metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(C-meso-N-meso-5,12-Di­methyl-7,14-di­phenyl-1,4,8,11-tetra­aza­cyclo­tetra­deca-4,11-diene)nickel(II) bis­­[O,O′-bis­­(4-methyl­phen­yl) di­thio­phosphate]

aCollege of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan, People's Republic of China
*Correspondence e-mail: zoulike@yahoo.com.cn

(Received 13 November 2010; accepted 21 November 2010; online 27 November 2010)

The title complex, [Ni(C24H32N4)](C14H14O2PS2)2, comprises a centrosymmetric [Ni(meso-diphen­yl[14]dien)]2+ dication (meso-diphen­yl[14]dien is C-meso-N-meso-5,12-dimethyl-7,14-diphenyl-1,4,8,11-tetra­aza­cyclo­tetra­deca-4,11-diene) and two O,O′-bis­(4-methyl­phen­yl) dithio­phosphate anions. The NiII ion lies on an inversion center and is chelated by a tetra­amine macrocycle ligand in a slightly distorted NiN4 square-planar geometry. Two S atoms from symmetry-related anions are located in pseudo-axial positions with respect to the NiII ion, with Ni⋯S distances of 3.1869 (8) Å. In the crystal, bifurcated inter­molecular N—H⋯S(S) hydrogen bonds connect cations and pairs of anions into three-component clusters. Weak inter­molecular C—H⋯S hydrogen bonds link these clusters into chains along [100].

Related literature

For the synthesis of the tetra­mine macrocyclic ligand, see: Curtis (2001)[Curtis, N. F. (2001). Inorg. Chim Acta, 317, 27-32.]. For general background to tetra­mine macrocycles, see: Aoki & Kimura (2002[Aoki, S. & Kimura, E. (2002). Rev. Mol. Biotechnol. 90, 129-155.]); For transition metal complexes with O,O′-dialkyl­dithio­phosphate ligands, see: Drew et al. (1987[Drew, M. G. B., Forsyth, G. A., Hasan, M., Hobson, R. J. & Rice, D. A. (1987). J. Chem. Soc. Dalton Trans. pp. 1027-1033.]); Liaw et al. (2005[Liaw, B. J., Lobana, T. S., Lin, Y.-W., Wang, J.-C. & Liu, C.-W. (2005). Inorg. Chem. 44, 9921-9929.]); Zou et al. (2009[Zou, L.-K., Xie, B., Xie, J.-Q., Feng, J.-S., Chang, X.-L. & Zhang, X.-L. (2009). Transition Met. Chem. 34, 395-401.]). For the synthesis and crystal structures of related macrocyclic nickel and copper complexes, see: Feng et al. (2009[Feng, J.-S., Zou, L.-K., Xie, B. & Wu, Y. (2009). Acta Cryst. E65, m1022.]); He et al. (2010[He, L.-X., Zou, L.-K., Xie, B., Xiang, Y.-G. & Feng, J.-S. (2010). Acta Cryst. E66, m428.]); Xie et al. (2009[Xie, B., Xiang, Y.-G., Zou, L.-K., Chang, X.-L. & Ji, C.-Y. (2009). Acta Cryst. E65, m1053.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C24H32N4)](C14H14O2PS2)2

  • Mr = 1053.93

  • Monoclinic, P 21 /n

  • a = 10.04828 (18) Å

  • b = 19.6896 (4) Å

  • c = 13.5112 (3) Å

  • β = 106.900 (2)°

  • V = 2557.69 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 150 K

  • 0.22 × 0.18 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.930, Tmax = 1

  • 11501 measured reflections

  • 5232 independent reflections

  • 4326 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.085

  • S = 1.01

  • 5232 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1 0.93 2.87 3.4652 (17) 123
N2—H2⋯S2 0.93 2.71 3.5789 (17) 156
C5—H5B⋯S2i 0.98 2.87 3.815 (2) 162
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The significance of synthetic tetramine macrocycles is most obvious because of their strong chelating ability and analogy to naturally occurring macrocyclic systems, therefore the synthesis and potential use of their transition-metal complexes have been extensively studied (Aoki et al., 2002). At the same time, the transition-metal complexes of O,O'- dialkyldithiophosphate ligands (DDP) have attracted our attention due to their luxuriant variety of coordination bonding characteristics (Drew et al., 1987; Liaw et al., 2005) and potential application as mimetic hydrolases for carboxylic acid esters (Zou et al., 2009). For these reasons, we have recently reported several structures of tetramine macrocyclic transition-metal adducts with O,O'-dialkyldithiophosphate (Feng et al., 2009; Xie et al., 2009; He et al., 2010). Herein, we report the structure of [Ni(meso-diphenyl[14]dien)][S2P(OC6H4Me-4)2]2, where meso-diphenyl[14]dien is C-meso-N-meso-5,12-dimethyl-7,14- diphenyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene.

The molecular of the title complex comprises a complex mononuclear [Ni(meso-diphenyl[14]dien)]2+ cation and two O,O'-bis(4-methylphenyl) dithiophosphate anions. The NiII atom lies on an inversion centre and is chelated by four N atoms from the macrocyclic tetramine meso-diphenyl[14]dien in a slightly distorted NiN4 square-planar geometry (Fig.1). Two uncoordinated O,O'-bis(4-methylphenyl) dithiophosphate anions occupy pseudo-axial positions with Cu···S distances of 3.1869 (7) Å, forming a octahedral type arrangement. Intermolecular N—H···S and C—H···S hydrogen bonds are present between the anions and the cations. All bond lengths (Allen et al., 1987) and angles in the complex are within normal ranges.

Related literature top

For the synthesis of the tetraamine macrocyclic ligand, see: Curtis (2001). For general background to tetramine macrocycles, see: Aoki et al. (2002); For transition metal complexes with O,O'-dialkyldithiophosphate ligands, see: Drew et al. (1987); Liaw et al. (2005); Zou et al. (2009). For the synthesis and crystal structures of related macrocyclic nickel and copper complexes, see: Feng et al. (2009); He et al. (2010); Xie et al. (2009). For standard bond-length data, see: Allen et al. (1987).

Experimental top

The tetraamine macrocyclic ligand 5,12-Dimethyl-7,14-diphenyl-1,4,8,11- tetraazacyclotetradeca-4,11-diene (diphenyl[14]dien) and [Ni(diphenyl[14]dien)](ClO4)2 (a mixture of meso- and rac- isomers) were prepared according to the procedure described by Curtis (2001).

The title complex was prepared by a modified method according to our previous work (Xie et al., 2009). A cellulose thimble containing 0.634 g (1 mmol) of mixed isomers of [Ni(diphenyl[14]dien)](ClO4)2 was placed in a Soxhlet apparatus. The isomers were slowly extracted to a solution of 0.767 g (2 mmol) [(C2H5)2NH2][S2P(OC6H4Me-4)2] in 70 mL methanol (extraction solvent) and the less soluble meso-isomer of the adduct, [Ni(diphenyl[14]dien)][S2P(OC6H4Me-4)2]2, was slowly pricipitated out during the extraction procedure. The whole extraction process lasted about 36 hours and then refluxed for another 4 hours. After cooling to room temperature, the solid was filtered off and washed successively with methanol, acetone and diethyl ether. The crude product was dissolved in hot dimethylformamide and filtered, the filtrate was kept at room temperature and pale-violet block crystals suitable for X-ray diffraction studies were obtained after three months.

Refinement top

H atoms attached to C and N atoms were fixed geometrically and treated as riding, with C—H = 1.00Å (methine), 0.99Å (methylene), 0.98Å (methyl), 0.95Å (aromatic) and N—H = 0.93 Å. The Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C, N) for all other carbon and nitrogen bound H atoms.

Structure description top

The significance of synthetic tetramine macrocycles is most obvious because of their strong chelating ability and analogy to naturally occurring macrocyclic systems, therefore the synthesis and potential use of their transition-metal complexes have been extensively studied (Aoki et al., 2002). At the same time, the transition-metal complexes of O,O'- dialkyldithiophosphate ligands (DDP) have attracted our attention due to their luxuriant variety of coordination bonding characteristics (Drew et al., 1987; Liaw et al., 2005) and potential application as mimetic hydrolases for carboxylic acid esters (Zou et al., 2009). For these reasons, we have recently reported several structures of tetramine macrocyclic transition-metal adducts with O,O'-dialkyldithiophosphate (Feng et al., 2009; Xie et al., 2009; He et al., 2010). Herein, we report the structure of [Ni(meso-diphenyl[14]dien)][S2P(OC6H4Me-4)2]2, where meso-diphenyl[14]dien is C-meso-N-meso-5,12-dimethyl-7,14- diphenyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene.

The molecular of the title complex comprises a complex mononuclear [Ni(meso-diphenyl[14]dien)]2+ cation and two O,O'-bis(4-methylphenyl) dithiophosphate anions. The NiII atom lies on an inversion centre and is chelated by four N atoms from the macrocyclic tetramine meso-diphenyl[14]dien in a slightly distorted NiN4 square-planar geometry (Fig.1). Two uncoordinated O,O'-bis(4-methylphenyl) dithiophosphate anions occupy pseudo-axial positions with Cu···S distances of 3.1869 (7) Å, forming a octahedral type arrangement. Intermolecular N—H···S and C—H···S hydrogen bonds are present between the anions and the cations. All bond lengths (Allen et al., 1987) and angles in the complex are within normal ranges.

