organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2-(2-Bromo­phen­yl)eth­yl]-4-chloro-2-nitro­benzene

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dRL Fine Chem., Bangalore 560 064, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 18 November 2010; accepted 24 November 2010; online 30 November 2010)

In the title mol­ecule, C14H11BrClNO2, the dihedral angle between the mean planes of the bromo-substitued benzene and the chloro-substituted benzene rings is 1.8 (4) °. The nitro group is twisted by 15.8 (6)° from the mean plane of the benzene ring to which it is attached. The crystal packing is influenced by weak inter­molecular C—H⋯O inter­actions and weak ππ stacking inter­actions [centroid–centroid distances = 3.903 (2), 3.596 (2) and 3.903 (2) Å].

Related literature

For background and a related structure, see: Post & Horn (1977[Post, M. L. & Horn, A. S. (1977). Acta Cryst. B33, 2590-2595.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11BrClNO2

  • Mr = 340.60

  • Orthorhombic, P n a 21

  • a = 15.7756 (4) Å

  • b = 7.3795 (2) Å

  • c = 11.5236 (3) Å

  • V = 1341.53 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.99 mm−1

  • T = 150 K

  • 0.47 × 0.35 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.655, Tmax = 1.000

  • 3043 measured reflections

  • 1901 independent reflections

  • 1839 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.084

  • S = 1.08

  • 1901 reflections

  • 172 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 472 Friedel pairs

  • Flack parameter: 0.04 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O2i 0.95 2.62 3.479 (6) 150
C13—H13A⋯O1ii 0.95 2.60 3.421 (4) 145
Symmetry codes: (i) x, y, z-1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1-(4-Chloro-2-nitrophenethyl)-2-bromobenzene is an intermediate in the synthesis of 10,11–dihydro-5H-dibenzo[b,f]azepine derivatives. It has also been used successfully in the preparation of a number of biologically active compounds and drugs; e.g. the antidepressants imipramine, chloripramine are among the most commonly known. The crystal and molecular structure of the tricyclic antidepressant chlorimipramine hydrochloride is reported (Post & Horn, 1977). In view of the importance of the title compound as a pharmaceutical intermediate, this paper reports its crystal structure.

In the crystal structure of the title compound, C14H11BrClNO2, the dihedral angle between the mean planes of 1-bromo benzene and 2-nitro, 4-chloro benzene rings is 1.8 (4)Å (Fig. 1). The nitro group is twisted 15.8 (6)° from the mean plane of the 2-nitro, 4-chloro benzene ring. Bond angles and distances (Allen et al., 1987) are in normal ranges. Crystal packing is influenced by weak C—H···O intermolecular interactions (Table 2) and weak ππ stacking interactions (Fig. 2).

Related literature top

For background and a related structure, see: Post & Horn (1977). For bond-length data, see: Allen et al. (1987).

Experimental top

1-[2(2-Bromo-phenylethyl]-4-chloro-2-nitrobenzene was obtained as a gift sample from RL Fine Chem, Bangalore. The compound was recrystallized from dichloromethane (m.p.: 361–363 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH) and 0.99Å (CH2). Isotropic displacement parameters for these atoms were set to 1.18–1.21 (CH), or 1.18 (CH2) times Ueq of the parent atom.

Structure description top

1-(4-Chloro-2-nitrophenethyl)-2-bromobenzene is an intermediate in the synthesis of 10,11–dihydro-5H-dibenzo[b,f]azepine derivatives. It has also been used successfully in the preparation of a number of biologically active compounds and drugs; e.g. the antidepressants imipramine, chloripramine are among the most commonly known. The crystal and molecular structure of the tricyclic antidepressant chlorimipramine hydrochloride is reported (Post & Horn, 1977). In view of the importance of the title compound as a pharmaceutical intermediate, this paper reports its crystal structure.

In the crystal structure of the title compound, C14H11BrClNO2, the dihedral angle between the mean planes of 1-bromo benzene and 2-nitro, 4-chloro benzene rings is 1.8 (4)Å (Fig. 1). The nitro group is twisted 15.8 (6)° from the mean plane of the 2-nitro, 4-chloro benzene ring. Bond angles and distances (Allen et al., 1987) are in normal ranges. Crystal packing is influenced by weak C—H···O intermolecular interactions (Table 2) and weak ππ stacking interactions (Fig. 2).

For background and a related structure, see: Post & Horn (1977). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis.
1-[2-(2-Bromophenyl)ethyl]-4-chloro-2-nitrobenzene top
Crystal data top
C14H11BrClNO2F(000) = 680
Mr = 340.60Dx = 1.686 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2c -2nCell parameters from 2576 reflections
a = 15.7756 (4) Åθ = 4.8–73.8°
b = 7.3795 (2) ŵ = 5.99 mm1
c = 11.5236 (3) ÅT = 150 K
V = 1341.53 (6) Å3Plate, pale yellow
Z = 40.47 × 0.35 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
1901 independent reflections
Radiation source: Enhance (Cu) X-ray Source1839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.5081 pixels mm-1θmax = 74.0°, θmin = 5.6°
ω scansh = 1319
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 88
Tmin = 0.655, Tmax = 1.000l = 1113
3043 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.060P)2 + 0.3149P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1901 reflectionsΔρmax = 0.51 e Å3
172 parametersΔρmin = 0.36 e Å3
1 restraintAbsolute structure: Flack (1983), 472 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (2)
Crystal data top
C14H11BrClNO2V = 1341.53 (6) Å3
Mr = 340.60Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 15.7756 (4) ŵ = 5.99 mm1
b = 7.3795 (2) ÅT = 150 K
c = 11.5236 (3) Å0.47 × 0.35 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
1901 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1839 reflections with I > 2σ(I)
Tmin = 0.655, Tmax = 1.000Rint = 0.021
3043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.51 e Å3
S = 1.08Δρmin = 0.36 e Å3
1901 reflectionsAbsolute structure: Flack (1983), 472 Friedel pairs
172 parametersAbsolute structure parameter: 0.04 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.18735 (2)0.86647 (5)0.24466 (4)0.03870 (15)
Cl0.01563 (7)0.92827 (15)0.48765 (11)0.0500 (3)
O10.36114 (15)0.8900 (4)0.2328 (3)0.0367 (7)
O20.3344 (2)0.8808 (4)0.4162 (3)0.0452 (7)
N10.31207 (17)0.8805 (4)0.3146 (4)0.0272 (7)
C10.3270 (2)0.9177 (5)0.0882 (4)0.0258 (7)
C20.3041 (2)0.8721 (5)0.2013 (4)0.0283 (8)
C30.3634 (3)0.8310 (5)0.2862 (4)0.0366 (9)
H3A0.34580.80040.36260.044*
C40.4477 (3)0.8353 (5)0.2583 (5)0.0419 (11)
H4A0.48900.80850.31570.050*
C50.4730 (3)0.8786 (5)0.1466 (4)0.0379 (10)
H5A0.53150.88040.12750.046*
C60.4135 (2)0.9190 (5)0.0635 (4)0.0315 (8)
H6A0.43170.94860.01270.038*
C70.2645 (2)0.9579 (4)0.0073 (3)0.0270 (7)
H7A0.21261.01180.02640.032*
H7B0.28941.04680.06180.032*
C80.2413 (2)0.7822 (4)0.0736 (3)0.0244 (6)
H8A0.20900.70100.02150.029*
H8B0.29410.71860.09630.029*
C90.18952 (19)0.8201 (5)0.1804 (3)0.0226 (7)
C100.2198 (2)0.8680 (4)0.2905 (3)0.0203 (6)
C110.1674 (2)0.9012 (5)0.3857 (3)0.0268 (7)
H11A0.19050.93170.45930.032*
C120.0819 (3)0.8884 (5)0.3697 (4)0.0309 (8)
C130.0477 (2)0.8412 (4)0.2638 (6)0.0353 (8)
H13A0.01200.83210.25430.042*
C140.1010 (2)0.8078 (5)0.1726 (3)0.0285 (7)
H14A0.07670.77450.10020.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0430 (2)0.0377 (2)0.0354 (2)0.00382 (15)0.0082 (2)0.0031 (2)
Cl0.0498 (6)0.0514 (5)0.0486 (6)0.0055 (5)0.0305 (5)0.0064 (5)
O10.0212 (10)0.0559 (15)0.0331 (18)0.0000 (10)0.0030 (11)0.0015 (12)
O20.0398 (14)0.066 (2)0.0297 (16)0.0066 (13)0.0109 (14)0.0040 (14)
N10.0258 (16)0.0237 (15)0.032 (2)0.0007 (11)0.0051 (13)0.0018 (13)
C10.0401 (17)0.0139 (14)0.0234 (18)0.0017 (12)0.0040 (14)0.0001 (13)
C20.0379 (19)0.0214 (17)0.0256 (18)0.0019 (13)0.0027 (14)0.0008 (12)
C30.062 (3)0.0214 (15)0.0261 (18)0.0024 (16)0.0109 (17)0.0031 (14)
C40.050 (2)0.0329 (17)0.042 (3)0.0008 (15)0.024 (2)0.0017 (19)
C50.036 (2)0.0307 (19)0.047 (3)0.0015 (14)0.0067 (18)0.0013 (17)
C60.0378 (18)0.0233 (15)0.033 (2)0.0034 (14)0.0025 (15)0.0012 (15)
C70.0364 (16)0.0208 (14)0.0238 (17)0.0064 (13)0.0037 (14)0.0006 (12)
C80.0289 (16)0.0196 (14)0.0247 (15)0.0023 (12)0.0003 (12)0.0021 (12)
C90.0267 (18)0.0149 (14)0.0262 (19)0.0006 (11)0.0007 (13)0.0024 (14)
C100.0262 (16)0.0136 (14)0.0210 (17)0.0002 (11)0.0004 (12)0.0021 (9)
C110.0349 (18)0.0198 (15)0.0257 (19)0.0010 (13)0.0029 (15)0.0018 (14)
C120.0359 (19)0.0255 (17)0.0312 (19)0.0023 (13)0.0181 (16)0.0054 (14)
C130.0232 (14)0.0319 (17)0.051 (2)0.0028 (12)0.003 (2)0.005 (2)
C140.0261 (16)0.0273 (16)0.0322 (19)0.0031 (13)0.0055 (14)0.0010 (15)
Geometric parameters (Å, º) top
Br—C21.909 (4)C7—C81.549 (4)
Cl—C121.739 (4)C7—H7A0.9900
O1—N11.222 (5)C7—H7B0.9900
O2—N11.222 (6)C8—C91.503 (5)
N1—C101.485 (4)C8—H8A0.9900
C1—C21.393 (6)C8—H8B0.9900
C1—C61.393 (5)C9—C101.401 (5)
C1—C71.507 (5)C9—C141.403 (4)
C2—C31.388 (6)C10—C111.395 (5)
C3—C41.368 (6)C11—C121.365 (6)
C3—H3A0.9500C11—H11A0.9500
C4—C51.385 (8)C12—C131.379 (8)
C4—H4A0.9500C13—C141.368 (6)
C5—C61.374 (6)C13—H13A0.9500
C5—H5A0.9500C14—H14A0.9500
C6—H6A0.9500
O1—N1—O2123.8 (3)H7A—C7—H7B108.1
O1—N1—C10118.7 (3)C9—C8—C7112.1 (3)
O2—N1—C10117.5 (3)C9—C8—H8A109.2
C2—C1—C6116.6 (4)C7—C8—H8A109.2
C2—C1—C7124.1 (3)C9—C8—H8B109.2
C6—C1—C7119.3 (3)C7—C8—H8B109.2
C3—C2—C1122.5 (4)H8A—C8—H8B107.9
C3—C2—Br117.5 (4)C10—C9—C14114.4 (3)
C1—C2—Br120.0 (3)C10—C9—C8127.1 (3)
C4—C3—C2119.0 (4)C14—C9—C8118.5 (3)
C4—C3—H3A120.5C11—C10—C9123.7 (3)
C2—C3—H3A120.5C11—C10—N1115.0 (3)
C3—C4—C5120.3 (4)C9—C10—N1121.3 (3)
C3—C4—H4A119.9C12—C11—C10117.9 (4)
C5—C4—H4A119.9C12—C11—H11A121.1
C6—C5—C4120.1 (4)C10—C11—H11A121.1
C6—C5—H5A120.0C11—C12—C13121.5 (4)
C4—C5—H5A120.0C11—C12—Cl118.5 (4)
C5—C6—C1121.6 (4)C13—C12—Cl120.0 (3)
C5—C6—H6A119.2C14—C13—C12119.0 (3)
C1—C6—H6A119.2C14—C13—H13A120.5
C1—C7—C8110.5 (3)C12—C13—H13A120.5
C1—C7—H7A109.6C13—C14—C9123.5 (4)
C8—C7—H7A109.6C13—C14—H14A118.3
C1—C7—H7B109.6C9—C14—H14A118.3
C8—C7—H7B109.6
C6—C1—C2—C30.4 (5)C8—C9—C10—C11180.0 (3)
C7—C1—C2—C3178.2 (3)C14—C9—C10—N1177.8 (3)
C6—C1—C2—Br179.9 (2)C8—C9—C10—N12.2 (5)
C7—C1—C2—Br2.4 (5)O1—N1—C10—C11165.3 (3)
C1—C2—C3—C40.0 (6)O2—N1—C10—C1114.7 (5)
Br—C2—C3—C4179.4 (3)O1—N1—C10—C916.7 (5)
C2—C3—C4—C50.5 (6)O2—N1—C10—C9163.3 (3)
C3—C4—C5—C60.6 (6)C9—C10—C11—C120.9 (5)
C4—C5—C6—C10.1 (6)N1—C10—C11—C12178.8 (3)
C2—C1—C6—C50.4 (5)C10—C11—C12—C131.1 (6)
C7—C1—C6—C5178.3 (3)C10—C11—C12—Cl179.7 (3)
C2—C1—C7—C890.2 (4)C11—C12—C13—C140.4 (6)
C6—C1—C7—C887.5 (4)Cl—C12—C13—C14179.0 (3)
C1—C7—C8—C9171.4 (3)C12—C13—C14—C90.5 (6)
C7—C8—C9—C1084.5 (4)C10—C9—C14—C130.7 (5)
C7—C8—C9—C1495.5 (4)C8—C9—C14—C13179.3 (3)
C14—C9—C10—C110.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.952.623.479 (6)150
C13—H13A···O1ii0.952.603.421 (4)145
Symmetry codes: (i) x, y, z1; (ii) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC14H11BrClNO2
Mr340.60
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)150
a, b, c (Å)15.7756 (4), 7.3795 (2), 11.5236 (3)
V3)1341.53 (6)
Z4
Radiation typeCu Kα
µ (mm1)5.99
Crystal size (mm)0.47 × 0.35 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.655, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3043, 1901, 1839
Rint0.021
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.084, 1.08
No. of reflections1901
No. of parameters172
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.36
Absolute structureFlack (1983), 472 Friedel pairs
Absolute structure parameter0.04 (2)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.952.623.479 (6)150.0
C13—H13A···O1ii0.952.603.421 (4)144.9
Symmetry codes: (i) x, y, z1; (ii) x1/2, y+3/2, z.
Cg···Cg π-stacking interactions, Cg1 and Cg2 are the centroids of rings C1-C6 and C9-C14. [Symmetry codes: (i) 1/2-x, -1/2+y, -1/2+z; (ii) 1/2-x, 1/2+y, -1/2+z; (iii) 1/2-x, -1/2+y,1/2+z; (iv) 1/2-x, 1/2+y,1/2+z]. top
CgX···CgY (Å)CgX···Perp (Å)CgY···Perp (Å)
Cg1···Cg2i3.903 (2)3.5875 (15)-3.5830 (14)
Cg1···Cg2ii3.596 (2)-3.5429 (15)3.5404 (14)
Cg2···Cg1iii3.596 (2)3.5404 (14)-3.5430 (15)
Cg2···Cg1iv3.903 (2)-3.5830 (14)3.5875 (15)
 

Acknowledgements

MSS thanks R. L. Fine Chem. Bangalore, for the gift sample of the title compound and HSY thanks the University of Mysore for the sanction of sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPost, M. L. & Horn, A. S. (1977). Acta Cryst. B33, 2590–2595.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds