C5—C4—C3122.5 (2)C13—C12—H12120.2
C5—C4—N2119.0 (2)C12—C13—C8119.3 (2)
C3—C4—N2118.6 (2)C12—C13—H13120.3
C4—C5—C6116.9 (2)C8—C13—H13120.3
C4—C5—H5121.5
C8—N1—C1—O10.7 (5)O4—N3—C6—C7161.6 (3)
C8—N1—C1—C2178.0 (2)C5—C6—C7—C21.4 (4)
O1—C1—C2—C39.6 (4)N3—C6—C7—C2179.6 (2)
N1—C1—C2—C3169.1 (2)C3—C2—C7—C62.0 (4)
O1—C1—C2—C7170.7 (3)C1—C2—C7—C6177.7 (2)
N1—C1—C2—C710.6 (4)C1—N1—C8—C9177.2 (3)
C7—C2—C3—C40.6 (4)C1—N1—C8—C133.2 (4)
C1—C2—C3—C4179.1 (2)C13—C8—C9—C100.0 (4)
C2—C3—C4—C51.4 (4)N1—C8—C9—C10179.6 (3)
C2—C3—C4—N2179.7 (2)C8—C9—C10—C110.9 (4)
O3—N2—C4—C53.8 (4)C9—C10—C11—C121.0 (4)
O2—N2—C4—C5175.4 (2)C9—C10—C11—N4178.7 (3)
O3—N2—C4—C3175.2 (3)O7—N4—C11—C10173.8 (3)
O2—N2—C4—C35.6 (4)O6—N4—C11—C107.4 (4)
C3—C4—C5—C61.9 (4)O7—N4—C11—C125.8 (4)
N2—C4—C5—C6179.1 (2)O6—N4—C11—C12173.0 (2)
C4—C5—C6—C70.5 (4)C10—C11—C12—C130.1 (4)
C4—C5—C6—N3178.5 (2)N4—C11—C12—C13179.6 (3)
O5—N3—C6—C5161.5 (3)C11—C12—C13—C80.9 (4)
O4—N3—C6—C519.3 (4)C9—C8—C13—C120.9 (4)
O5—N3—C6—C717.5 (4)N1—C8—C13—C12179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.523.280 (3)147
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H8N4O7
Mr332.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.8999 (9), 8.019 (1), 21.111 (2)
β (°) 94.285 (1)
V3)1333.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.48 × 0.38 × 0.15
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.937, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
6462, 2361, 1419
Rint0.055
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 1.01
No. of reflections2361
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.523.280 (3)147
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors gratefully acknowledge the University Technology Development Project in Shanxi Province (20101116).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationRaza, A. R., Nisar, B. & Tahir, M. N. (2010). Acta Cryst. E66, o1852.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A. & Simpson, J. (2010). Acta Cryst. E66, o911–o912.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds