metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Monoclinic form of (cyanato-κN){2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato-κ4O,N,N′,O′}manganese(III)

aCollege of Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
*Correspondence e-mail: dpzhang73@126.com

(Received 14 November 2010; accepted 19 November 2010; online 24 November 2010)

The title compound, [Mn(C16H14N2O2)(NCO)], is a monoclinic polymorph of the previously published ortho­rhom­bic form [Lu et al. (2006[Lu, Z. H., Yuan, M., Pan, F., Gao, S., Zhang, D. Q. & Zhu, D. B. (2006). Inorg. Chem. 45, 3538-3548.]). Inorg. Chem. 45, 3538–3548]. The MnIII ion is chelated by a tetra­dentate Schiff base ligand and coordinated by the N atom of a cyanate ligand in a distorted square-pyramidal arrangement. In the crystal, there are short inter­molecular Mn⋯Ophenolate distances of 2.752 (3) Å between pairs of inversion-related mol­ecules.

Related literature

For the ortho­rhom­bic polymorph of the title compound, see: Lu et al. (2006[Lu, Z. H., Yuan, M., Pan, F., Gao, S., Zhang, D. Q. & Zhu, D. B. (2006). Inorg. Chem. 45, 3538-3548.]). For related structures, see: Mikuriya et al. (1992[Mikuriya, M., Yamato, Y. & Tokii, T. (1992). Bull. Chem. Soc. Jpn, 65, 1466-1468.]); Li et al. (1997[Li, H., Zhong, Z. J., Duan, C.-Y., You, X.-Z., Mak, T. C. W. & Wu, B. (1997). J. Coord. Chem. 41, 183-189.]); Wang et al. (2008[Wang, S.-B., Tang, K., Yang, B.-H. & Li, S. (2008). Acta Cryst. E64, m543.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C16H14N2O2)(NCO)]

  • Mr = 363.25

  • Monoclinic, P 21 /n

  • a = 9.6399 (16) Å

  • b = 10.9133 (18) Å

  • c = 15.198 (3) Å

  • β = 97.826 (3)°

  • V = 1584.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 293 K

  • 0.37 × 0.35 × 0.23 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.743, Tmax = 0.828

  • 7377 measured reflections

  • 2698 independent reflections

  • 1769 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.131

  • S = 1.01

  • 2698 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Because of their excellent chelating ability for metal atoms, the tetradentate schiff-base ligands containing N2O2 coordination unit have been widely studied in coordination chemistry field. Here, we report a Mn(III) complex based on tetradentate ligand N,N'-bis(salicylidene)-1,2-diphenyl-1,2-ethanediamine.

The molecular structure of the title complex is shown in Figure 1. The MnIII ion is involved in a distorted square-pyramidal arrangement by a N3O2 unit, in which the four basal sites are occupied by two N atoms and two O atoms from the Schiff base ligand, and the apical position is occupied by the N atom of a cyanato ligand. The bond distances can be compared to this those found in the related structures (Lu, et al., 2006; Mikuriya, et al., 1992; Li, et al., 1997; Wang, et al., 2008). The MnIII ion lies above the basal plane formed by N2O2 unit by 0.228 Å. The short intermolecular distance of Mn···Ophenolate 2.752 (3) Å indicates that there exsits weak interaction between the two complexes realted by inversion centers in the crystal.

Related literature top

For the orthorhombic polymorph of the title compound, see: Lu et al. (2006). For related structures, see: Mikuriya et al. (1992); Li et al. (1997); Wang et al. (2008).

Experimental top

The synthesis of the title complex was carried out by mixing Mn(ClO4)2.6H2O (0.1mmol), NaNCO (0.1mmol) and the schiff-base ligand (0.1mmol) in methanol (20ml). The mixture was stirred for about half an hour at room temperature and then filtered and the filtrate allowed to partially evaporate in air for sevral days to produce crystals suitable for X-ray diffraction with a yield about 64%.

Refinement top

All the H atoms bonded to the C atoms were placed using the HFIX commands in SHELXL-97 (Sheldrick, 2008) with C—H distances of 0.93 and 0.97 Å, respectively, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

Because of their excellent chelating ability for metal atoms, the tetradentate schiff-base ligands containing N2O2 coordination unit have been widely studied in coordination chemistry field. Here, we report a Mn(III) complex based on tetradentate ligand N,N'-bis(salicylidene)-1,2-diphenyl-1,2-ethanediamine.

The molecular structure of the title complex is shown in Figure 1. The MnIII ion is involved in a distorted square-pyramidal arrangement by a N3O2 unit, in which the four basal sites are occupied by two N atoms and two O atoms from the Schiff base ligand, and the apical position is occupied by the N atom of a cyanato ligand. The bond distances can be compared to this those found in the related structures (Lu, et al., 2006; Mikuriya, et al., 1992; Li, et al., 1997; Wang, et al., 2008). The MnIII ion lies above the basal plane formed by N2O2 unit by 0.228 Å. The short intermolecular distance of Mn···Ophenolate 2.752 (3) Å indicates that there exsits weak interaction between the two complexes realted by inversion centers in the crystal.

For the orthorhombic polymorph of the title compound, see: Lu et al. (2006). For related structures, see: Mikuriya et al. (1992); Li et al. (1997); Wang et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are not shown.
(cyanato-κN){2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato- κ4O,N,N',O'}manganese(III) top
Crystal data top
[Mn(C16H14N2O2)(NCO)]F(000) = 744
Mr = 363.25Dx = 1.523 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1289 reflections
a = 9.6399 (16) Åθ = 2.6–26.6°
b = 10.9133 (18) ŵ = 0.85 mm1
c = 15.198 (3) ÅT = 293 K
β = 97.826 (3)°Block, dark-brown
V = 1584.0 (5) Å30.37 × 0.35 × 0.23 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2698 independent reflections
Radiation source: fine-focus sealed tube1769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 24.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.743, Tmax = 0.828k = 812
7377 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0695P)2]
where P = (Fo2 + 2Fc2)/3
2698 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Mn(C16H14N2O2)(NCO)]V = 1584.0 (5) Å3
Mr = 363.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.6399 (16) ŵ = 0.85 mm1
b = 10.9133 (18) ÅT = 293 K
c = 15.198 (3) Å0.37 × 0.35 × 0.23 mm
β = 97.826 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2698 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1769 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 0.828Rint = 0.047
7377 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.01Δρmax = 0.53 e Å3
2698 reflectionsΔρmin = 0.33 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.10463 (6)0.63253 (5)0.52050 (4)0.0420 (2)
O10.0313 (3)0.7121 (2)0.57698 (17)0.0489 (7)
O20.1015 (3)0.4886 (2)0.58923 (17)0.0472 (7)
O30.5003 (4)0.6657 (5)0.6799 (3)0.1254 (17)
N10.0793 (3)0.7500 (3)0.4211 (2)0.0453 (8)
N20.2150 (3)0.5430 (3)0.4394 (2)0.0425 (8)
N30.2893 (4)0.7093 (3)0.5904 (2)0.0566 (10)
C10.1070 (4)0.8699 (4)0.4711 (3)0.0476 (10)
C20.1116 (4)0.8071 (4)0.5515 (3)0.0463 (10)
C30.2089 (5)0.8453 (4)0.6060 (3)0.0621 (13)
H30.21230.80540.65980.075*
C40.2991 (5)0.9395 (4)0.5824 (4)0.0715 (14)
H40.36380.96190.61960.086*
C50.2956 (5)1.0021 (4)0.5037 (4)0.0724 (15)
H50.35681.06670.48790.087*
C60.2003 (4)0.9674 (4)0.4492 (3)0.0605 (12)
H60.19741.00960.39630.073*
C70.0106 (4)0.8380 (4)0.4105 (3)0.0530 (11)
H70.01320.88490.35930.064*
C80.3143 (4)0.3997 (3)0.5504 (3)0.0415 (9)
C90.2170 (4)0.4207 (4)0.6109 (3)0.0423 (9)
C100.2394 (4)0.3634 (4)0.6929 (3)0.0503 (10)
H100.17700.37760.73340.060*
C110.3501 (4)0.2868 (4)0.7163 (3)0.0626 (13)
H110.36300.25030.77210.075*
C120.4445 (4)0.2632 (4)0.6557 (3)0.0638 (13)
H120.51950.21030.67090.077*
C130.4252 (4)0.3189 (4)0.5740 (3)0.0524 (11)
H130.48720.30250.53370.063*
C140.2980 (4)0.4541 (4)0.4634 (3)0.0451 (10)
H140.35110.42250.42200.054*
C150.1771 (4)0.7294 (4)0.3564 (3)0.0569 (12)
H15A0.26620.76860.37630.068*
H15B0.13950.76340.29920.068*
C160.1964 (4)0.5929 (4)0.3489 (3)0.0533 (11)
H16A0.11500.55650.31410.064*
H16B0.27800.57520.32010.064*
C170.3891 (6)0.6904 (5)0.6329 (3)0.0659 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0320 (4)0.0509 (4)0.0445 (4)0.0037 (3)0.0098 (3)0.0052 (3)
O10.0417 (16)0.0560 (18)0.0502 (17)0.0124 (14)0.0108 (13)0.0024 (13)
O20.0324 (16)0.0555 (17)0.0570 (19)0.0080 (13)0.0174 (13)0.0130 (13)
O30.051 (2)0.238 (5)0.081 (3)0.023 (3)0.012 (2)0.046 (3)
N10.0299 (18)0.057 (2)0.049 (2)0.0001 (16)0.0062 (15)0.0068 (16)
N20.0301 (18)0.057 (2)0.042 (2)0.0001 (16)0.0086 (14)0.0047 (16)
N30.043 (2)0.065 (3)0.059 (3)0.0037 (19)0.0009 (19)0.0029 (19)
C10.034 (2)0.045 (2)0.063 (3)0.003 (2)0.0041 (19)0.001 (2)
C20.035 (2)0.046 (2)0.057 (3)0.001 (2)0.004 (2)0.010 (2)
C30.056 (3)0.063 (3)0.069 (3)0.008 (2)0.015 (2)0.007 (2)
C40.053 (3)0.068 (3)0.095 (4)0.014 (3)0.014 (3)0.007 (3)
C50.052 (3)0.054 (3)0.109 (5)0.015 (2)0.003 (3)0.006 (3)
C60.044 (3)0.056 (3)0.080 (3)0.002 (2)0.001 (2)0.011 (2)
C70.038 (2)0.060 (3)0.059 (3)0.007 (2)0.001 (2)0.016 (2)
C80.028 (2)0.050 (2)0.048 (2)0.0009 (17)0.0096 (17)0.0012 (19)
C90.030 (2)0.048 (2)0.049 (3)0.0021 (18)0.0077 (18)0.0004 (19)
C100.034 (2)0.068 (3)0.049 (3)0.000 (2)0.0102 (18)0.005 (2)
C110.040 (3)0.087 (4)0.059 (3)0.008 (2)0.004 (2)0.023 (3)
C120.034 (3)0.080 (3)0.078 (3)0.011 (2)0.008 (2)0.016 (3)
C130.028 (2)0.065 (3)0.066 (3)0.000 (2)0.013 (2)0.003 (2)
C140.026 (2)0.059 (3)0.052 (3)0.0040 (19)0.0122 (18)0.006 (2)
C150.040 (3)0.081 (3)0.051 (3)0.008 (2)0.013 (2)0.022 (2)
C160.039 (2)0.085 (3)0.037 (2)0.003 (2)0.0105 (18)0.005 (2)
C170.048 (3)0.100 (4)0.054 (3)0.013 (3)0.021 (3)0.029 (3)
Geometric parameters (Å, º) top
Mn1—O11.874 (2)C5—C61.371 (6)
Mn1—O21.889 (3)C5—H50.9300
Mn1—N11.971 (3)C6—H60.9300
Mn1—N21.991 (3)C7—H70.9300
Mn1—N32.118 (4)C8—C131.394 (5)
O1—C21.320 (4)C8—C91.418 (5)
O2—C91.340 (4)C8—C141.438 (5)
O3—C171.235 (6)C9—C101.386 (5)
N1—C71.288 (5)C10—C111.364 (5)
N1—C151.469 (5)C10—H100.9300
N2—C141.280 (5)C11—C121.403 (6)
N2—C161.466 (5)C11—H110.9300
N3—C171.102 (6)C12—C131.372 (5)
C1—C61.403 (5)C12—H120.9300
C1—C21.408 (5)C13—H130.9300
C1—C71.437 (6)C14—H140.9300
C2—C31.397 (5)C15—C161.508 (6)
C3—C41.363 (6)C15—H15A0.9700
C3—H30.9300C15—H15B0.9700
C4—C51.382 (7)C16—H16A0.9700
C4—H40.9300C16—H16B0.9700
O1—Mn1—O293.85 (11)N1—C7—C1125.7 (4)
O1—Mn1—N191.64 (12)N1—C7—H7117.1
O2—Mn1—N1162.75 (13)C1—C7—H7117.1
O1—Mn1—N2167.59 (13)C13—C8—C9119.1 (4)
O2—Mn1—N289.12 (12)C13—C8—C14118.8 (3)
N1—Mn1—N282.24 (13)C9—C8—C14122.0 (3)
O1—Mn1—N3100.33 (13)O2—C9—C10119.5 (3)
O2—Mn1—N397.30 (13)O2—C9—C8122.1 (3)
N1—Mn1—N397.78 (14)C10—C9—C8118.3 (4)
N2—Mn1—N391.22 (14)C11—C10—C9122.1 (4)
C2—O1—Mn1130.4 (2)C11—C10—H10119.0
C9—O2—Mn1121.3 (2)C9—C10—H10119.0
C7—N1—C15120.9 (3)C10—C11—C12119.8 (4)
C7—N1—Mn1126.2 (3)C10—C11—H11120.1
C15—N1—Mn1112.9 (2)C12—C11—H11120.1
C14—N2—C16122.7 (3)C13—C12—C11119.5 (4)
C14—N2—Mn1124.2 (3)C13—C12—H12120.3
C16—N2—Mn1113.0 (2)C11—C12—H12120.3
C17—N3—Mn1145.7 (4)C12—C13—C8121.2 (4)
C6—C1—C2118.7 (4)C12—C13—H13119.4
C6—C1—C7118.8 (4)C8—C13—H13119.4
C2—C1—C7122.5 (4)N2—C14—C8124.2 (3)
O1—C2—C3118.3 (4)N2—C14—H14117.9
O1—C2—C1123.4 (3)C8—C14—H14117.9
C3—C2—C1118.2 (4)N1—C15—C16107.4 (3)
C4—C3—C2121.6 (5)N1—C15—H15A110.2
C4—C3—H3119.2C16—C15—H15A110.2
C2—C3—H3119.2N1—C15—H15B110.2
C3—C4—C5120.8 (5)C16—C15—H15B110.2
C3—C4—H4119.6H15A—C15—H15B108.5
C5—C4—H4119.6N2—C16—C15107.2 (3)
C6—C5—C4118.9 (4)N2—C16—H16A110.3
C6—C5—H5120.5C15—C16—H16A110.3
C4—C5—H5120.5N2—C16—H16B110.3
C5—C6—C1121.8 (5)C15—C16—H16B110.3
C5—C6—H6119.1H16A—C16—H16B108.5
C1—C6—H6119.1N3—C17—O3178.2 (6)

Experimental details

Crystal data
Chemical formula[Mn(C16H14N2O2)(NCO)]
Mr363.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.6399 (16), 10.9133 (18), 15.198 (3)
β (°) 97.826 (3)
V3)1584.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.37 × 0.35 × 0.23
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.743, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
7377, 2698, 1769
Rint0.047
(sin θ/λ)max1)0.589
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.131, 1.01
No. of reflections2698
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.33

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

he author thanks the Doctoral Starting Fund of Shandong University of Technology for support.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, H., Zhong, Z. J., Duan, C.-Y., You, X.-Z., Mak, T. C. W. & Wu, B. (1997). J. Coord. Chem. 41, 183–189.  CrossRef CAS Web of Science Google Scholar
First citationLu, Z. H., Yuan, M., Pan, F., Gao, S., Zhang, D. Q. & Zhu, D. B. (2006). Inorg. Chem. 45, 3538–3548.  Web of Science CSD CrossRef PubMed Google Scholar
First citationMikuriya, M., Yamato, Y. & Tokii, T. (1992). Bull. Chem. Soc. Jpn, 65, 1466–1468.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S.-B., Tang, K., Yang, B.-H. & Li, S. (2008). Acta Cryst. E64, m543.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds