metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Cyano­methyl-1,4-diazo­niabi­cyclo­[2.2.2]octane tetra­chloridocuprate(II)

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: cyik@163.com

(Received 7 September 2010; accepted 16 November 2010; online 24 November 2010)

In the crystal structure of the title compound, (C8H15N3)[CuCl4], the cations and anions, in which the CuII atom is tetra­hedrally coordinated, are linked via N—H⋯Cl hydrogen bonds into chains that are elongated in the c-axis direction.

Related literature

For a similar structure, see: Wen et al. (2004[Wen, Y.-H., Cheng, J.-K., Zhang, J., Li, Z.-J. & Yao, Y.-G. (2004). Acta Cryst. C60, m618-m619.]). For our ongoing investigations of DABCO derivatives, see: Chen et al. (2010[Chen, L. Z., Huang, Y., Xiong, R. G. & Hu, H. W. (2010). J. Mol. Struct. 963, 16-21.]); Zhang et al. (2009[Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. D. (2009). J. Am. Chem. Soc. 131, 12544-12545.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H15N3)[CuCl4]

  • Mr = 358.57

  • Monoclinic, P 21 /c

  • a = 8.2714 (6) Å

  • b = 13.6585 (8) Å

  • c = 12.1636 (10) Å

  • β = 96.501 (5)°

  • V = 1365.35 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.36 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.641, Tmax = 1.000

  • 14635 measured reflections

  • 3123 independent reflections

  • 2307 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.118

  • S = 1.09

  • 3123 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −1.00 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Cl3i 0.94 2.58 3.325 (3) 136
N1—H1C⋯Cl1 0.94 2.70 3.247 (3) 118
N1—H1C⋯Cl2 0.94 2.80 3.441 (3) 126
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Only a few crystal structures containing the 1-(cyanomethyl)-4-aza-1-azonia-bicyclo-[2.2.2]octane [C8H15N3[+ cation have been determined. In our ongoing investigations in the field of DABCO derivative some of which may be ferroelectrics (Zhang et al., 2009; Chen et al. 2010) the title compound was prepared and characterized by single-crystal X-ray diffraction.

The asymmetric unit of the title compound contains one [C8H15N3[+ cation and one [CuCl4]2- anion in general positions (Fig. 1). The Cu atoms are coordinated by four Cl atoms with distances in the range of 2.246 (2) to 2.308 (6) Å. The Cl—Cu—Cl bond angles are between 99.01 (5) and 126.10 (5)° which shows that the coordination polyhedron can be described as a strongly distorted tetrahedron. The structure of the [CuCl4]2- anion is close to those observed in similar complexes, like in (C10H10N2S)[CuCl4] (Wen et al., 2004). The organic cations and the complex anions are linked by N—H···Cl hydrogen-bonding interactions (Fig. 2 and Tab. 1). The N—H H atom attached to N1 interacts two Cl atoms of one [CuCl4]2- anion and one Cl atom of a further adjacent [CuCl4]2- anion with N1—H1C···Cl1, N1—H1C···Cl2 and N1—H1C···Cl3i distances of 2.70, 2.80 and 2.58Å, respectively [symmetry codes: (i) x, -y + 1/2, z + 1/2].

Related literature top

For a similar structure, see: Wen et al. (2004). For our ongoing investigations of DABCO derivatives, see: Chen et al. (2010); Zhang et al. (2009).

Experimental top

Bromoacetonitrile (0.1 mol, 12.00 g) was added to a CH3CN (25 ml) solution of 1,4-Diaza-bicyclo[2.2.2]octane (DABCO) (0.05 mol, 5.6 g) with stirring for 1 h at room temperature. 1-(cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane bromide quickly formed as white solid was filtered, washed with acetonitrile and dried (yield: 80%). CuCl2.2H2O (0.001 mol, 0.171 g) and 2 ml 36% HCl were dissolved in MeOH (20 ml) and 1-(cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane bromide (0.002 mol, 0.464 g) in H2O (20 ml) was added. The resulting solution was stirred until a clear solution was obtained. After slow evaporation of the solvent, red-brown block crystals of the title compound suitable for X-ray analysis were obtained in about 60% yield.

Refinement top

The C—H H atoms were positioned with idealized geometry and refined using a riding model (Uiso(H) = 1.2 Ueq(C).

Structure description top

Only a few crystal structures containing the 1-(cyanomethyl)-4-aza-1-azonia-bicyclo-[2.2.2]octane [C8H15N3[+ cation have been determined. In our ongoing investigations in the field of DABCO derivative some of which may be ferroelectrics (Zhang et al., 2009; Chen et al. 2010) the title compound was prepared and characterized by single-crystal X-ray diffraction.

The asymmetric unit of the title compound contains one [C8H15N3[+ cation and one [CuCl4]2- anion in general positions (Fig. 1). The Cu atoms are coordinated by four Cl atoms with distances in the range of 2.246 (2) to 2.308 (6) Å. The Cl—Cu—Cl bond angles are between 99.01 (5) and 126.10 (5)° which shows that the coordination polyhedron can be described as a strongly distorted tetrahedron. The structure of the [CuCl4]2- anion is close to those observed in similar complexes, like in (C10H10N2S)[CuCl4] (Wen et al., 2004). The organic cations and the complex anions are linked by N—H···Cl hydrogen-bonding interactions (Fig. 2 and Tab. 1). The N—H H atom attached to N1 interacts two Cl atoms of one [CuCl4]2- anion and one Cl atom of a further adjacent [CuCl4]2- anion with N1—H1C···Cl1, N1—H1C···Cl2 and N1—H1C···Cl3i distances of 2.70, 2.80 and 2.58Å, respectively [symmetry codes: (i) x, -y + 1/2, z + 1/2].

For a similar structure, see: Wen et al. (2004). For our ongoing investigations of DABCO derivatives, see: Chen et al. (2010); Zhang et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of compound (I) with labelling and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the a axis. C—H H atoms have been omitted for clarity. Intermolecular N—-H···Cl interactions are shown as dashed lines.
1-Cyanomethyl-1,4-diazoniabicyclo[2.2.2]octane tetrachloridocuprate(II) top
Crystal data top
(C8H15N3)[CuCl4]F(000) = 724
Mr = 358.57Dx = 1.744 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3825 reflections
a = 8.2714 (6) Åθ = 2.5–27.5°
b = 13.6585 (8) ŵ = 2.36 mm1
c = 12.1636 (10) ÅT = 293 K
β = 96.501 (5)°Block, red-brown
V = 1365.35 (17) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
3123 independent reflections
Radiation source: fine-focus sealed tube2307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1717
Tmin = 0.641, Tmax = 1.000l = 1515
14635 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0585P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3123 reflectionsΔρmax = 1.00 e Å3
145 parametersΔρmin = 1.00 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0055 (11)
Crystal data top
(C8H15N3)[CuCl4]V = 1365.35 (17) Å3
Mr = 358.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2714 (6) ŵ = 2.36 mm1
b = 13.6585 (8) ÅT = 293 K
c = 12.1636 (10) Å0.2 × 0.2 × 0.2 mm
β = 96.501 (5)°
Data collection top
Rigaku Mercury CCD
diffractometer
3123 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2307 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 1.000Rint = 0.055
14635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.09Δρmax = 1.00 e Å3
3123 reflectionsΔρmin = 1.00 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.72905 (6)0.23247 (4)0.01548 (4)0.02929 (17)
Cl20.51578 (11)0.14877 (7)0.04825 (7)0.0260 (2)
Cl30.74393 (12)0.25165 (8)0.19747 (8)0.0354 (3)
Cl40.95764 (12)0.14720 (8)0.03958 (8)0.0352 (3)
Cl10.67871 (13)0.38977 (7)0.02896 (9)0.0358 (3)
N10.3987 (4)0.3497 (2)0.1903 (3)0.0289 (7)
H1C0.49470.31620.17880.035*
C80.0796 (5)0.5439 (3)0.2033 (3)0.0309 (9)
C30.3247 (5)0.2807 (3)0.2658 (3)0.0314 (9)
H3A0.39440.27500.33520.038*
H3B0.31310.21630.23220.038*
N20.1337 (3)0.4183 (2)0.2368 (2)0.0230 (7)
C10.2879 (5)0.3613 (3)0.0877 (3)0.0338 (9)
H1A0.26380.29780.05430.041*
H1B0.33940.40120.03560.041*
C70.0253 (5)0.4565 (3)0.2655 (3)0.0321 (9)
H7A0.10710.40580.25140.039*
H7B0.01530.47150.34400.039*
C50.4289 (5)0.4464 (3)0.2451 (4)0.0372 (10)
H5A0.47010.49230.19400.045*
H5B0.50970.43970.30890.045*
N30.1269 (5)0.6094 (3)0.1516 (3)0.0440 (10)
C20.1332 (5)0.4093 (4)0.1134 (3)0.0405 (11)
H2A0.04050.37050.08300.049*
H2B0.12370.47370.07980.049*
C60.2706 (5)0.4844 (3)0.2810 (4)0.0479 (12)
H6A0.27830.48650.36110.057*
H6B0.25010.55030.25310.057*
C40.1615 (5)0.3192 (3)0.2863 (4)0.0451 (12)
H4A0.07740.27490.25440.054*
H4B0.15520.32260.36540.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0302 (3)0.0303 (3)0.0276 (3)0.0024 (2)0.0041 (2)0.0008 (2)
Cl20.0255 (4)0.0261 (4)0.0266 (5)0.0000 (4)0.0044 (4)0.0034 (4)
Cl30.0337 (5)0.0479 (6)0.0246 (5)0.0038 (4)0.0025 (4)0.0020 (4)
Cl40.0341 (5)0.0433 (6)0.0286 (5)0.0146 (4)0.0050 (4)0.0086 (4)
Cl10.0400 (6)0.0261 (5)0.0434 (6)0.0009 (4)0.0143 (5)0.0009 (4)
N10.0214 (16)0.0337 (18)0.0318 (18)0.0053 (14)0.0048 (14)0.0047 (15)
C80.029 (2)0.030 (2)0.033 (2)0.0022 (17)0.0030 (17)0.0057 (18)
C30.027 (2)0.033 (2)0.035 (2)0.0029 (17)0.0051 (17)0.0107 (18)
N20.0223 (15)0.0210 (15)0.0255 (17)0.0001 (12)0.0015 (12)0.0021 (13)
C10.034 (2)0.044 (3)0.023 (2)0.0066 (18)0.0025 (17)0.0013 (18)
C70.030 (2)0.032 (2)0.036 (2)0.0047 (17)0.0113 (17)0.0007 (18)
C50.030 (2)0.038 (2)0.043 (3)0.0091 (18)0.0040 (19)0.002 (2)
N30.052 (2)0.032 (2)0.045 (2)0.0094 (17)0.0071 (19)0.0073 (18)
C20.037 (2)0.059 (3)0.025 (2)0.011 (2)0.0003 (18)0.004 (2)
C60.034 (2)0.038 (3)0.068 (3)0.0033 (19)0.010 (2)0.017 (2)
C40.046 (3)0.034 (2)0.059 (3)0.013 (2)0.024 (2)0.024 (2)
Geometric parameters (Å, º) top
Cu1—Cl32.2463 (11)N2—C21.506 (5)
Cu1—Cl42.2568 (10)C1—C21.502 (5)
Cu1—Cl12.2655 (11)C1—H1A0.9700
Cu1—Cl22.3085 (10)C1—H1B0.9700
N1—C11.471 (5)C7—H7A0.9700
N1—C51.488 (5)C7—H7B0.9700
N1—C31.495 (5)C5—C61.518 (6)
N1—H1C0.9405C5—H5A0.9700
C8—N31.137 (5)C5—H5B0.9700
C8—C71.458 (6)C2—H2A0.9700
C3—C41.496 (5)C2—H2B0.9700
C3—H3A0.9700C6—H6A0.9700
C3—H3B0.9700C6—H6B0.9700
N2—C41.488 (5)C4—H4A0.9700
N2—C71.492 (4)C4—H4B0.9700
N2—C61.499 (5)
Cl3—Cu1—Cl4102.42 (4)C8—C7—N2113.1 (3)
Cl3—Cu1—Cl199.01 (4)C8—C7—H7A109.0
Cl4—Cu1—Cl1126.09 (5)N2—C7—H7A109.0
Cl3—Cu1—Cl2121.19 (4)C8—C7—H7B109.0
Cl4—Cu1—Cl2106.93 (4)N2—C7—H7B109.0
Cl1—Cu1—Cl2102.79 (4)H7A—C7—H7B107.8
C1—N1—C5110.0 (3)N1—C5—C6109.0 (3)
C1—N1—C3109.3 (3)N1—C5—H5A109.9
C5—N1—C3110.2 (3)C6—C5—H5A109.9
C1—N1—H1C112.4N1—C5—H5B109.9
C5—N1—H1C113.4C6—C5—H5B109.9
C3—N1—H1C101.2H5A—C5—H5B108.3
N3—C8—C7176.8 (4)C1—C2—N2109.7 (3)
N1—C3—C4108.7 (3)C1—C2—H2A109.7
N1—C3—H3A110.0N2—C2—H2A109.7
C4—C3—H3A110.0C1—C2—H2B109.7
N1—C3—H3B110.0N2—C2—H2B109.7
C4—C3—H3B110.0H2A—C2—H2B108.2
H3A—C3—H3B108.3N2—C6—C5109.4 (3)
C4—N2—C7108.9 (3)N2—C6—H6A109.8
C4—N2—C6109.1 (3)C5—C6—H6A109.8
C7—N2—C6110.8 (3)N2—C6—H6B109.8
C4—N2—C2108.2 (3)C5—C6—H6B109.8
C7—N2—C2111.0 (3)H6A—C6—H6B108.2
C6—N2—C2108.8 (3)N2—C4—C3110.7 (3)
N1—C1—C2109.5 (3)N2—C4—H4A109.5
N1—C1—H1A109.8C3—C4—H4A109.5
C2—C1—H1A109.8N2—C4—H4B109.5
N1—C1—H1B109.8C3—C4—H4B109.5
C2—C1—H1B109.8H4A—C4—H4B108.1
H1A—C1—H1B108.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl3i0.942.583.325 (3)136
N1—H1C···Cl10.942.703.247 (3)118
N1—H1C···Cl20.942.803.441 (3)126
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C8H15N3)[CuCl4]
Mr358.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.2714 (6), 13.6585 (8), 12.1636 (10)
β (°) 96.501 (5)
V3)1365.35 (17)
Z4
Radiation typeMo Kα
µ (mm1)2.36
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.641, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14635, 3123, 2307
Rint0.055
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.09
No. of reflections3123
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 1.00

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl3i0.942.583.325 (3)136.0
N1—H1C···Cl10.942.703.247 (3)118.0
N1—H1C···Cl20.942.803.441 (3)126.1
Symmetry code: (i) x, y+1/2, z+1/2.
 

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, L. Z., Huang, Y., Xiong, R. G. & Hu, H. W. (2010). J. Mol. Struct. 963, 16–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, Y.-H., Cheng, J.-K., Zhang, J., Li, Z.-J. & Yao, Y.-G. (2004). Acta Cryst. C60, m618–m619.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. D. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds