organic compounds
Bromido(dodecafluorosubphthalocyaninato)boron(III)
aDepartment of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5, and bDepartment of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: tim.bender@utoronto.ca
The title compound, C24BBrF12N6 or Br-F12BsubPc (BsubPc is boronsubphtalocyanine), has a bowl-shaped structure with an approximate molecular C3v symmetry characteristic of boronsubphthalocyanine compounds. In the crystal, molecules are arranged in one-dimensional columns and the boron–subphthalocyanine units within each column are offset and angled in a bowl-to-ligand packing arrangement such that the axial Br atom rests in the aromatic concaved bowl of the neighboring subphthalocyanine with an intermolecular Br⋯B distance of 3.721 (3) Å.
Related literature
For general background to boronsubphthalocyanines, see: Claessens et al. (2002). For examples of related halogenated boronsubphthalocyanines, see: Morse et al. (2010); Paton et al. (2010); Rodriguez-Morgade et al. (2008); Sharman & van Lier (2005); Ros-Lis et al. (2005); Fuduka et al. (2002); Claessens & Torres (2002). For applications of boronsubphthalocyanines in organic electronics, see: Mutolo et al. (2006); Gommans et al. (2007, 2009); Kumar et al. (2009); Ma et al. (2009a,b); Klaus et al. (2009); Chen et al. (2009, 2010); Díaz et al. (2007); Yasuda & Tsutsui (2007); Renshaw et al. (2010). For van der Waals radii, see: Bondi (1964).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 2002); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810041863/nc2200sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810041863/nc2200Isup2.hkl
Br-F12BsubPc was synthesized as previously reported (Morse et al. 2010). Single crystals suitable for X-ray diffraction were prepared by slow vapour diffusion of heptane into a solution of Br-F12BsubPc in benzene.
Boronsubphthalocyanine (BsubPc), a lower analogue of phthalocyanine, is of interest to researchers in the field of organic electronics (Morse et al., 2010; Mutolo et al. 2006; Gommans et al. 2007; Gommans et al. 2009; Kumar et al. 2009; Ma et al. 2009a; Klaus et al. 2009; Ma et al. 2009b; Chen et al. 2010; Chen et al. 2009; Díaz et al. 2007; Yasuda et al. 2007; and Renshaw et al. 2010). We have synthesized the title compound as it is a precursor to fluorinated phenoxy-BsubPcs (Morse et al. 2010; Paton et al. 2010). The molecular structure of the title compound is shown in Fig. 1. In the
the molecules are arranged in a concave bowl to ligand motif similar to those of F-F12BsubPc (Rodriguez-Morgade et al. 2008) and Cl-F12BsubPc (Fuduka et al. 2002) whereby the axial halogen atom lies within the concaved face of the BsubPc molecular fragment in close proximately to the boron atom. The net effect is the formation of distinctive columns throughout the (Fig. 2). In this arrangment the intermolecular bromine to nitrogen distances are 3.420 (2), 3.466 (2), and 3.427 (2) Å which are close to the sum of the van der Waals radii at 3.40 Å (1.85 Å[Br]+1.55 Å[N]). The distance between Br1 and B1(1 - x, y + 1/2, -z + 1/2) is 3.721 (3) Å which is less the sum of the van der Waals radii at 3.85 Å (1.85 Å[Br]+2.0 Å[B]). The axial boron-bromine bond is oriented towards the inner 5-membered ring of the nieghboring BsubPc unit. This interaction occurs at a distance of 3.471 Å, less than the sum of the van der Waals raddi at 3.55Å (1.85 Å[Br]+1.70 Å[C]). The other two 5-membered rings are seperated from the bromine atom by a distance of 3.572 Å and 3.518 Å, near the sum of the respective van der Waals radii. Neighboring BsubPc units are separated by a B···B distance of 5.471 (5) Å. All van der Waals radii were calculated using the values determined by Bondi (1964).For general background to boronsubphthalocyanines, see Claessens et al. (2002a). For examples of related halogenated boronsubphthalocyanines, see: Morse et al. (2010); Paton et al. (2010); Rodriguez-Morgade et al. (2008); Sharman et al. (2005); Ros-Lis et al. (2005); Fuduka et al. (2002); Claessens et al. (2002b). For applications of boronsubphthalocyanines in organic electronics, see: Mutolo et al. (2006); Gommans et al. (2007, 2009); Kumar et al. (2009); Ma et al. (2009a,b); Klaus et al. (2009); Chen et al. (2009, 2010); Díaz et al. (2007); Yasuda et al. (2007); Renshaw et al. (2010). For van der Waals radii, see: Bondi (1964).
Data collection: COLLECT (Nonius, 2002); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with 30% probability ellipsoids. | |
Fig. 2. Part of the crystal structure of the title compound. |
C24BBrF12N6 | F(000) = 1336 |
Mr = 691.02 | Dx = 1.988 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 15166 reflections |
a = 11.1681 (5) Å | θ = 2.6–27.5° |
b = 10.8858 (2) Å | µ = 1.91 mm−1 |
c = 19.0664 (7) Å | T = 150 K |
β = 95.2270 (15)° | Block, purple |
V = 2308.33 (14) Å3 | 0.14 × 0.14 × 0.10 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 5263 independent reflections |
Radiation source: fine-focus sealed tube | 3728 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 2.6° |
φ scans and ω scans with κ offsets | h = −14→14 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | k = −12→14 |
Tmin = 0.775, Tmax = 0.835 | l = −21→24 |
15166 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.045 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0553P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
5263 reflections | Δρmax = 0.95 e Å−3 |
397 parameters | Δρmin = −0.41 e Å−3 |
C24BBrF12N6 | V = 2308.33 (14) Å3 |
Mr = 691.02 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.1681 (5) Å | µ = 1.91 mm−1 |
b = 10.8858 (2) Å | T = 150 K |
c = 19.0664 (7) Å | 0.14 × 0.14 × 0.10 mm |
β = 95.2270 (15)° |
Nonius KappaCCD diffractometer | 5263 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 3728 reflections with I > 2σ(I) |
Tmin = 0.775, Tmax = 0.835 | Rint = 0.046 |
15166 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 397 parameters |
wR(F2) = 0.109 | 0 restraints |
S = 1.04 | Δρmax = 0.95 e Å−3 |
5263 reflections | Δρmin = −0.41 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.54911 (3) | 0.40086 (2) | 0.211746 (16) | 0.02854 (12) | |
F1 | 0.52166 (15) | 0.13977 (15) | 0.52612 (9) | 0.0308 (4) | |
F2 | 0.31173 (16) | 0.13286 (16) | 0.58691 (9) | 0.0335 (4) | |
F3 | 0.09951 (16) | 0.16152 (16) | 0.51060 (10) | 0.0364 (5) | |
F4 | 0.08838 (15) | 0.18422 (15) | 0.36791 (9) | 0.0302 (4) | |
F5 | 0.05945 (15) | 0.06664 (17) | 0.12934 (10) | 0.0365 (4) | |
F6 | 0.04016 (16) | −0.11128 (16) | 0.02786 (11) | 0.0411 (5) | |
F7 | 0.23599 (17) | −0.19317 (16) | −0.02953 (10) | 0.0401 (5) | |
F8 | 0.45774 (15) | −0.11084 (14) | 0.01579 (9) | 0.0282 (4) | |
F9 | 0.85617 (15) | −0.07367 (15) | 0.13742 (10) | 0.0326 (4) | |
F10 | 1.04672 (16) | −0.14952 (18) | 0.22740 (11) | 0.0444 (5) | |
F11 | 1.06140 (16) | −0.08814 (17) | 0.36440 (11) | 0.0442 (5) | |
F12 | 0.88979 (15) | 0.05387 (16) | 0.41661 (9) | 0.0352 (4) | |
N1 | 0.4472 (2) | 0.2141 (2) | 0.30191 (12) | 0.0218 (5) | |
N2 | 0.2545 (2) | 0.1752 (2) | 0.24173 (12) | 0.0231 (5) | |
N3 | 0.4328 (2) | 0.1592 (2) | 0.18160 (13) | 0.0217 (5) | |
N4 | 0.5946 (2) | 0.0451 (2) | 0.13988 (13) | 0.0231 (5) | |
N5 | 0.6199 (2) | 0.1505 (2) | 0.24953 (12) | 0.0213 (5) | |
N6 | 0.6238 (2) | 0.1572 (2) | 0.37443 (13) | 0.0239 (6) | |
C1 | 0.5068 (3) | 0.1882 (2) | 0.36615 (16) | 0.0235 (6) | |
C2 | 0.4140 (3) | 0.1777 (2) | 0.41463 (15) | 0.0221 (6) | |
C3 | 0.4175 (3) | 0.1550 (3) | 0.48641 (16) | 0.0243 (7) | |
C4 | 0.3113 (3) | 0.1491 (3) | 0.51729 (16) | 0.0273 (7) | |
C5 | 0.2002 (3) | 0.1616 (3) | 0.47737 (17) | 0.0271 (7) | |
C6 | 0.1951 (3) | 0.1764 (2) | 0.40552 (16) | 0.0244 (7) | |
C7 | 0.3015 (3) | 0.1865 (2) | 0.37388 (16) | 0.0235 (6) | |
C8 | 0.3254 (3) | 0.1999 (2) | 0.30061 (16) | 0.0228 (6) | |
C9 | 0.3109 (3) | 0.1472 (2) | 0.18449 (15) | 0.0220 (6) | |
C10 | 0.2697 (3) | 0.0688 (3) | 0.12508 (16) | 0.0235 (6) | |
C11 | 0.1577 (3) | 0.0248 (3) | 0.10206 (16) | 0.0283 (7) | |
C12 | 0.1472 (3) | −0.0642 (3) | 0.05019 (17) | 0.0313 (7) | |
C13 | 0.2494 (3) | −0.1071 (3) | 0.02084 (16) | 0.0278 (7) | |
C14 | 0.3619 (3) | −0.0637 (3) | 0.04319 (15) | 0.0249 (7) | |
C15 | 0.3744 (3) | 0.0259 (2) | 0.09517 (15) | 0.0226 (6) | |
C16 | 0.4785 (3) | 0.0802 (2) | 0.13529 (15) | 0.0222 (6) | |
C17 | 0.6618 (3) | 0.0783 (2) | 0.19883 (16) | 0.0220 (6) | |
C18 | 0.7745 (3) | 0.0277 (3) | 0.23143 (16) | 0.0247 (7) | |
C19 | 0.8630 (3) | −0.0444 (3) | 0.20584 (17) | 0.0276 (7) | |
C20 | 0.9576 (3) | −0.0830 (3) | 0.25135 (19) | 0.0326 (8) | |
C21 | 0.9660 (3) | −0.0509 (3) | 0.32254 (19) | 0.0324 (8) | |
C22 | 0.8793 (3) | 0.0217 (3) | 0.34902 (17) | 0.0289 (7) | |
C23 | 0.7829 (3) | 0.0615 (3) | 0.30424 (16) | 0.0238 (6) | |
C24 | 0.6767 (3) | 0.1334 (2) | 0.31523 (15) | 0.0217 (6) | |
B1 | 0.5091 (3) | 0.2236 (3) | 0.23690 (17) | 0.0218 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0370 (2) | 0.02078 (17) | 0.02777 (19) | −0.00196 (12) | 0.00258 (14) | 0.00042 (12) |
F1 | 0.0324 (10) | 0.0365 (9) | 0.0229 (10) | −0.0030 (8) | −0.0018 (8) | 0.0011 (7) |
F2 | 0.0411 (11) | 0.0404 (10) | 0.0193 (10) | −0.0054 (8) | 0.0048 (8) | 0.0015 (8) |
F3 | 0.0329 (11) | 0.0457 (11) | 0.0321 (11) | 0.0009 (8) | 0.0110 (9) | 0.0040 (8) |
F4 | 0.0243 (9) | 0.0354 (9) | 0.0303 (11) | −0.0009 (7) | 0.0001 (8) | 0.0015 (8) |
F5 | 0.0243 (10) | 0.0496 (11) | 0.0353 (12) | −0.0035 (8) | 0.0017 (8) | −0.0064 (8) |
F6 | 0.0304 (11) | 0.0470 (11) | 0.0444 (13) | −0.0118 (8) | −0.0053 (9) | −0.0094 (9) |
F7 | 0.0447 (12) | 0.0381 (10) | 0.0365 (12) | −0.0062 (9) | −0.0024 (9) | −0.0156 (8) |
F8 | 0.0346 (10) | 0.0264 (9) | 0.0236 (10) | 0.0017 (7) | 0.0036 (8) | −0.0040 (7) |
F9 | 0.0291 (10) | 0.0351 (10) | 0.0338 (11) | 0.0012 (8) | 0.0037 (8) | −0.0094 (8) |
F10 | 0.0286 (11) | 0.0462 (11) | 0.0576 (14) | 0.0126 (9) | −0.0004 (10) | −0.0105 (10) |
F11 | 0.0279 (11) | 0.0512 (12) | 0.0510 (14) | 0.0107 (8) | −0.0102 (9) | 0.0040 (9) |
F12 | 0.0326 (10) | 0.0442 (10) | 0.0273 (11) | −0.0021 (8) | −0.0053 (8) | 0.0045 (8) |
N1 | 0.0225 (13) | 0.0217 (12) | 0.0210 (14) | 0.0004 (10) | 0.0008 (11) | −0.0024 (10) |
N2 | 0.0247 (13) | 0.0254 (12) | 0.0188 (14) | 0.0037 (10) | −0.0004 (11) | −0.0002 (10) |
N3 | 0.0232 (13) | 0.0215 (12) | 0.0202 (14) | 0.0014 (10) | 0.0006 (10) | 0.0022 (10) |
N4 | 0.0248 (14) | 0.0243 (12) | 0.0203 (14) | −0.0022 (10) | 0.0023 (11) | 0.0015 (10) |
N5 | 0.0246 (13) | 0.0202 (12) | 0.0189 (14) | −0.0022 (10) | 0.0012 (11) | −0.0009 (10) |
N6 | 0.0256 (14) | 0.0233 (12) | 0.0222 (14) | −0.0037 (11) | −0.0020 (11) | −0.0007 (10) |
C1 | 0.0260 (16) | 0.0182 (14) | 0.0255 (17) | −0.0012 (12) | −0.0028 (13) | −0.0034 (12) |
C2 | 0.0242 (16) | 0.0216 (14) | 0.0199 (16) | −0.0020 (12) | −0.0012 (13) | −0.0027 (11) |
C3 | 0.0282 (17) | 0.0226 (15) | 0.0214 (17) | −0.0018 (13) | −0.0015 (13) | −0.0011 (12) |
C4 | 0.0376 (19) | 0.0230 (15) | 0.0214 (17) | −0.0028 (14) | 0.0037 (14) | −0.0005 (12) |
C5 | 0.0289 (18) | 0.0252 (16) | 0.0283 (19) | 0.0019 (13) | 0.0099 (14) | 0.0014 (13) |
C6 | 0.0230 (16) | 0.0222 (14) | 0.0278 (18) | −0.0021 (12) | 0.0016 (13) | −0.0003 (12) |
C7 | 0.0285 (17) | 0.0196 (14) | 0.0222 (17) | −0.0010 (12) | 0.0018 (13) | −0.0006 (12) |
C8 | 0.0242 (16) | 0.0209 (14) | 0.0233 (17) | 0.0034 (12) | 0.0014 (13) | −0.0001 (12) |
C9 | 0.0238 (16) | 0.0194 (14) | 0.0219 (17) | 0.0013 (12) | −0.0032 (13) | 0.0036 (12) |
C10 | 0.0266 (16) | 0.0231 (14) | 0.0203 (16) | −0.0016 (13) | −0.0008 (13) | 0.0003 (12) |
C11 | 0.0257 (17) | 0.0353 (17) | 0.0236 (17) | −0.0001 (14) | 0.0013 (14) | 0.0004 (13) |
C12 | 0.0256 (17) | 0.0362 (17) | 0.0303 (19) | −0.0081 (14) | −0.0071 (14) | 0.0009 (14) |
C13 | 0.0371 (19) | 0.0246 (15) | 0.0205 (17) | −0.0043 (13) | −0.0031 (14) | −0.0041 (12) |
C14 | 0.0323 (18) | 0.0235 (15) | 0.0191 (16) | 0.0017 (13) | 0.0029 (14) | 0.0008 (12) |
C15 | 0.0273 (16) | 0.0220 (14) | 0.0181 (16) | 0.0010 (12) | 0.0002 (13) | 0.0045 (11) |
C16 | 0.0266 (16) | 0.0218 (14) | 0.0178 (16) | −0.0029 (12) | 0.0005 (12) | 0.0016 (11) |
C17 | 0.0235 (16) | 0.0219 (14) | 0.0212 (16) | −0.0039 (12) | 0.0047 (13) | 0.0008 (12) |
C18 | 0.0221 (16) | 0.0219 (14) | 0.0297 (18) | −0.0029 (12) | 0.0003 (13) | 0.0009 (12) |
C19 | 0.0267 (17) | 0.0234 (15) | 0.033 (2) | −0.0043 (13) | 0.0036 (14) | −0.0020 (13) |
C20 | 0.0219 (17) | 0.0312 (17) | 0.045 (2) | 0.0007 (14) | 0.0031 (15) | −0.0010 (15) |
C21 | 0.0225 (17) | 0.0321 (17) | 0.040 (2) | 0.0007 (14) | −0.0077 (15) | 0.0032 (15) |
C22 | 0.0286 (18) | 0.0299 (16) | 0.0277 (19) | −0.0057 (14) | −0.0012 (14) | 0.0029 (13) |
C23 | 0.0212 (16) | 0.0244 (14) | 0.0257 (17) | −0.0030 (12) | 0.0023 (13) | 0.0040 (12) |
C24 | 0.0237 (16) | 0.0203 (14) | 0.0205 (17) | −0.0050 (12) | −0.0012 (13) | 0.0004 (12) |
B1 | 0.0264 (18) | 0.0197 (16) | 0.0189 (18) | −0.0035 (14) | −0.0007 (15) | 0.0001 (13) |
Br1—B1 | 2.047 (3) | N6—C1 | 1.345 (4) |
F1—C3 | 1.339 (3) | N6—C24 | 1.346 (4) |
F2—C4 | 1.339 (3) | C1—C2 | 1.454 (4) |
F3—C5 | 1.340 (3) | C2—C3 | 1.388 (4) |
F4—C6 | 1.336 (3) | C2—C7 | 1.419 (4) |
F5—C11 | 1.337 (3) | C3—C4 | 1.373 (4) |
F6—C12 | 1.334 (3) | C4—C5 | 1.402 (4) |
F7—C13 | 1.340 (3) | C5—C6 | 1.376 (4) |
F8—C14 | 1.336 (3) | C6—C7 | 1.385 (4) |
F9—C19 | 1.338 (4) | C7—C8 | 1.454 (4) |
F10—C20 | 1.344 (4) | C9—C10 | 1.459 (4) |
F11—C21 | 1.335 (4) | C10—C11 | 1.373 (4) |
F12—C22 | 1.330 (3) | C10—C15 | 1.425 (4) |
N1—C8 | 1.366 (4) | C11—C12 | 1.381 (4) |
N1—C1 | 1.369 (4) | C12—C13 | 1.397 (4) |
N1—B1 | 1.477 (4) | C13—C14 | 1.373 (4) |
N2—C8 | 1.341 (4) | C14—C15 | 1.388 (4) |
N2—C9 | 1.344 (4) | C15—C16 | 1.458 (4) |
N3—C16 | 1.365 (4) | C17—C18 | 1.460 (4) |
N3—C9 | 1.373 (4) | C18—C19 | 1.385 (4) |
N3—B1 | 1.472 (4) | C18—C23 | 1.431 (4) |
N4—C17 | 1.343 (4) | C19—C20 | 1.371 (4) |
N4—C16 | 1.347 (4) | C20—C21 | 1.396 (5) |
N5—C17 | 1.361 (4) | C21—C22 | 1.381 (4) |
N5—C24 | 1.364 (4) | C22—C23 | 1.382 (4) |
N5—B1 | 1.472 (4) | C23—C24 | 1.451 (4) |
C8—N1—C1 | 113.3 (2) | F6—C12—C11 | 120.9 (3) |
C8—N1—B1 | 122.3 (3) | F6—C12—C13 | 119.0 (3) |
C1—N1—B1 | 122.6 (2) | C11—C12—C13 | 120.1 (3) |
C8—N2—C9 | 116.1 (2) | F7—C13—C14 | 120.1 (3) |
C16—N3—C9 | 113.4 (2) | F7—C13—C12 | 118.6 (3) |
C16—N3—B1 | 122.5 (2) | C14—C13—C12 | 121.2 (3) |
C9—N3—B1 | 121.9 (2) | F8—C14—C13 | 119.3 (3) |
C17—N4—C16 | 116.0 (2) | F8—C14—C15 | 121.1 (3) |
C17—N5—C24 | 114.3 (2) | C13—C14—C15 | 119.5 (3) |
C17—N5—B1 | 122.3 (2) | C14—C15—C10 | 118.9 (3) |
C24—N5—B1 | 122.5 (2) | C14—C15—C16 | 133.1 (3) |
C1—N6—C24 | 116.5 (2) | C10—C15—C16 | 107.5 (2) |
N6—C1—N1 | 123.0 (3) | N4—C16—N3 | 123.5 (3) |
N6—C1—C2 | 130.3 (3) | N4—C16—C15 | 129.5 (3) |
N1—C1—C2 | 105.6 (2) | N3—C16—C15 | 105.5 (2) |
C3—C2—C7 | 119.7 (3) | N4—C17—N5 | 123.2 (3) |
C3—C2—C1 | 133.1 (3) | N4—C17—C18 | 130.5 (3) |
C7—C2—C1 | 107.1 (3) | N5—C17—C18 | 104.7 (2) |
F1—C3—C4 | 119.4 (3) | C19—C18—C23 | 120.1 (3) |
F1—C3—C2 | 121.6 (3) | C19—C18—C17 | 132.8 (3) |
C4—C3—C2 | 118.9 (3) | C23—C18—C17 | 107.1 (2) |
F2—C4—C3 | 120.4 (3) | F9—C19—C20 | 121.0 (3) |
F2—C4—C5 | 118.3 (3) | F9—C19—C18 | 120.0 (3) |
C3—C4—C5 | 121.3 (3) | C20—C19—C18 | 119.0 (3) |
F3—C5—C6 | 120.7 (3) | F10—C20—C19 | 120.2 (3) |
F3—C5—C4 | 118.9 (3) | F10—C20—C21 | 118.6 (3) |
C6—C5—C4 | 120.5 (3) | C19—C20—C21 | 121.2 (3) |
F4—C6—C5 | 119.8 (3) | F11—C21—C22 | 120.2 (3) |
F4—C6—C7 | 121.3 (3) | F11—C21—C20 | 119.0 (3) |
C5—C6—C7 | 118.9 (3) | C22—C21—C20 | 120.8 (3) |
C6—C7—C2 | 120.6 (3) | F12—C22—C21 | 120.1 (3) |
C6—C7—C8 | 131.8 (3) | F12—C22—C23 | 120.7 (3) |
C2—C7—C8 | 107.5 (2) | C21—C22—C23 | 119.1 (3) |
N2—C8—N1 | 123.3 (3) | C22—C23—C18 | 119.8 (3) |
N2—C8—C7 | 129.6 (3) | C22—C23—C24 | 132.9 (3) |
N1—C8—C7 | 105.3 (3) | C18—C23—C24 | 107.3 (3) |
N2—C9—N3 | 123.4 (3) | N6—C24—N5 | 122.7 (3) |
N2—C9—C10 | 128.6 (3) | N6—C24—C23 | 130.7 (3) |
N3—C9—C10 | 105.6 (2) | N5—C24—C23 | 105.0 (2) |
C11—C10—C15 | 120.9 (3) | N3—B1—N5 | 106.4 (2) |
C11—C10—C9 | 131.8 (3) | N3—B1—N1 | 106.4 (2) |
C15—C10—C9 | 106.9 (2) | N5—B1—N1 | 106.0 (2) |
F5—C11—C10 | 120.9 (3) | N3—B1—Br1 | 113.9 (2) |
F5—C11—C12 | 119.9 (3) | N5—B1—Br1 | 110.5 (2) |
C10—C11—C12 | 119.3 (3) | N1—B1—Br1 | 113.1 (2) |
Experimental details
Crystal data | |
Chemical formula | C24BBrF12N6 |
Mr | 691.02 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 11.1681 (5), 10.8858 (2), 19.0664 (7) |
β (°) | 95.2270 (15) |
V (Å3) | 2308.33 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.91 |
Crystal size (mm) | 0.14 × 0.14 × 0.10 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.775, 0.835 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15166, 5263, 3728 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.109, 1.04 |
No. of reflections | 5263 |
No. of parameters | 397 |
Δρmax, Δρmin (e Å−3) | 0.95, −0.41 |
Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).
Acknowledgements
The authors acknowledge the Natural Sciences and Engineering Research Council (NSERC) of Canada for funding this research in the form of a Discovery Grant (TPB), and a Canada Graduate Scholarship (GEM).
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Chen, Y. H., Chang, Y. J., Lee, G. R., Chang, J. H., Wu, I. W., Fang, J. H., Hsu, S. H., Liu, S. W., Wu, C. I. & Pi, T. W. (2010). Org. Electron. 11, 445–449. Web of Science CrossRef CAS Google Scholar
Chen, Y. H., Chang, J. H., Lee, G. R., Wu, I. W., Fang, J. H. & Wu, C. I. (2009). Appl. Phys. Lett. 95, 133302. Web of Science CrossRef Google Scholar
Claessens, C. G., Gonzalez-Rodriguez, D. & Torres, T. (2002). Chem. Rev. 102, 835–853. Web of Science CrossRef PubMed CAS Google Scholar
Claessens, C. G. & Torres, T. (2002). Angew. Chem. Int. Ed. 41, 2561–2565. CrossRef CAS Google Scholar
Díaz, D. D., Bolink, H. J., Cappelli, L., Claessens, C. G., Coronado, E. & Torres, T. (2007). Tetrahedron Lett. 48, 4657–4660. Google Scholar
Fuduka, T., Stork, J. R., Potucek, R. J., Olmstead, M. M., Noll, B. C., Kobayashi, N. & Durfee, W. S. (2002). Angew. Chem. Int. Ed. 41, 2565–2568. Google Scholar
Gommans, H., Aernouts, T., Verreet, B., Heremans, P., Medina, A., Claessens, C. G. & Torres, T. (2009). Adv. Func. Mater. 19, 3435–3439. Web of Science CrossRef CAS Google Scholar
Gommans, H., Cheyns, D., Aernouts, T., Girotto, C., Poortmans, J. & Heremans, P. (2007). Adv. Funct. Mater. 17, 2653–2658. Web of Science CrossRef CAS Google Scholar
Klaus, D., Knecht, R., Dragässer, A., Keil, C. & Schlettwein, D. (2009). Phys. Status Solidi A, 206, 2723–2730. CAS Google Scholar
Kumar, H., Kumar, P., Bhardwaj, R., Sharma, G. D., Chand, S., Jain, S. C. & Kumar, V. (2009). J. Phys. D Appl. Phys. 42, 015103. Web of Science CrossRef Google Scholar
Ma, B., Miyamoto, Y., Woo, C. H., Fréchet, J. M. J., Zhang, F. & Liu, Y. (2009b). Proc. SPIE, 7416, 74161E–1. CrossRef Google Scholar
Ma, B., Woo, C. H., Miyamoto, Y. & Frechet, J. M. J. (2009a). Chem. Mater. 21, 1413–1417. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Morse, G. E., Helander, M. G., Maka, J. F., Lu, Z. H. & Bender, T. P. (2010). ACS Appl. Mater. Interfaces, 7, 1934–1944. Web of Science CSD CrossRef Google Scholar
Mutolo, K. L., Mayo, E. I., Rand, B. P., Forrest, S. R. & Thompson, M. E. (2006). J. Am. Chem. Soc. 128, 8108–8109. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A edited by C. W. Carter & R. M. Sweet pp. 307–326. London: Academic Press. Google Scholar
Paton, A. S., Morse, G. E., Maka, J. F., Lough, A. J. & Bender, T. P. (2010). Acta Cryst. E66, o3059. Web of Science CSD CrossRef IUCr Journals Google Scholar
Renshaw, K. C., Xu, X. & Forrest, S. R. (2010). Org. Electron. 11, 175–178. Web of Science CrossRef CAS Google Scholar
Rodriguez-Morgade, M. S., Claessens, C. G., Medina, A., Gonzalez-Rodriguez, D., Gutierrez-Puebla, E., Monge, A., Alkorta, I., Elguero, J. & Torres, T. (2008). Chem. Eur. J. 14, 1342–1350. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ros-Lis, J. V., Martinez-Manez, R. & Soto, J. (2005). Chem. Commun. pp. 5260–5262. Web of Science CrossRef Google Scholar
Sharman, W. M. & van Lier, J. E. (2005). Bioconjug. Chem. 16, 1166–1175. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yasuda, T. & Tsutsui, T. (2007). Mol. Cryst. Liq. Cryst. 462, 3–9. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Boronsubphthalocyanine (BsubPc), a lower analogue of phthalocyanine, is of interest to researchers in the field of organic electronics (Morse et al., 2010; Mutolo et al. 2006; Gommans et al. 2007; Gommans et al. 2009; Kumar et al. 2009; Ma et al. 2009a; Klaus et al. 2009; Ma et al. 2009b; Chen et al. 2010; Chen et al. 2009; Díaz et al. 2007; Yasuda et al. 2007; and Renshaw et al. 2010). We have synthesized the title compound as it is a precursor to fluorinated phenoxy-BsubPcs (Morse et al. 2010; Paton et al. 2010). The molecular structure of the title compound is shown in Fig. 1. In the crystal structure the molecules are arranged in a concave bowl to ligand motif similar to those of F-F12BsubPc (Rodriguez-Morgade et al. 2008) and Cl-F12BsubPc (Fuduka et al. 2002) whereby the axial halogen atom lies within the concaved face of the BsubPc molecular fragment in close proximately to the boron atom. The net effect is the formation of distinctive columns throughout the crystal structure (Fig. 2). In this arrangment the intermolecular bromine to nitrogen distances are 3.420 (2), 3.466 (2), and 3.427 (2) Å which are close to the sum of the van der Waals radii at 3.40 Å (1.85 Å[Br]+1.55 Å[N]). The distance between Br1 and B1(1 - x, y + 1/2, -z + 1/2) is 3.721 (3) Å which is less the sum of the van der Waals radii at 3.85 Å (1.85 Å[Br]+2.0 Å[B]). The axial boron-bromine bond is oriented towards the inner 5-membered ring of the nieghboring BsubPc unit. This interaction occurs at a distance of 3.471 Å, less than the sum of the van der Waals raddi at 3.55Å (1.85 Å[Br]+1.70 Å[C]). The other two 5-membered rings are seperated from the bromine atom by a distance of 3.572 Å and 3.518 Å, near the sum of the respective van der Waals radii. Neighboring BsubPc units are separated by a B···B distance of 5.471 (5) Å. All van der Waals radii were calculated using the values determined by Bondi (1964).