For the synthesis of the tetraamine macrocyclic ligand, see: Curtis (2001). For general background to tetramine macrocycles, see: Aoki et al. (2002); For transition metal complexes with O,O'-dialkyldithiophosphate ligands, see: Drew et al. (1987); Liaw et al. (2005); Zou et al. (2009). For the synthesis and crystal structures of related macrocyclic nickel and copper complexes, see: Feng et al. (2009); He et al. (2010); Xie et al. (2009). For standard bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-numbering scheme with displacement ellipsoids at 30% probability level. H atoms on N are represented as small spheres of arbitary radii and H atoms on C have been omitted for the sake of clarity. Hydrogen-bonds are shown as dashed lines. [Symmetry code: (i) -x + 1, -y, -z + 1].
(C-meso-N-meso-5,12-Dimethyl-7,14-diphenyl-1,4,8,11- tetraazacyclotetradeca-4,11-diene)nickel(II) bis[O,O'-bis(4-methylphenyl) dithiophosphate] top
Crystal data top
[Ni(C24H32N4)](C14H14O2PS2)2F(000) = 1108
Mr = 1053.93Dx = 1.368 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ynCell parameters from 5452 reflections
a = 10.04828 (18) Åθ = 3.0–29.2°
b = 19.6896 (4) ŵ = 0.65 mm1
c = 13.5112 (3) ÅT = 150 K
β = 106.900 (2)°Block, pale-violet
V = 2557.69 (9) Å30.22 × 0.18 × 0.16 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
5232 independent reflections
Radiation source: fine-focus sealed tube4326 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
k = 2422
Tmin = 0.930, Tmax = 1.0l = 1616
11501 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.033P)2 + 1.139P]
where P = (Fo2 + 2Fc2)/3
5232 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Ni(C24H32N4)](C14H14O2PS2)2V = 2557.69 (9) Å3
Mr = 1053.93Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.04828 (18) ŵ = 0.65 mm1
b = 19.6896 (4) ÅT = 150 K
c = 13.5112 (3) Å0.22 × 0.18 × 0.16 mm
β = 106.900 (2)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
5232 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
4326 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 1.0Rint = 0.025
11501 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.01Δρmax = 0.39 e Å3
5232 reflectionsΔρmin = 0.28 e Å3
307 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.50000.01821 (10)
N20.65018 (15)0.05440 (8)0.58612 (13)0.0187 (4)
H20.68830.07850.54170.022*
N10.36007 (16)0.06810 (8)0.49274 (12)0.0194 (4)
C70.7393 (2)0.14121 (10)0.72455 (16)0.0231 (4)
C30.6128 (2)0.10500 (10)0.65498 (16)0.0230 (4)
H30.56550.08040.70010.028*
C120.8221 (2)0.18311 (11)0.68330 (17)0.0273 (5)
H120.80030.18860.61050.033*
C10.37339 (19)0.12907 (10)0.52677 (16)0.0215 (4)
C40.22025 (19)0.04534 (10)0.42970 (17)0.0257 (5)
H4A0.16660.08420.39170.031*
H4B0.16830.02560.47480.031*
C60.7588 (2)0.00694 (10)0.64466 (16)0.0248 (5)
H6A0.72910.01500.70070.030*
H6B0.84670.03170.67610.030*
C20.5110 (2)0.15594 (11)0.59068 (18)0.0301 (5)
H2B0.49340.19100.63790.036*
H2A0.55620.17880.54370.036*
C50.2573 (2)0.18000 (11)0.50298 (18)0.0294 (5)
H5A0.24490.19890.43380.044*
H5C0.28010.21670.55420.044*
H5B0.17110.15770.50540.044*
C110.9352 (2)0.21660 (12)0.74757 (18)0.0330 (5)
H110.99080.24500.71870.040*
C90.8874 (2)0.16789 (13)0.89515 (18)0.0382 (6)
H90.90940.16260.96800.046*
C80.7738 (2)0.13401 (12)0.83067 (17)0.0310 (5)
H80.71900.10550.86000.037*
C100.9680 (2)0.20904 (12)0.85370 (19)0.0368 (6)
H101.04590.23220.89770.044*
P10.73840 (5)0.08481 (3)0.33089 (4)0.02337 (13)
S10.54518 (6)0.10019 (3)0.32732 (5)0.03221 (15)
S20.88615 (6)0.11448 (3)0.45192 (4)0.03143 (14)
O20.75506 (14)0.11660 (7)0.22395 (11)0.0274 (3)
O10.77128 (15)0.00483 (7)0.31873 (11)0.0272 (3)
C200.8809 (2)0.11224 (11)0.19887 (16)0.0255 (5)
C231.1212 (2)0.10828 (13)0.13572 (17)0.0332 (6)
C140.5849 (2)0.02229 (11)0.16048 (17)0.0286 (5)
H140.55150.02310.15270.034*
C130.6975 (2)0.04031 (11)0.24365 (17)0.0261 (5)
C250.9101 (2)0.05523 (12)0.14963 (17)0.0306 (5)
H250.84840.01750.13660.037*
C170.6815 (3)0.15446 (12)0.1808 (2)0.0385 (6)
H170.71560.19970.18830.046*
C210.9712 (2)0.16664 (11)0.21960 (17)0.0304 (5)
H210.95190.20530.25520.037*
C160.5682 (2)0.13849 (12)0.09778 (19)0.0349 (6)
C150.5220 (2)0.07171 (12)0.08889 (18)0.0314 (5)
H150.44500.05940.03200.038*
C180.7466 (2)0.10621 (11)0.25325 (19)0.0324 (5)
H180.82470.11840.30940.039*
C221.0910 (2)0.16418 (13)0.18768 (17)0.0342 (6)
H221.15330.20160.20180.041*
C261.2453 (2)0.10744 (16)0.0941 (2)0.0518 (8)
H26B1.27850.06070.09350.078*
H26C1.31960.13550.13820.078*
H26A1.21820.12560.02350.078*
C241.0306 (2)0.05370 (13)0.11934 (17)0.0341 (5)
H241.05160.01410.08650.041*
C190.4963 (3)0.19066 (14)0.0184 (2)0.0526 (8)
H19A0.40470.20110.02650.079*
H19C0.55250.23220.02820.079*
H19B0.48510.17260.05120.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01354 (17)0.01832 (19)0.0208 (2)0.00210 (14)0.00195 (14)0.00173 (15)
N20.0153 (8)0.0185 (8)0.0218 (9)0.0012 (7)0.0042 (7)0.0012 (7)
N10.0160 (8)0.0202 (9)0.0208 (9)0.0003 (7)0.0037 (7)0.0022 (7)
C70.0198 (10)0.0246 (11)0.0238 (11)0.0035 (8)0.0043 (8)0.0058 (9)
C30.0199 (10)0.0281 (11)0.0219 (11)0.0018 (9)0.0074 (8)0.0063 (9)
C120.0248 (10)0.0302 (12)0.0257 (12)0.0012 (9)0.0052 (9)0.0035 (10)
C10.0192 (10)0.0217 (11)0.0238 (11)0.0028 (8)0.0068 (8)0.0009 (9)
C40.0142 (9)0.0213 (11)0.0369 (13)0.0017 (8)0.0001 (9)0.0005 (10)
C60.0201 (10)0.0213 (11)0.0267 (12)0.0029 (8)0.0030 (8)0.0037 (9)
C20.0204 (10)0.0256 (12)0.0405 (14)0.0028 (9)0.0029 (9)0.0102 (10)
C50.0230 (10)0.0204 (11)0.0416 (14)0.0046 (9)0.0044 (9)0.0028 (10)
C110.0265 (11)0.0286 (13)0.0429 (15)0.0019 (10)0.0088 (10)0.0077 (11)
C90.0380 (13)0.0442 (15)0.0259 (13)0.0053 (11)0.0009 (10)0.0084 (11)
C80.0302 (12)0.0359 (13)0.0263 (12)0.0012 (10)0.0072 (9)0.0027 (10)
C100.0262 (11)0.0359 (13)0.0399 (15)0.0000 (10)0.0036 (10)0.0142 (12)
P10.0218 (3)0.0267 (3)0.0235 (3)0.0008 (2)0.0095 (2)0.0013 (2)
S10.0223 (3)0.0446 (4)0.0323 (3)0.0051 (2)0.0119 (2)0.0032 (3)
S20.0263 (3)0.0397 (3)0.0285 (3)0.0055 (2)0.0084 (2)0.0055 (3)
O20.0245 (7)0.0321 (8)0.0281 (8)0.0041 (6)0.0117 (6)0.0071 (7)
O10.0287 (8)0.0258 (8)0.0256 (8)0.0026 (6)0.0055 (6)0.0008 (7)
C200.0226 (10)0.0339 (12)0.0215 (11)0.0019 (9)0.0088 (8)0.0068 (10)
C230.0220 (11)0.0558 (16)0.0203 (11)0.0021 (11)0.0037 (9)0.0110 (11)
C140.0326 (12)0.0261 (11)0.0283 (12)0.0017 (10)0.0109 (10)0.0045 (10)
C130.0288 (11)0.0278 (12)0.0255 (12)0.0030 (9)0.0138 (9)0.0012 (10)
C250.0308 (12)0.0367 (13)0.0259 (12)0.0037 (10)0.0107 (9)0.0001 (10)
C170.0433 (14)0.0233 (12)0.0577 (17)0.0031 (11)0.0284 (13)0.0003 (12)
C210.0329 (12)0.0280 (12)0.0303 (13)0.0003 (10)0.0091 (10)0.0058 (10)
C160.0395 (13)0.0307 (13)0.0425 (15)0.0141 (11)0.0247 (12)0.0050 (11)
C150.0316 (12)0.0356 (13)0.0286 (12)0.0094 (10)0.0113 (10)0.0009 (11)
C180.0335 (12)0.0282 (12)0.0390 (14)0.0019 (10)0.0160 (10)0.0043 (11)
C220.0282 (11)0.0421 (14)0.0301 (13)0.0079 (11)0.0052 (10)0.0121 (11)
C260.0261 (12)0.092 (2)0.0389 (15)0.0024 (14)0.0126 (11)0.0119 (15)
C240.0343 (12)0.0459 (15)0.0236 (12)0.0058 (11)0.0107 (10)0.0011 (11)
C190.0566 (17)0.0418 (16)0.066 (2)0.0235 (13)0.0277 (15)0.0154 (14)
Geometric parameters (Å, º) top
Ni1—N21.9385 (15)C10—H100.9500
Ni1—N2i1.9385 (15)P1—S11.9517 (7)
Ni1—N11.9247 (16)P1—S21.9514 (8)
Ni1—N1i1.9247 (16)P1—O21.6273 (15)
N2—H20.9300P1—O11.6271 (15)
N2—C31.484 (2)O2—C201.403 (2)
N2—C61.479 (2)O1—C131.390 (3)
N1—C11.279 (3)C20—C251.379 (3)
N1—C41.485 (2)C20—C211.379 (3)
C7—C31.521 (3)C23—C221.386 (3)
C7—C121.397 (3)C23—C261.510 (3)
C7—C81.381 (3)C23—C241.384 (3)
C3—H31.0000C14—H140.9500
C3—C21.513 (3)C14—C131.389 (3)
C12—H120.9500C14—C151.388 (3)
C12—C111.381 (3)C13—C181.381 (3)
C1—C21.498 (3)C25—H250.9500
C1—C51.500 (3)C25—C241.387 (3)
C4—H4A0.9900C17—H170.9500
C4—H4B0.9900C17—C161.382 (3)
C4—C6i1.495 (3)C17—C181.385 (3)
C6—C4i1.495 (3)C21—H210.9500
C6—H6A0.9900C21—C221.393 (3)
C6—H6B0.9900C16—C151.388 (3)
C2—H2B0.9900C16—C191.509 (3)
C2—H2A0.9900C15—H150.9500
C5—H5A0.9800C18—H180.9500
C5—H5C0.9800C22—H220.9500
C5—H5B0.9800C26—H26B0.9800
C11—H110.9500C26—H26C0.9800
C11—C101.383 (3)C26—H26A0.9800
C9—H90.9500C24—H240.9500
C9—C81.389 (3)C19—H19A0.9800
C9—C101.375 (3)C19—H19C0.9800
C8—H80.9500C19—H19B0.9800
Ni1—N2—H2106.8C8—C7—C12118.43 (19)
N2i—Ni1—N2180C8—C9—H9119.9
N2—C3—C7112.54 (15)C10—C11—H11119.8
N2—C3—H3108.0C10—C9—H9119.9
N2—C3—C2109.70 (16)C10—C9—C8120.1 (2)
N2—C6—C4i107.56 (16)S2—P1—S1118.90 (4)
N2—C6—H6A110.2O2—P1—S1106.07 (6)
N2—C6—H6B110.2O2—P1—S2112.29 (6)
N1—Ni1—N294.32 (7)O1—P1—S1112.17 (6)
N1—Ni1—N2i85.68 (7)O1—P1—S2104.30 (6)
N1i—Ni1—N285.68 (7)O1—P1—O2101.90 (8)
N1i—Ni1—N2i94.32 (7)C20—O2—P1121.56 (13)
N1i—Ni1—N1180C20—C25—H25120.4
N1—C1—C2121.44 (17)C20—C25—C24119.1 (2)
N1—C1—C5123.84 (18)C20—C21—H21120.4
N1—C4—H4A110.2C20—C21—C22119.2 (2)
N1—C4—H4B110.2C23—C22—C21121.4 (2)
N1—C4—C6i107.38 (16)C23—C22—H22119.3
C7—C3—H3108.0C23—C26—H26B109.5
C7—C12—H12119.7C23—C26—H26C109.5
C7—C8—C9121.0 (2)C23—C26—H26A109.5
C7—C8—H8119.5C23—C24—C25121.8 (2)
C3—N2—Ni1116.89 (11)C23—C24—H24119.1
C3—N2—H2106.8C14—C13—O1124.28 (19)
C3—C2—H2B108.1C14—C15—H15119.0
C3—C2—H2A108.1C13—O1—P1127.73 (13)
C12—C7—C3121.19 (18)C13—C14—H14120.5
C12—C11—H11119.8C13—C18—C17119.7 (2)
C12—C11—C10120.3 (2)C13—C18—H18120.1
C1—N1—Ni1129.59 (14)C25—C20—O2119.94 (19)
C1—N1—C4118.19 (16)C25—C24—H24119.1
C1—C2—C3116.97 (17)C17—C16—C15117.5 (2)
C1—C2—H2B108.1C17—C16—C19122.2 (2)
C1—C2—H2A108.1C17—C18—H18120.1
C1—C5—H5A109.5C21—C20—O2119.30 (19)
C1—C5—H5C109.5C21—C20—C25120.69 (19)
C1—C5—H5B109.5C21—C22—H22119.3
C4—N1—Ni1111.99 (12)C16—C17—H17119.1
C4i—C6—H6A110.2C16—C17—C18121.8 (2)
C4i—C6—H6B110.2C16—C15—C14122.1 (2)
H4A—C4—H4B108.5C16—C15—H15119.0
C6—N2—Ni1107.25 (12)C16—C19—H19A109.5
C6—N2—H2106.8C16—C19—H19C109.5
C6—N2—C3111.77 (15)C16—C19—H19B109.5
C6i—C4—H4A110.2C15—C14—H14120.5
C6i—C4—H4B110.2C15—C14—C13118.9 (2)
H6A—C6—H6B108.5C15—C16—C19120.3 (2)
C2—C3—C7110.38 (16)C18—C13—O1115.63 (19)
C2—C3—H3108.0C18—C13—C14120.0 (2)
C2—C1—C5114.66 (17)C18—C17—H17119.1
H2B—C2—H2A107.3C22—C23—C26121.6 (2)
H5A—C5—H5C109.5C22—C21—H21120.4
H5A—C5—H5B109.5H26B—C26—H26C109.5
H5C—C5—H5B109.5H26B—C26—H26A109.5
C11—C12—C7120.5 (2)H26C—C26—H26A109.5
C11—C12—H12119.7C24—C23—C22117.8 (2)
C11—C10—H10120.2C24—C23—C26120.5 (2)
C9—C8—H8119.5C24—C25—H25120.4
C9—C10—C11119.7 (2)H19A—C19—H19C109.5
C9—C10—H10120.2H19A—C19—H19B109.5
C8—C7—C3120.38 (19)H19C—C19—H19B109.5
Ni1—N2—C3—C7175.86 (13)C8—C7—C12—C110.2 (3)
Ni1—N2—C3—C260.84 (19)C8—C9—C10—C110.1 (4)
Ni1—N2—C6—C4i45.69 (18)C10—C9—C8—C70.4 (3)
Ni1—N1—C1—C26.0 (3)P1—O2—C20—C2585.7 (2)
Ni1—N1—C1—C5171.17 (15)P1—O2—C20—C2197.2 (2)
Ni1—N1—C4—C6i25.2 (2)P1—O1—C13—C144.3 (3)
N2i—Ni1—N1—C1174.21 (19)P1—O1—C13—C18178.36 (15)
N2—Ni1—N1—C15.79 (19)S1—P1—O2—C20177.67 (14)
N2—Ni1—N1—C4180.00 (13)S1—P1—O1—C1350.57 (17)
N2i—Ni1—N1—C40.00 (13)S2—P1—O2—C2050.91 (16)
N2—C3—C2—C162.2 (2)S2—P1—O1—C13179.45 (15)
N1—Ni1—N2—C328.14 (14)O2—P1—O1—C1362.47 (17)
N1i—Ni1—N2—C3151.86 (14)O2—C20—C25—C24175.78 (19)
N1—Ni1—N2—C6154.50 (13)O2—C20—C21—C22175.25 (18)
N1i—Ni1—N2—C625.50 (13)O1—P1—O2—C2060.14 (16)
N1—C1—C2—C328.3 (3)O1—C13—C18—C17178.68 (19)
C7—C3—C2—C1173.27 (18)C20—C25—C24—C231.1 (3)
C7—C12—C11—C100.0 (3)C20—C21—C22—C230.1 (3)
C3—N2—C6—C4i175.03 (16)C14—C13—C18—C171.2 (3)
C3—C7—C12—C11178.85 (18)C13—C14—C15—C160.0 (3)
C3—C7—C8—C9178.67 (19)C25—C20—C21—C221.7 (3)
C12—C7—C3—N264.4 (2)C17—C16—C15—C140.7 (3)
C12—C7—C3—C258.5 (2)C21—C20—C25—C241.2 (3)
C12—C7—C8—C90.4 (3)C16—C17—C18—C130.4 (3)
C12—C11—C10—C90.1 (3)C15—C14—C13—O1178.26 (19)
C1—N1—C4—C6i149.72 (18)C15—C14—C13—C181.0 (3)
C4—N1—C1—C2179.86 (19)C18—C17—C16—C150.5 (3)
C4—N1—C1—C52.7 (3)C18—C17—C16—C19180.0 (2)
C6—N2—C3—C751.8 (2)C22—C23—C24—C252.6 (3)
C6—N2—C3—C2175.07 (16)C26—C23—C22—C21175.4 (2)
C5—C1—C2—C3154.36 (19)C26—C23—C24—C25174.9 (2)
C8—C7—C3—N2116.5 (2)C24—C23—C22—C212.1 (3)
C8—C7—C3—C2120.6 (2)C19—C16—C15—C14179.8 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S10.932.873.4652 (17)123
N2—H2···S20.932.713.5789 (17)156
C5—H5B···S2ii0.982.873.815 (2)162
Symmetry code: (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C24H32N4)](C14H14O2PS2)2
Mr1053.93
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)10.04828 (18), 19.6896 (4), 13.5112 (3)
β (°) 106.900 (2)
V3)2557.69 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.22 × 0.18 × 0.16
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
Tmin, Tmax0.930, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
11501, 5232, 4326
Rint0.025
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.085, 1.01
No. of reflections5232
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.28

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S10.932.873.4652 (17)123.3
N2—H2···S20.932.713.5789 (17)156.4
C5—H5B···S2i0.982.873.815 (2)162
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by the Education Committee of Sichuan Province (No. 09ZA057), the Science and Technology Office of Zigong City (Nos. 08X01 and 10X05) and the Committee of Science and Technology of Sichuan Province (No. 2010GZ0130).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAoki, S. & Kimura, E. (2002). Rev. Mol. Biotechnol. 90, 129–155.  CrossRef CAS Google Scholar
First citationCurtis, N. F. (2001). Inorg. Chim Acta, 317, 27–32.  Web of Science CrossRef CAS Google Scholar
First citationDrew, M. G. B., Forsyth, G. A., Hasan, M., Hobson, R. J. & Rice, D. A. (1987). J. Chem. Soc. Dalton Trans. pp. 1027–1033.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFeng, J.-S., Zou, L.-K., Xie, B. & Wu, Y. (2009). Acta Cryst. E65, m1022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, L.-X., Zou, L.-K., Xie, B., Xiang, Y.-G. & Feng, J.-S. (2010). Acta Cryst. E66, m428.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiaw, B. J., Lobana, T. S., Lin, Y.-W., Wang, J.-C. & Liu, C.-W. (2005). Inorg. Chem. 44, 9921–9929.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, B., Xiang, Y.-G., Zou, L.-K., Chang, X.-L. & Ji, C.-Y. (2009). Acta Cryst. E65, m1053.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZou, L.-K., Xie, B., Xie, J.-Q., Feng, J.-S., Chang, X.-L. & Zhang, X.-L. (2009). Transition Met. Chem. 34, 395–401.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds