organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bromido(dodeca­fluorosubphthalo­cyaninato)boron(III)

aDepartment of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5, and bDepartment of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: tim.bender@utoronto.ca

(Received 5 October 2010; accepted 15 October 2010; online 6 November 2010)

The title compound, C24BBrF12N6 or Br-F12BsubPc (BsubPc is boronsubphtalocyanine), has a bowl-shaped structure with an approximate mol­ecular C3v symmetry characteristic of boronsubphthalocyanine compounds. In the crystal, mol­ecules are arranged in one-dimensional columns and the boron–subphthalocyanine units within each column are offset and angled in a bowl-to-ligand packing arrangement such that the axial Br atom rests in the aromatic concaved bowl of the neighboring subphthalocyanine with an inter­molecular Br⋯B distance of 3.721 (3) Å.

Related literature

For general background to boronsubphthalocyanines, see: Claessens et al. (2002[Claessens, C. G., Gonzalez-Rodriguez, D. & Torres, T. (2002). Chem. Rev. 102, 835-853.]). For examples of related halogenated boronsubphthalocyanines, see: Morse et al. (2010[Morse, G. E., Helander, M. G., Maka, J. F., Lu, Z. H. & Bender, T. P. (2010). ACS Appl. Mater. Interfaces, 7, 1934-1944.]); Paton et al. (2010[Paton, A. S., Morse, G. E., Maka, J. F., Lough, A. J. & Bender, T. P. (2010). Acta Cryst. E66, o3059.]); Rodriguez-Morgade et al. (2008[Rodriguez-Morgade, M. S., Claessens, C. G., Medina, A., Gonzalez-Rodriguez, D., Gutierrez-Puebla, E., Monge, A., Alkorta, I., Elguero, J. & Torres, T. (2008). Chem. Eur. J. 14, 1342-1350.]); Sharman & van Lier (2005[Sharman, W. M. & van Lier, J. E. (2005). Bioconjug. Chem. 16, 1166-1175.]); Ros-Lis et al. (2005[Ros-Lis, J. V., Martinez-Manez, R. & Soto, J. (2005). Chem. Commun. pp. 5260-5262.]); Fuduka et al. (2002[Fuduka, T., Stork, J. R., Potucek, R. J., Olmstead, M. M., Noll, B. C., Kobayashi, N. & Durfee, W. S. (2002). Angew. Chem. Int. Ed. 41, 2565-2568.]); Claessens & Torres (2002[Claessens, C. G. & Torres, T. (2002). Angew. Chem. Int. Ed. 41, 2561-2565.]). For applications of boronsubphthalocyanines in organic electronics, see: Mutolo et al. (2006[Mutolo, K. L., Mayo, E. I., Rand, B. P., Forrest, S. R. & Thompson, M. E. (2006). J. Am. Chem. Soc. 128, 8108-8109.]); Gommans et al. (2007[Gommans, H., Cheyns, D., Aernouts, T., Girotto, C., Poortmans, J. & Heremans, P. (2007). Adv. Funct. Mater. 17, 2653-2658.], 2009[Gommans, H., Aernouts, T., Verreet, B., Heremans, P., Medina, A., Claessens, C. G. & Torres, T. (2009). Adv. Func. Mater. 19, 3435-3439.]); Kumar et al. (2009[Kumar, H., Kumar, P., Bhardwaj, R., Sharma, G. D., Chand, S., Jain, S. C. & Kumar, V. (2009). J. Phys. D Appl. Phys. 42, 015103.]); Ma et al. (2009a[Ma, B., Woo, C. H., Miyamoto, Y. & Frechet, J. M. J. (2009a). Chem. Mater. 21, 1413-1417.],b[Ma, B., Miyamoto, Y., Woo, C. H., Fréchet, J. M. J., Zhang, F. & Liu, Y. (2009b). Proc. SPIE, 7416, 74161E-1.]); Klaus et al. (2009[Klaus, D., Knecht, R., Dragässer, A., Keil, C. & Schlettwein, D. (2009). Phys. Status Solidi A, 206, 2723-2730.]); Chen et al. (2009[Chen, Y. H., Chang, J. H., Lee, G. R., Wu, I. W., Fang, J. H. & Wu, C. I. (2009). Appl. Phys. Lett. 95, 133302.], 2010[Chen, Y. H., Chang, Y. J., Lee, G. R., Chang, J. H., Wu, I. W., Fang, J. H., Hsu, S. H., Liu, S. W., Wu, C. I. & Pi, T. W. (2010). Org. Electron. 11, 445-449.]); Díaz et al. (2007[Díaz, D. D., Bolink, H. J., Cappelli, L., Claessens, C. G., Coronado, E. & Torres, T. (2007). Tetrahedron Lett. 48, 4657-4660.]); Yasuda & Tsutsui (2007[Yasuda, T. & Tsutsui, T. (2007). Mol. Cryst. Liq. Cryst. 462, 3-9.]); Renshaw et al. (2010[Renshaw, K. C., Xu, X. & Forrest, S. R. (2010). Org. Electron. 11, 175-178.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • C24BBrF12N6

  • Mr = 691.02

  • Monoclinic, P 21 /c

  • a = 11.1681 (5) Å

  • b = 10.8858 (2) Å

  • c = 19.0664 (7) Å

  • β = 95.2270 (15)°

  • V = 2308.33 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.91 mm−1

  • T = 150 K

  • 0.14 × 0.14 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.775, Tmax = 0.835

  • 15166 measured reflections

  • 5263 independent reflections

  • 3728 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.109

  • S = 1.04

  • 5263 reflections

  • 397 parameters

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A edited by C. W. Carter & R. M. Sweet pp. 307-326. London: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Boronsubphthalocyanine (BsubPc), a lower analogue of phthalocyanine, is of interest to researchers in the field of organic electronics (Morse et al., 2010; Mutolo et al. 2006; Gommans et al. 2007; Gommans et al. 2009; Kumar et al. 2009; Ma et al. 2009a; Klaus et al. 2009; Ma et al. 2009b; Chen et al. 2010; Chen et al. 2009; Díaz et al. 2007; Yasuda et al. 2007; and Renshaw et al. 2010). We have synthesized the title compound as it is a precursor to fluorinated phenoxy-BsubPcs (Morse et al. 2010; Paton et al. 2010). The molecular structure of the title compound is shown in Fig. 1. In the crystal structure the molecules are arranged in a concave bowl to ligand motif similar to those of F-F12BsubPc (Rodriguez-Morgade et al. 2008) and Cl-F12BsubPc (Fuduka et al. 2002) whereby the axial halogen atom lies within the concaved face of the BsubPc molecular fragment in close proximately to the boron atom. The net effect is the formation of distinctive columns throughout the crystal structure (Fig. 2). In this arrangment the intermolecular bromine to nitrogen distances are 3.420 (2), 3.466 (2), and 3.427 (2) Å which are close to the sum of the van der Waals radii at 3.40 Å (1.85 Å[Br]+1.55 Å[N]). The distance between Br1 and B1(1 - x, y + 1/2, -z + 1/2) is 3.721 (3) Å which is less the sum of the van der Waals radii at 3.85 Å (1.85 Å[Br]+2.0 Å[B]). The axial boron-bromine bond is oriented towards the inner 5-membered ring of the nieghboring BsubPc unit. This interaction occurs at a distance of 3.471 Å, less than the sum of the van der Waals raddi at 3.55Å (1.85 Å[Br]+1.70 Å[C]). The other two 5-membered rings are seperated from the bromine atom by a distance of 3.572 Å and 3.518 Å, near the sum of the respective van der Waals radii. Neighboring BsubPc units are separated by a B···B distance of 5.471 (5) Å. All van der Waals radii were calculated using the values determined by Bondi (1964).

Related literature top

For general background to boronsubphthalocyanines, see Claessens et al. (2002a). For examples of related halogenated boronsubphthalocyanines, see: Morse et al. (2010); Paton et al. (2010); Rodriguez-Morgade et al. (2008); Sharman et al. (2005); Ros-Lis et al. (2005); Fuduka et al. (2002); Claessens et al. (2002b). For applications of boronsubphthalocyanines in organic electronics, see: Mutolo et al. (2006); Gommans et al. (2007, 2009); Kumar et al. (2009); Ma et al. (2009a,b); Klaus et al. (2009); Chen et al. (2009, 2010); Díaz et al. (2007); Yasuda et al. (2007); Renshaw et al. (2010). For van der Waals radii, see: Bondi (1964).

Experimental top

Br-F12BsubPc was synthesized as previously reported (Morse et al. 2010). Single crystals suitable for X-ray diffraction were prepared by slow vapour diffusion of heptane into a solution of Br-F12BsubPc in benzene.

Structure description top

Boronsubphthalocyanine (BsubPc), a lower analogue of phthalocyanine, is of interest to researchers in the field of organic electronics (Morse et al., 2010; Mutolo et al. 2006; Gommans et al. 2007; Gommans et al. 2009; Kumar et al. 2009; Ma et al. 2009a; Klaus et al. 2009; Ma et al. 2009b; Chen et al. 2010; Chen et al. 2009; Díaz et al. 2007; Yasuda et al. 2007; and Renshaw et al. 2010). We have synthesized the title compound as it is a precursor to fluorinated phenoxy-BsubPcs (Morse et al. 2010; Paton et al. 2010). The molecular structure of the title compound is shown in Fig. 1. In the crystal structure the molecules are arranged in a concave bowl to ligand motif similar to those of F-F12BsubPc (Rodriguez-Morgade et al. 2008) and Cl-F12BsubPc (Fuduka et al. 2002) whereby the axial halogen atom lies within the concaved face of the BsubPc molecular fragment in close proximately to the boron atom. The net effect is the formation of distinctive columns throughout the crystal structure (Fig. 2). In this arrangment the intermolecular bromine to nitrogen distances are 3.420 (2), 3.466 (2), and 3.427 (2) Å which are close to the sum of the van der Waals radii at 3.40 Å (1.85 Å[Br]+1.55 Å[N]). The distance between Br1 and B1(1 - x, y + 1/2, -z + 1/2) is 3.721 (3) Å which is less the sum of the van der Waals radii at 3.85 Å (1.85 Å[Br]+2.0 Å[B]). The axial boron-bromine bond is oriented towards the inner 5-membered ring of the nieghboring BsubPc unit. This interaction occurs at a distance of 3.471 Å, less than the sum of the van der Waals raddi at 3.55Å (1.85 Å[Br]+1.70 Å[C]). The other two 5-membered rings are seperated from the bromine atom by a distance of 3.572 Å and 3.518 Å, near the sum of the respective van der Waals radii. Neighboring BsubPc units are separated by a B···B distance of 5.471 (5) Å. All van der Waals radii were calculated using the values determined by Bondi (1964).

For general background to boronsubphthalocyanines, see Claessens et al. (2002a). For examples of related halogenated boronsubphthalocyanines, see: Morse et al. (2010); Paton et al. (2010); Rodriguez-Morgade et al. (2008); Sharman et al. (2005); Ros-Lis et al. (2005); Fuduka et al. (2002); Claessens et al. (2002b). For applications of boronsubphthalocyanines in organic electronics, see: Mutolo et al. (2006); Gommans et al. (2007, 2009); Kumar et al. (2009); Ma et al. (2009a,b); Klaus et al. (2009); Chen et al. (2009, 2010); Díaz et al. (2007); Yasuda et al. (2007); Renshaw et al. (2010). For van der Waals radii, see: Bondi (1964).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound.
Bromido(1,2,3,4,8,9,10,11,15,16,17,18-dodecafluoro-7,12:14,19-diimino- 21,5-nitrilo-5H-tribenzo[c,h,m][1,6,11]triazacyclopentadecinato)boron(III) top
Crystal data top
C24BBrF12N6F(000) = 1336
Mr = 691.02Dx = 1.988 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15166 reflections
a = 11.1681 (5) Åθ = 2.6–27.5°
b = 10.8858 (2) ŵ = 1.91 mm1
c = 19.0664 (7) ÅT = 150 K
β = 95.2270 (15)°Block, purple
V = 2308.33 (14) Å30.14 × 0.14 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
5263 independent reflections
Radiation source: fine-focus sealed tube3728 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.6°
φ scans and ω scans with κ offsetsh = 1414
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1214
Tmin = 0.775, Tmax = 0.835l = 2124
15166 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.045Secondary atom site location: difference Fourier map
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0553P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5263 reflectionsΔρmax = 0.95 e Å3
397 parametersΔρmin = 0.41 e Å3
Crystal data top
C24BBrF12N6V = 2308.33 (14) Å3
Mr = 691.02Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1681 (5) ŵ = 1.91 mm1
b = 10.8858 (2) ÅT = 150 K
c = 19.0664 (7) Å0.14 × 0.14 × 0.10 mm
β = 95.2270 (15)°
Data collection top
Nonius KappaCCD
diffractometer
5263 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3728 reflections with I > 2σ(I)
Tmin = 0.775, Tmax = 0.835Rint = 0.046
15166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045397 parameters
wR(F2) = 0.1090 restraints
S = 1.04Δρmax = 0.95 e Å3
5263 reflectionsΔρmin = 0.41 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.54911 (3)0.40086 (2)0.211746 (16)0.02854 (12)
F10.52166 (15)0.13977 (15)0.52612 (9)0.0308 (4)
F20.31173 (16)0.13286 (16)0.58691 (9)0.0335 (4)
F30.09951 (16)0.16152 (16)0.51060 (10)0.0364 (5)
F40.08838 (15)0.18422 (15)0.36791 (9)0.0302 (4)
F50.05945 (15)0.06664 (17)0.12934 (10)0.0365 (4)
F60.04016 (16)0.11128 (16)0.02786 (11)0.0411 (5)
F70.23599 (17)0.19317 (16)0.02953 (10)0.0401 (5)
F80.45774 (15)0.11084 (14)0.01579 (9)0.0282 (4)
F90.85617 (15)0.07367 (15)0.13742 (10)0.0326 (4)
F101.04672 (16)0.14952 (18)0.22740 (11)0.0444 (5)
F111.06140 (16)0.08814 (17)0.36440 (11)0.0442 (5)
F120.88979 (15)0.05387 (16)0.41661 (9)0.0352 (4)
N10.4472 (2)0.2141 (2)0.30191 (12)0.0218 (5)
N20.2545 (2)0.1752 (2)0.24173 (12)0.0231 (5)
N30.4328 (2)0.1592 (2)0.18160 (13)0.0217 (5)
N40.5946 (2)0.0451 (2)0.13988 (13)0.0231 (5)
N50.6199 (2)0.1505 (2)0.24953 (12)0.0213 (5)
N60.6238 (2)0.1572 (2)0.37443 (13)0.0239 (6)
C10.5068 (3)0.1882 (2)0.36615 (16)0.0235 (6)
C20.4140 (3)0.1777 (2)0.41463 (15)0.0221 (6)
C30.4175 (3)0.1550 (3)0.48641 (16)0.0243 (7)
C40.3113 (3)0.1491 (3)0.51729 (16)0.0273 (7)
C50.2002 (3)0.1616 (3)0.47737 (17)0.0271 (7)
C60.1951 (3)0.1764 (2)0.40552 (16)0.0244 (7)
C70.3015 (3)0.1865 (2)0.37388 (16)0.0235 (6)
C80.3254 (3)0.1999 (2)0.30061 (16)0.0228 (6)
C90.3109 (3)0.1472 (2)0.18449 (15)0.0220 (6)
C100.2697 (3)0.0688 (3)0.12508 (16)0.0235 (6)
C110.1577 (3)0.0248 (3)0.10206 (16)0.0283 (7)
C120.1472 (3)0.0642 (3)0.05019 (17)0.0313 (7)
C130.2494 (3)0.1071 (3)0.02084 (16)0.0278 (7)
C140.3619 (3)0.0637 (3)0.04319 (15)0.0249 (7)
C150.3744 (3)0.0259 (2)0.09517 (15)0.0226 (6)
C160.4785 (3)0.0802 (2)0.13529 (15)0.0222 (6)
C170.6618 (3)0.0783 (2)0.19883 (16)0.0220 (6)
C180.7745 (3)0.0277 (3)0.23143 (16)0.0247 (7)
C190.8630 (3)0.0444 (3)0.20584 (17)0.0276 (7)
C200.9576 (3)0.0830 (3)0.25135 (19)0.0326 (8)
C210.9660 (3)0.0509 (3)0.32254 (19)0.0324 (8)
C220.8793 (3)0.0217 (3)0.34902 (17)0.0289 (7)
C230.7829 (3)0.0615 (3)0.30424 (16)0.0238 (6)
C240.6767 (3)0.1334 (2)0.31523 (15)0.0217 (6)
B10.5091 (3)0.2236 (3)0.23690 (17)0.0218 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0370 (2)0.02078 (17)0.02777 (19)0.00196 (12)0.00258 (14)0.00042 (12)
F10.0324 (10)0.0365 (9)0.0229 (10)0.0030 (8)0.0018 (8)0.0011 (7)
F20.0411 (11)0.0404 (10)0.0193 (10)0.0054 (8)0.0048 (8)0.0015 (8)
F30.0329 (11)0.0457 (11)0.0321 (11)0.0009 (8)0.0110 (9)0.0040 (8)
F40.0243 (9)0.0354 (9)0.0303 (11)0.0009 (7)0.0001 (8)0.0015 (8)
F50.0243 (10)0.0496 (11)0.0353 (12)0.0035 (8)0.0017 (8)0.0064 (8)
F60.0304 (11)0.0470 (11)0.0444 (13)0.0118 (8)0.0053 (9)0.0094 (9)
F70.0447 (12)0.0381 (10)0.0365 (12)0.0062 (9)0.0024 (9)0.0156 (8)
F80.0346 (10)0.0264 (9)0.0236 (10)0.0017 (7)0.0036 (8)0.0040 (7)
F90.0291 (10)0.0351 (10)0.0338 (11)0.0012 (8)0.0037 (8)0.0094 (8)
F100.0286 (11)0.0462 (11)0.0576 (14)0.0126 (9)0.0004 (10)0.0105 (10)
F110.0279 (11)0.0512 (12)0.0510 (14)0.0107 (8)0.0102 (9)0.0040 (9)
F120.0326 (10)0.0442 (10)0.0273 (11)0.0021 (8)0.0053 (8)0.0045 (8)
N10.0225 (13)0.0217 (12)0.0210 (14)0.0004 (10)0.0008 (11)0.0024 (10)
N20.0247 (13)0.0254 (12)0.0188 (14)0.0037 (10)0.0004 (11)0.0002 (10)
N30.0232 (13)0.0215 (12)0.0202 (14)0.0014 (10)0.0006 (10)0.0022 (10)
N40.0248 (14)0.0243 (12)0.0203 (14)0.0022 (10)0.0023 (11)0.0015 (10)
N50.0246 (13)0.0202 (12)0.0189 (14)0.0022 (10)0.0012 (11)0.0009 (10)
N60.0256 (14)0.0233 (12)0.0222 (14)0.0037 (11)0.0020 (11)0.0007 (10)
C10.0260 (16)0.0182 (14)0.0255 (17)0.0012 (12)0.0028 (13)0.0034 (12)
C20.0242 (16)0.0216 (14)0.0199 (16)0.0020 (12)0.0012 (13)0.0027 (11)
C30.0282 (17)0.0226 (15)0.0214 (17)0.0018 (13)0.0015 (13)0.0011 (12)
C40.0376 (19)0.0230 (15)0.0214 (17)0.0028 (14)0.0037 (14)0.0005 (12)
C50.0289 (18)0.0252 (16)0.0283 (19)0.0019 (13)0.0099 (14)0.0014 (13)
C60.0230 (16)0.0222 (14)0.0278 (18)0.0021 (12)0.0016 (13)0.0003 (12)
C70.0285 (17)0.0196 (14)0.0222 (17)0.0010 (12)0.0018 (13)0.0006 (12)
C80.0242 (16)0.0209 (14)0.0233 (17)0.0034 (12)0.0014 (13)0.0001 (12)
C90.0238 (16)0.0194 (14)0.0219 (17)0.0013 (12)0.0032 (13)0.0036 (12)
C100.0266 (16)0.0231 (14)0.0203 (16)0.0016 (13)0.0008 (13)0.0003 (12)
C110.0257 (17)0.0353 (17)0.0236 (17)0.0001 (14)0.0013 (14)0.0004 (13)
C120.0256 (17)0.0362 (17)0.0303 (19)0.0081 (14)0.0071 (14)0.0009 (14)
C130.0371 (19)0.0246 (15)0.0205 (17)0.0043 (13)0.0031 (14)0.0041 (12)
C140.0323 (18)0.0235 (15)0.0191 (16)0.0017 (13)0.0029 (14)0.0008 (12)
C150.0273 (16)0.0220 (14)0.0181 (16)0.0010 (12)0.0002 (13)0.0045 (11)
C160.0266 (16)0.0218 (14)0.0178 (16)0.0029 (12)0.0005 (12)0.0016 (11)
C170.0235 (16)0.0219 (14)0.0212 (16)0.0039 (12)0.0047 (13)0.0008 (12)
C180.0221 (16)0.0219 (14)0.0297 (18)0.0029 (12)0.0003 (13)0.0009 (12)
C190.0267 (17)0.0234 (15)0.033 (2)0.0043 (13)0.0036 (14)0.0020 (13)
C200.0219 (17)0.0312 (17)0.045 (2)0.0007 (14)0.0031 (15)0.0010 (15)
C210.0225 (17)0.0321 (17)0.040 (2)0.0007 (14)0.0077 (15)0.0032 (15)
C220.0286 (18)0.0299 (16)0.0277 (19)0.0057 (14)0.0012 (14)0.0029 (13)
C230.0212 (16)0.0244 (14)0.0257 (17)0.0030 (12)0.0023 (13)0.0040 (12)
C240.0237 (16)0.0203 (14)0.0205 (17)0.0050 (12)0.0012 (13)0.0004 (12)
B10.0264 (18)0.0197 (16)0.0189 (18)0.0035 (14)0.0007 (15)0.0001 (13)
Geometric parameters (Å, º) top
Br1—B12.047 (3)N6—C11.345 (4)
F1—C31.339 (3)N6—C241.346 (4)
F2—C41.339 (3)C1—C21.454 (4)
F3—C51.340 (3)C2—C31.388 (4)
F4—C61.336 (3)C2—C71.419 (4)
F5—C111.337 (3)C3—C41.373 (4)
F6—C121.334 (3)C4—C51.402 (4)
F7—C131.340 (3)C5—C61.376 (4)
F8—C141.336 (3)C6—C71.385 (4)
F9—C191.338 (4)C7—C81.454 (4)
F10—C201.344 (4)C9—C101.459 (4)
F11—C211.335 (4)C10—C111.373 (4)
F12—C221.330 (3)C10—C151.425 (4)
N1—C81.366 (4)C11—C121.381 (4)
N1—C11.369 (4)C12—C131.397 (4)
N1—B11.477 (4)C13—C141.373 (4)
N2—C81.341 (4)C14—C151.388 (4)
N2—C91.344 (4)C15—C161.458 (4)
N3—C161.365 (4)C17—C181.460 (4)
N3—C91.373 (4)C18—C191.385 (4)
N3—B11.472 (4)C18—C231.431 (4)
N4—C171.343 (4)C19—C201.371 (4)
N4—C161.347 (4)C20—C211.396 (5)
N5—C171.361 (4)C21—C221.381 (4)
N5—C241.364 (4)C22—C231.382 (4)
N5—B11.472 (4)C23—C241.451 (4)
C8—N1—C1113.3 (2)F6—C12—C11120.9 (3)
C8—N1—B1122.3 (3)F6—C12—C13119.0 (3)
C1—N1—B1122.6 (2)C11—C12—C13120.1 (3)
C8—N2—C9116.1 (2)F7—C13—C14120.1 (3)
C16—N3—C9113.4 (2)F7—C13—C12118.6 (3)
C16—N3—B1122.5 (2)C14—C13—C12121.2 (3)
C9—N3—B1121.9 (2)F8—C14—C13119.3 (3)
C17—N4—C16116.0 (2)F8—C14—C15121.1 (3)
C17—N5—C24114.3 (2)C13—C14—C15119.5 (3)
C17—N5—B1122.3 (2)C14—C15—C10118.9 (3)
C24—N5—B1122.5 (2)C14—C15—C16133.1 (3)
C1—N6—C24116.5 (2)C10—C15—C16107.5 (2)
N6—C1—N1123.0 (3)N4—C16—N3123.5 (3)
N6—C1—C2130.3 (3)N4—C16—C15129.5 (3)
N1—C1—C2105.6 (2)N3—C16—C15105.5 (2)
C3—C2—C7119.7 (3)N4—C17—N5123.2 (3)
C3—C2—C1133.1 (3)N4—C17—C18130.5 (3)
C7—C2—C1107.1 (3)N5—C17—C18104.7 (2)
F1—C3—C4119.4 (3)C19—C18—C23120.1 (3)
F1—C3—C2121.6 (3)C19—C18—C17132.8 (3)
C4—C3—C2118.9 (3)C23—C18—C17107.1 (2)
F2—C4—C3120.4 (3)F9—C19—C20121.0 (3)
F2—C4—C5118.3 (3)F9—C19—C18120.0 (3)
C3—C4—C5121.3 (3)C20—C19—C18119.0 (3)
F3—C5—C6120.7 (3)F10—C20—C19120.2 (3)
F3—C5—C4118.9 (3)F10—C20—C21118.6 (3)
C6—C5—C4120.5 (3)C19—C20—C21121.2 (3)
F4—C6—C5119.8 (3)F11—C21—C22120.2 (3)
F4—C6—C7121.3 (3)F11—C21—C20119.0 (3)
C5—C6—C7118.9 (3)C22—C21—C20120.8 (3)
C6—C7—C2120.6 (3)F12—C22—C21120.1 (3)
C6—C7—C8131.8 (3)F12—C22—C23120.7 (3)
C2—C7—C8107.5 (2)C21—C22—C23119.1 (3)
N2—C8—N1123.3 (3)C22—C23—C18119.8 (3)
N2—C8—C7129.6 (3)C22—C23—C24132.9 (3)
N1—C8—C7105.3 (3)C18—C23—C24107.3 (3)
N2—C9—N3123.4 (3)N6—C24—N5122.7 (3)
N2—C9—C10128.6 (3)N6—C24—C23130.7 (3)
N3—C9—C10105.6 (2)N5—C24—C23105.0 (2)
C11—C10—C15120.9 (3)N3—B1—N5106.4 (2)
C11—C10—C9131.8 (3)N3—B1—N1106.4 (2)
C15—C10—C9106.9 (2)N5—B1—N1106.0 (2)
F5—C11—C10120.9 (3)N3—B1—Br1113.9 (2)
F5—C11—C12119.9 (3)N5—B1—Br1110.5 (2)
C10—C11—C12119.3 (3)N1—B1—Br1113.1 (2)

Experimental details

Crystal data
Chemical formulaC24BBrF12N6
Mr691.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)11.1681 (5), 10.8858 (2), 19.0664 (7)
β (°) 95.2270 (15)
V3)2308.33 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.91
Crystal size (mm)0.14 × 0.14 × 0.10
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.775, 0.835
No. of measured, independent and
observed [I > 2σ(I)] reflections
15166, 5263, 3728
Rint0.046
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.109, 1.04
No. of reflections5263
No. of parameters397
Δρmax, Δρmin (e Å3)0.95, 0.41

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

 

Acknowledgements

The authors acknowledge the Natural Sciences and Engin­eering Research Council (NSERC) of Canada for funding this research in the form of a Discovery Grant (TPB), and a Canada Graduate Scholarship (GEM).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationChen, Y. H., Chang, Y. J., Lee, G. R., Chang, J. H., Wu, I. W., Fang, J. H., Hsu, S. H., Liu, S. W., Wu, C. I. & Pi, T. W. (2010). Org. Electron. 11, 445–449.  Web of Science CrossRef CAS Google Scholar
First citationChen, Y. H., Chang, J. H., Lee, G. R., Wu, I. W., Fang, J. H. & Wu, C. I. (2009). Appl. Phys. Lett. 95, 133302.  Web of Science CrossRef Google Scholar
First citationClaessens, C. G., Gonzalez-Rodriguez, D. & Torres, T. (2002). Chem. Rev. 102, 835–853.  Web of Science CrossRef PubMed CAS Google Scholar
First citationClaessens, C. G. & Torres, T. (2002). Angew. Chem. Int. Ed. 41, 2561–2565.  CrossRef CAS Google Scholar
First citationDíaz, D. D., Bolink, H. J., Cappelli, L., Claessens, C. G., Coronado, E. & Torres, T. (2007). Tetrahedron Lett. 48, 4657–4660.  Google Scholar
First citationFuduka, T., Stork, J. R., Potucek, R. J., Olmstead, M. M., Noll, B. C., Kobayashi, N. & Durfee, W. S. (2002). Angew. Chem. Int. Ed. 41, 2565–2568.  Google Scholar
First citationGommans, H., Aernouts, T., Verreet, B., Heremans, P., Medina, A., Claessens, C. G. & Torres, T. (2009). Adv. Func. Mater. 19, 3435–3439.  Web of Science CrossRef CAS Google Scholar
First citationGommans, H., Cheyns, D., Aernouts, T., Girotto, C., Poortmans, J. & Heremans, P. (2007). Adv. Funct. Mater. 17, 2653–2658.  Web of Science CrossRef CAS Google Scholar
First citationKlaus, D., Knecht, R., Dragässer, A., Keil, C. & Schlettwein, D. (2009). Phys. Status Solidi A, 206, 2723–2730.  CAS Google Scholar
First citationKumar, H., Kumar, P., Bhardwaj, R., Sharma, G. D., Chand, S., Jain, S. C. & Kumar, V. (2009). J. Phys. D Appl. Phys. 42, 015103.  Web of Science CrossRef Google Scholar
First citationMa, B., Miyamoto, Y., Woo, C. H., Fréchet, J. M. J., Zhang, F. & Liu, Y. (2009b). Proc. SPIE, 7416, 74161E–1.  CrossRef Google Scholar
First citationMa, B., Woo, C. H., Miyamoto, Y. & Frechet, J. M. J. (2009a). Chem. Mater. 21, 1413–1417.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMorse, G. E., Helander, M. G., Maka, J. F., Lu, Z. H. & Bender, T. P. (2010). ACS Appl. Mater. Interfaces, 7, 1934–1944.  Web of Science CSD CrossRef Google Scholar
First citationMutolo, K. L., Mayo, E. I., Rand, B. P., Forrest, S. R. & Thompson, M. E. (2006). J. Am. Chem. Soc. 128, 8108–8109.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A edited by C. W. Carter & R. M. Sweet pp. 307–326. London: Academic Press.  Google Scholar
First citationPaton, A. S., Morse, G. E., Maka, J. F., Lough, A. J. & Bender, T. P. (2010). Acta Cryst. E66, o3059.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRenshaw, K. C., Xu, X. & Forrest, S. R. (2010). Org. Electron. 11, 175–178.  Web of Science CrossRef CAS Google Scholar
First citationRodriguez-Morgade, M. S., Claessens, C. G., Medina, A., Gonzalez-Rodriguez, D., Gutierrez-Puebla, E., Monge, A., Alkorta, I., Elguero, J. & Torres, T. (2008). Chem. Eur. J. 14, 1342–1350.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRos-Lis, J. V., Martinez-Manez, R. & Soto, J. (2005). Chem. Commun. pp. 5260–5262.  Web of Science CrossRef Google Scholar
First citationSharman, W. M. & van Lier, J. E. (2005). Bioconjug. Chem. 16, 1166–1175.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYasuda, T. & Tsutsui, T. (2007). Mol. Cryst. Liq. Cryst. 462, 3–9.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds