organic compounds
4-Bromomethyl-7,8-dimethylcoumarin
aDepartment of Physics, Govt. College for Women, Kolar 563 101, Karnataka, India, bDepartment of Physics, Govt. College for Women, Mandya 571 401, Karnataka, India, and cDepartment of Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India
*Correspondence e-mail: kvarjunagowda@gmail.com
In the title molecule, C12H11BrO2, all non-H atoms with the exception of the Br atom are essentially coplanar (r.m.s. deviation = 0.018 Å). The C—Br bond is inclined by 80.17 (12)° to this plane. The is stabilized by weak C—H⋯O hydrogen bonds.
Related literature
For potential synthetic applications of the title compound, see: Cui et al. (2007); Zhao et al. (2008). For related structures, see: Gowda et al. (2009, 2010).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810049135/lh5165sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810049135/lh5165Isup2.hkl
To a mixture of equimolar quantities of 2,3-dimethylphenol (0.1 mol) and 4-bromoethylacetoacetate (0.1 mol), sulfuric acid (30 ml) was added dropwise with stirring while maintaining the temperature between 273-278K. The reaction mixture was allowed to stand in ice chest overnight and the deep red coloured solution was poured into a stream of crushed ice. The solid which separated was filtered and washed with water and then with cold ethanol to yield a colourless compound which was recrystallized from acetic acid.
All H atoms were positioned geometrically and refined using a riding model with bond lengths 0.96 (methyl) or 0.93 Å (aromatic) and Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for all other H atoms.
The title compound has potential use in Heck and Suzuki cross coupling reactions (Cui et al., 2007) and Negishi coupling reactions (Zhao et al., 2008). In continuation of our work on the crystal structures of halogenated coumarin derivatives (Gowda et al., 2009; 2010) herein we report
of title compound.The molecular structure of the title compound is shown in Fig. 1. In the molecule, with the exception of the Br atom, all non-hydrogen atoms [C1-C12/O1/O2] are essentially planar [r.m.s. = 0.018Å]]. The C-Br bond is inclined [defined by the C7/C12/Br1 plane] by 80.17 (12)° to this plane. The
is stabilized by weak C-H···O hydrogen bonds (Fig. 2).For potential synthetic applications of the title compound, see: Cui et al. (2007); Zhao et al. (2008). For related structures, see: Gowda et al. (2009, 2010).
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound shown with 50% probability displacement ellipsoids. | |
Fig. 2. Part of the crystal structure showing weak C-H···O hydrogen bonds as dashed lines. |
C12H11BrO2 | F(000) = 1072 |
Mr = 267.12 | Dx = 1.685 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 5018 reflections |
a = 18.5025 (14) Å | θ = 2.4–28.6° |
b = 9.8785 (7) Å | µ = 3.88 mm−1 |
c = 13.1639 (10) Å | T = 292 K |
β = 118.908 (2)° | Block, colourless |
V = 2106.3 (3) Å3 | 0.30 × 0.20 × 0.20 mm |
Z = 8 |
Bruker Kappa APEXII CCD diffractometer | 3610 independent reflections |
Radiation source: fine-focus sealed tube | 2516 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ω and φ scans | θmax = 31.9°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker 2004) | h = −27→27 |
Tmin = 0.432, Tmax = 0.571 | k = −14→14 |
14710 measured reflections | l = −19→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0574P)2 + 1.9612P] where P = (Fo2 + 2Fc2)/3 |
3610 reflections | (Δ/σ)max = 0.001 |
138 parameters | Δρmax = 1.78 e Å−3 |
0 restraints | Δρmin = −0.73 e Å−3 |
C12H11BrO2 | V = 2106.3 (3) Å3 |
Mr = 267.12 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 18.5025 (14) Å | µ = 3.88 mm−1 |
b = 9.8785 (7) Å | T = 292 K |
c = 13.1639 (10) Å | 0.30 × 0.20 × 0.20 mm |
β = 118.908 (2)° |
Bruker Kappa APEXII CCD diffractometer | 3610 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker 2004) | 2516 reflections with I > 2σ(I) |
Tmin = 0.432, Tmax = 0.571 | Rint = 0.026 |
14710 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.05 | Δρmax = 1.78 e Å−3 |
3610 reflections | Δρmin = −0.73 e Å−3 |
138 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.36207 (15) | 0.1296 (2) | 0.0849 (2) | 0.0332 (5) | |
C2 | 0.39174 (15) | 0.1512 (2) | 0.2032 (2) | 0.0363 (5) | |
C3 | 0.40658 (16) | 0.2836 (3) | 0.24674 (19) | 0.0398 (5) | |
H3 | 0.4263 | 0.2974 | 0.3257 | 0.048* | |
C4 | 0.39291 (16) | 0.3930 (3) | 0.17644 (19) | 0.0366 (5) | |
H4 | 0.4033 | 0.4797 | 0.2079 | 0.044* | |
C5 | 0.36354 (14) | 0.3756 (2) | 0.05795 (17) | 0.0289 (4) | |
C6 | 0.34902 (13) | 0.2433 (2) | 0.01547 (17) | 0.0292 (4) | |
C7 | 0.34654 (14) | 0.4850 (2) | −0.02371 (18) | 0.0303 (4) | |
C8 | 0.31617 (15) | 0.4562 (2) | −0.13705 (19) | 0.0354 (5) | |
H8 | 0.3025 | 0.5272 | −0.1896 | 0.043* | |
C9 | 0.30411 (16) | 0.3200 (2) | −0.1796 (2) | 0.0371 (5) | |
C10 | 0.34498 (19) | −0.0090 (2) | 0.0328 (3) | 0.0460 (6) | |
H10A | 0.3014 | −0.0043 | −0.0461 | 0.069* | |
H10B | 0.3287 | −0.0674 | 0.0764 | 0.069* | |
H10C | 0.3939 | −0.0443 | 0.0346 | 0.069* | |
C11 | 0.4099 (2) | 0.0349 (3) | 0.2855 (3) | 0.0530 (7) | |
H11A | 0.3594 | −0.0110 | 0.2678 | 0.079* | |
H11B | 0.4350 | 0.0684 | 0.3637 | 0.079* | |
H11C | 0.4469 | −0.0271 | 0.2778 | 0.079* | |
C12 | 0.36044 (16) | 0.6286 (2) | 0.0163 (2) | 0.0383 (5) | |
H12A | 0.3423 | 0.6421 | 0.0734 | 0.046* | |
H12B | 0.3287 | 0.6883 | −0.0489 | 0.046* | |
O1 | 0.32072 (11) | 0.21805 (17) | −0.10098 (13) | 0.0360 (4) | |
O2 | 0.28162 (15) | 0.2864 (2) | −0.27881 (15) | 0.0554 (5) | |
Br1 | 0.478174 (17) | 0.67133 (3) | 0.08473 (2) | 0.04795 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0327 (11) | 0.0270 (10) | 0.0415 (11) | 0.0027 (9) | 0.0190 (9) | 0.0012 (9) |
C2 | 0.0344 (12) | 0.0387 (13) | 0.0398 (11) | 0.0035 (10) | 0.0211 (10) | 0.0077 (9) |
C3 | 0.0438 (13) | 0.0458 (13) | 0.0298 (10) | −0.0008 (11) | 0.0178 (9) | −0.0007 (9) |
C4 | 0.0432 (13) | 0.0338 (12) | 0.0336 (10) | −0.0029 (10) | 0.0192 (9) | −0.0068 (9) |
C5 | 0.0311 (11) | 0.0248 (9) | 0.0302 (9) | 0.0002 (8) | 0.0143 (8) | −0.0018 (7) |
C6 | 0.0300 (10) | 0.0285 (10) | 0.0293 (9) | 0.0007 (8) | 0.0144 (8) | −0.0022 (7) |
C7 | 0.0296 (10) | 0.0252 (10) | 0.0348 (9) | 0.0003 (8) | 0.0145 (8) | −0.0006 (8) |
C8 | 0.0386 (12) | 0.0317 (11) | 0.0333 (9) | −0.0003 (9) | 0.0153 (9) | 0.0036 (8) |
C9 | 0.0383 (12) | 0.0369 (12) | 0.0323 (9) | −0.0018 (10) | 0.0140 (9) | −0.0019 (9) |
C10 | 0.0564 (16) | 0.0264 (11) | 0.0576 (14) | 0.0007 (11) | 0.0295 (13) | −0.0007 (10) |
C11 | 0.0552 (17) | 0.0542 (17) | 0.0511 (14) | 0.0062 (14) | 0.0269 (13) | 0.0211 (13) |
C12 | 0.0402 (13) | 0.0256 (10) | 0.0434 (12) | 0.0017 (10) | 0.0158 (10) | −0.0003 (9) |
O1 | 0.0464 (10) | 0.0278 (8) | 0.0312 (7) | −0.0013 (7) | 0.0169 (7) | −0.0053 (6) |
O2 | 0.0764 (15) | 0.0524 (11) | 0.0310 (8) | −0.0053 (11) | 0.0208 (9) | −0.0057 (8) |
Br1 | 0.04529 (18) | 0.04007 (16) | 0.04762 (16) | −0.00806 (11) | 0.01383 (12) | 0.00024 (10) |
C1—C6 | 1.393 (3) | C8—C9 | 1.433 (3) |
C1—C2 | 1.394 (3) | C8—H8 | 0.9300 |
C1—C10 | 1.495 (3) | C9—O2 | 1.210 (3) |
C2—C3 | 1.401 (4) | C9—O1 | 1.368 (3) |
C2—C11 | 1.502 (3) | C10—H10A | 0.9600 |
C3—C4 | 1.364 (4) | C10—H10B | 0.9600 |
C3—H3 | 0.9300 | C10—H10C | 0.9600 |
C4—C5 | 1.392 (3) | C11—H11A | 0.9600 |
C4—H4 | 0.9300 | C11—H11B | 0.9600 |
C5—C6 | 1.396 (3) | C11—H11C | 0.9600 |
C5—C7 | 1.447 (3) | C12—Br1 | 1.959 (3) |
C6—O1 | 1.382 (2) | C12—H12A | 0.9700 |
C7—C8 | 1.346 (3) | C12—H12B | 0.9700 |
C7—C12 | 1.492 (3) | ||
C6—C1—C2 | 117.3 (2) | C9—C8—H8 | 118.9 |
C6—C1—C10 | 120.4 (2) | O2—C9—O1 | 116.7 (2) |
C2—C1—C10 | 122.3 (2) | O2—C9—C8 | 125.9 (2) |
C1—C2—C3 | 119.6 (2) | O1—C9—C8 | 117.38 (19) |
C1—C2—C11 | 121.2 (2) | C1—C10—H10A | 109.5 |
C3—C2—C11 | 119.2 (2) | C1—C10—H10B | 109.5 |
C4—C3—C2 | 121.7 (2) | H10A—C10—H10B | 109.5 |
C4—C3—H3 | 119.1 | C1—C10—H10C | 109.5 |
C2—C3—H3 | 119.1 | H10A—C10—H10C | 109.5 |
C3—C4—C5 | 120.4 (2) | H10B—C10—H10C | 109.5 |
C3—C4—H4 | 119.8 | C2—C11—H11A | 109.5 |
C5—C4—H4 | 119.8 | C2—C11—H11B | 109.5 |
C4—C5—C6 | 117.4 (2) | H11A—C11—H11B | 109.5 |
C4—C5—C7 | 124.5 (2) | C2—C11—H11C | 109.5 |
C6—C5—C7 | 118.09 (18) | H11A—C11—H11C | 109.5 |
O1—C6—C1 | 115.77 (19) | H11B—C11—H11C | 109.5 |
O1—C6—C5 | 120.65 (19) | C7—C12—Br1 | 109.33 (17) |
C1—C6—C5 | 123.6 (2) | C7—C12—H12A | 109.8 |
C8—C7—C5 | 119.4 (2) | Br1—C12—H12A | 109.8 |
C8—C7—C12 | 120.0 (2) | C7—C12—H12B | 109.8 |
C5—C7—C12 | 120.64 (19) | Br1—C12—H12B | 109.8 |
C7—C8—C9 | 122.3 (2) | H12A—C12—H12B | 108.3 |
C7—C8—H8 | 118.9 | C9—O1—C6 | 122.16 (18) |
C6—C1—C2—C3 | 0.3 (4) | C7—C5—C6—C1 | −179.3 (2) |
C10—C1—C2—C3 | 180.0 (2) | C4—C5—C7—C8 | −178.3 (2) |
C6—C1—C2—C11 | −178.3 (2) | C6—C5—C7—C8 | 1.2 (3) |
C10—C1—C2—C11 | 1.3 (4) | C4—C5—C7—C12 | 0.3 (4) |
C1—C2—C3—C4 | −0.1 (4) | C6—C5—C7—C12 | 179.7 (2) |
C11—C2—C3—C4 | 178.6 (3) | C5—C7—C8—C9 | −3.5 (4) |
C2—C3—C4—C5 | −0.1 (4) | C12—C7—C8—C9 | 178.0 (2) |
C3—C4—C5—C6 | 0.0 (4) | C7—C8—C9—O2 | −175.6 (3) |
C3—C4—C5—C7 | 179.5 (2) | C7—C8—C9—O1 | 3.3 (4) |
C2—C1—C6—O1 | 179.1 (2) | C8—C7—C12—Br1 | −101.7 (2) |
C10—C1—C6—O1 | −0.5 (3) | C5—C7—C12—Br1 | 79.8 (2) |
C2—C1—C6—C5 | −0.4 (4) | O2—C9—O1—C6 | 178.2 (2) |
C10—C1—C6—C5 | 180.0 (2) | C8—C9—O1—C6 | −0.8 (4) |
C4—C5—C6—O1 | −179.3 (2) | C1—C6—O1—C9 | 179.1 (2) |
C7—C5—C6—O1 | 1.2 (3) | C5—C6—O1—C9 | −1.4 (3) |
C4—C5—C6—C1 | 0.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12B···O2i | 0.97 | 2.40 | 3.342 (3) | 163 |
Symmetry code: (i) −x+1/2, y+1/2, −z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H11BrO2 |
Mr | 267.12 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 292 |
a, b, c (Å) | 18.5025 (14), 9.8785 (7), 13.1639 (10) |
β (°) | 118.908 (2) |
V (Å3) | 2106.3 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 3.88 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker 2004) |
Tmin, Tmax | 0.432, 0.571 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14710, 3610, 2516 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.742 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.116, 1.05 |
No. of reflections | 3610 |
No. of parameters | 138 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.78, −0.73 |
Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12B···O2i | 0.97 | 2.40 | 3.342 (3) | 163 |
Symmetry code: (i) −x+1/2, y+1/2, −z−1/2. |
Footnotes
‡Alternative affiliation: MVJ College of Engineering, Bangalore 560 067, India.
Acknowledgements
RG thanks MVJ College of Engineering, Bangalore (VTU Research center), for providing research facilities. The authors also thank the SAIF IIT Madras, Chennai, for the data collection.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cui, X., Li, J., Zhang, Z.-P., Fu, Y., Liu, L. & Guo, Q.-X. (2007). J. Org. Chem. 72, 9342–9345. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gowda, R., Alawandi, G. N., Kulkarni, M. V. & Gowda, K. V. A. (2009). Acta Cryst. E65, o2446. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, R., Basanagouda, M., Kulkarni, M. V. & Gowda, K. V. A. (2010). Acta Cryst. E66, o2906. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, J., Liu, Y. & Ma, S. (2008). Org. Lett. 10, 1521–1523. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound has potential use in Heck and Suzuki cross coupling reactions (Cui et al., 2007) and Negishi coupling reactions (Zhao et al., 2008). In continuation of our work on the crystal structures of halogenated coumarin derivatives (Gowda et al., 2009; 2010) herein we report crystal structure of title compound.
The molecular structure of the title compound is shown in Fig. 1. In the molecule, with the exception of the Br atom, all non-hydrogen atoms [C1-C12/O1/O2] are essentially planar [r.m.s. = 0.018Å]]. The C-Br bond is inclined [defined by the C7/C12/Br1 plane] by 80.17 (12)° to this plane. The crystal structure is stabilized by weak C-H···O hydrogen bonds (Fig. 2).