organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(3-phenyl­prop-2-en-1-yl­­idene)-2,2′-disulfanediyldianiline

aThe School of Chemistry, The University of Manchester, Manchester M13 9PL, England, and bChemistry Department, University of Mauritius, Reduit, Mauritius
*Correspondence e-mail: sabina@uom.ac.mu

(Received 25 October 2010; accepted 18 November 2010; online 27 November 2010)

In the title compound, C30H24N2S2, the two phenyl rings attached to the S atoms are oriented nearly perpendicularly, making a dihedral angle of 86.14 (8)°. Each of the two ArCH=CHCH=N units is almost planar, having maximum deviations from the least-squares planes of 0.125 and 0.149 Å, and rotated around the C—N bonds relative to the adjacent phenyl ring by 110.26 and 30.30°.

Related literature

The structure of the title compound was determined within a project on the synthesis of new ligands based on diaryl­disulfides, see: Bhowon et al. (2001[Bhowon, M. G., Jhaumeer-Laulloo, S. & Ramnial, T. (2001). Transition Met. Chem. 26, 329-332.], 2005[Bhowon, M. G., Jhaumeer-Laulloo, S., Dowlut, M., Curpen, S. & Jumnoodoo, V. (2005). Transition Met. Chem. 30, 35-39.], 2007[Bhowon, M. G., Jhaumeer Laulloo, S., Soukhee, N., Allibacus, A. & Shiboo, V. (2007). J. Coord. Chem. 60, 1335-1343.]); Raftery et al. (2009[Raftery, J., Lallbeeharry, H., Bhowon, M. G., Laulloo, S. J. & Joule, J. A. (2009). Acta Cryst. E65, o16.]).

[Scheme 1]

Experimental

Crystal data
  • C30H24N2S2

  • Mr = 476.63

  • Monoclinic, P 21 /c

  • a = 20.2393 (13) Å

  • b = 9.1593 (6) Å

  • c = 13.5335 (8) Å

  • β = 104.995 (1)°

  • V = 2423.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.35 × 0.31 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 20381 measured reflections

  • 5736 independent reflections

  • 4962 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.112

  • S = 1.08

  • 5736 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structure of the title compound was determined within a project on the synthesis of new ligands based on diaryldisulfides (Bhowon et al., 2001; Bhowon et al. 2005; Bhowon et al., 2007; Raftery et al. 2009). In this project we have synthesized 2,2'-dithiobis[N-(3-phenyl- 2-propen-1-ylidene) benzenamine via the condensation of 2,2'-dithiobis(benzenamine) with cinnamaldehyde. The structure determination revealed that each of the ArCH=CHCH=N moieties are coplanar but rotated relative to the adjacent phenyl rings. Moreover, the phenyl rings attached to the sulfur atom are twisted around the sulfur-sulfur single bond so that they are nearly perpendicularly oriented.

Related literature top

The structure of the title compound was determined within a project on the synthesis of new ligands based on diaryldisulfides, see: Bhowon et al. (2001, 2005, 2007); Raftery et al. (2009).

Experimental top

2,2'-Dithiobis(benzenamine)(0.49 g, 2 mmol) was added to a solution of trans cinnamaldehyde (0.50 mL, 4 mmol) in ethanol (20 ml) and the mixture was heated at reflux for 3 h. On evaporation in vacuo, a yellow crude product was obtained which was recrystallised from CHCl3/Et2O to yield the bis-imine (86 percent) as yellow crystals, mp 435 K. I.R. 1624, 1609 cm-1; 1H-NMR (250 MHz, DMSO-d6) 8.33 (1H, d, 3 Hz), 8.31 (1H, d, 3 Hz), 7.66 (2H, dd, 4.5, 3 Hz), 7.59-7.62 (4H, m), 7.26-7.16 (2H, m), 7.05 (2H, dd, 4.5, 3 Hz). 13C-NMR (62.5 MHz, DMSO-d6) 163.1, 152.8, 148.8, 131.6, 129.8, 129.1, 129.0, 128.5, 128.0, 76.5. Anal. Calc. (Found) C, 75.4 (75.1), H, 5.0 (5.0), N, 5.9 (6.0), S, 13.9 (14.0).

Refinement top

H atoms were included in calculated positions with C—H distances of 0.95(CH), 0.99(CH2) & 0.98(CH3)Å; Uĩso(H) values were fixed at 1.2Ueq(C) except for CH3 where Uĩso(H) values of 1.5Ueq(C) were used.

Structure description top

The structure of the title compound was determined within a project on the synthesis of new ligands based on diaryldisulfides (Bhowon et al., 2001; Bhowon et al. 2005; Bhowon et al., 2007; Raftery et al. 2009). In this project we have synthesized 2,2'-dithiobis[N-(3-phenyl- 2-propen-1-ylidene) benzenamine via the condensation of 2,2'-dithiobis(benzenamine) with cinnamaldehyde. The structure determination revealed that each of the ArCH=CHCH=N moieties are coplanar but rotated relative to the adjacent phenyl rings. Moreover, the phenyl rings attached to the sulfur atom are twisted around the sulfur-sulfur single bond so that they are nearly perpendicularly oriented.

The structure of the title compound was determined within a project on the synthesis of new ligands based on diaryldisulfides, see: Bhowon et al. (2001, 2005, 2007); Raftery et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement elliposids drawn at the 50% probability level.
N,N'-Bis(3-phenylprop-2-en-1-ylidene)-2,2'-disulfanediyldianiline top
Crystal data top
C30H24N2S2Dx = 1.306 Mg m3
Mr = 476.63Melting point: 435 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 20.2393 (13) ÅCell parameters from 6928 reflections
b = 9.1593 (6) Åθ = 2.5–28.3°
c = 13.5335 (8) ŵ = 0.24 mm1
β = 104.995 (1)°T = 100 K
V = 2423.4 (3) Å3Block, yellow
Z = 40.35 × 0.31 × 0.30 mm
F(000) = 1000
Data collection top
Bruker SMART CCD area-detector
diffractometer
4962 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 28.3°, θmin = 2.1°
phi and ω scansh = 2626
20381 measured reflectionsk = 1212
5736 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.2559P]
where P = (Fo2 + 2Fc2)/3
5736 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C30H24N2S2V = 2423.4 (3) Å3
Mr = 476.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.2393 (13) ŵ = 0.24 mm1
b = 9.1593 (6) ÅT = 100 K
c = 13.5335 (8) Å0.35 × 0.31 × 0.30 mm
β = 104.995 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4962 reflections with I > 2σ(I)
20381 measured reflectionsRint = 0.041
5736 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.08Δρmax = 0.48 e Å3
5736 reflectionsΔρmin = 0.22 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38459 (8)1.25065 (18)0.51729 (12)0.0195 (3)
C20.31992 (8)1.18586 (17)0.48098 (12)0.0180 (3)
C30.26430 (9)1.23904 (19)0.51183 (13)0.0220 (3)
H30.22061.19510.48750.026*
C40.27272 (9)1.3567 (2)0.57839 (13)0.0258 (4)
H40.23471.39290.59980.031*
C50.33636 (10)1.4218 (2)0.61399 (13)0.0275 (4)
H50.34161.50290.65920.033*
C60.39234 (9)1.36868 (19)0.58369 (13)0.0241 (4)
H60.43591.41310.60840.029*
C70.46740 (8)1.24584 (19)0.42592 (13)0.0225 (4)
H70.45391.34240.40400.027*
C80.51906 (8)1.17317 (19)0.38739 (13)0.0227 (4)
H80.53951.08630.41980.027*
C90.53883 (8)1.22549 (19)0.30712 (13)0.0236 (4)
H90.52021.31700.28090.028*
C100.58617 (8)1.15668 (19)0.25538 (12)0.0210 (3)
C110.61820 (9)1.02313 (19)0.28774 (13)0.0227 (4)
H110.60850.97330.34390.027*
C120.66411 (9)0.9628 (2)0.23856 (14)0.0266 (4)
H120.68640.87340.26220.032*
C130.67738 (9)1.03311 (19)0.15495 (14)0.0252 (4)
H130.70870.99200.12130.030*
C140.64471 (9)1.1634 (2)0.12084 (13)0.0251 (4)
H140.65321.21080.06290.030*
C150.59981 (9)1.22491 (19)0.17048 (13)0.0235 (4)
H150.57801.31470.14660.028*
C160.20139 (8)0.85527 (17)0.43037 (12)0.0177 (3)
C170.13867 (8)0.78088 (17)0.39865 (12)0.0184 (3)
C180.11973 (8)0.68668 (18)0.46757 (13)0.0221 (4)
H180.07780.63460.44710.026*
C190.16135 (9)0.66819 (19)0.56546 (13)0.0219 (3)
H190.14760.60460.61190.026*
C200.22306 (8)0.74204 (18)0.59609 (13)0.0209 (3)
H200.25150.72930.66340.025*
C210.24311 (8)0.83474 (18)0.52809 (12)0.0198 (3)
H210.28570.88440.54870.024*
C220.05392 (8)0.72355 (18)0.24995 (13)0.0205 (3)
H220.04940.63130.27960.025*
C230.01189 (8)0.75679 (18)0.14901 (13)0.0208 (3)
H230.01350.85260.12290.025*
C240.02929 (8)0.65861 (19)0.09061 (12)0.0204 (3)
H240.03400.56760.12170.025*
C250.06781 (8)0.67666 (18)0.01621 (12)0.0186 (3)
C260.10459 (8)0.55894 (18)0.06838 (13)0.0211 (3)
H260.10600.46980.03310.025*
C270.13915 (9)0.56984 (19)0.17104 (13)0.0237 (4)
H270.16470.48920.20510.028*
C280.13637 (9)0.69832 (19)0.22380 (13)0.0238 (4)
H280.15920.70540.29440.029*
C290.09991 (8)0.81704 (19)0.17271 (13)0.0226 (4)
H290.09790.90530.20870.027*
C300.06685 (8)0.80699 (18)0.07039 (13)0.0208 (3)
H300.04310.88940.03600.025*
N10.43975 (7)1.18250 (16)0.48865 (11)0.0229 (3)
N20.09713 (7)0.81600 (15)0.30036 (10)0.0201 (3)
S10.31958 (2)1.03606 (5)0.39689 (3)0.02044 (11)
S20.22014 (2)0.97846 (5)0.33968 (3)0.02173 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0200 (8)0.0190 (8)0.0186 (8)0.0010 (6)0.0031 (6)0.0051 (6)
C20.0228 (8)0.0156 (8)0.0151 (7)0.0010 (6)0.0043 (6)0.0017 (6)
C30.0215 (8)0.0226 (9)0.0225 (8)0.0004 (7)0.0068 (7)0.0052 (7)
C40.0299 (9)0.0242 (9)0.0264 (9)0.0043 (7)0.0132 (7)0.0020 (7)
C50.0382 (10)0.0215 (9)0.0227 (9)0.0001 (8)0.0078 (8)0.0025 (7)
C60.0252 (9)0.0220 (9)0.0224 (9)0.0041 (7)0.0012 (7)0.0004 (7)
C70.0190 (8)0.0228 (9)0.0228 (9)0.0013 (6)0.0005 (6)0.0018 (7)
C80.0163 (8)0.0256 (9)0.0236 (9)0.0007 (6)0.0004 (6)0.0026 (7)
C90.0207 (8)0.0242 (9)0.0234 (9)0.0006 (7)0.0011 (7)0.0019 (7)
C100.0166 (8)0.0241 (9)0.0192 (8)0.0030 (6)0.0009 (6)0.0010 (7)
C110.0240 (9)0.0225 (9)0.0183 (8)0.0016 (7)0.0005 (6)0.0024 (7)
C120.0262 (9)0.0233 (9)0.0261 (9)0.0031 (7)0.0010 (7)0.0007 (7)
C130.0224 (9)0.0264 (9)0.0258 (9)0.0007 (7)0.0042 (7)0.0077 (7)
C140.0253 (9)0.0280 (9)0.0217 (9)0.0050 (7)0.0053 (7)0.0003 (7)
C150.0223 (9)0.0233 (9)0.0229 (9)0.0003 (7)0.0027 (7)0.0028 (7)
C160.0209 (8)0.0162 (8)0.0170 (8)0.0002 (6)0.0066 (6)0.0004 (6)
C170.0186 (8)0.0184 (8)0.0174 (8)0.0018 (6)0.0035 (6)0.0013 (6)
C180.0194 (8)0.0218 (8)0.0250 (9)0.0020 (6)0.0057 (7)0.0005 (7)
C190.0235 (9)0.0213 (8)0.0218 (8)0.0008 (7)0.0073 (7)0.0044 (7)
C200.0220 (8)0.0224 (8)0.0166 (8)0.0053 (6)0.0016 (6)0.0018 (6)
C210.0185 (8)0.0198 (8)0.0202 (8)0.0010 (6)0.0034 (6)0.0021 (6)
C220.0210 (8)0.0211 (8)0.0204 (8)0.0016 (6)0.0072 (7)0.0006 (7)
C230.0205 (8)0.0211 (8)0.0207 (8)0.0008 (6)0.0051 (6)0.0006 (6)
C240.0199 (8)0.0221 (8)0.0194 (8)0.0019 (6)0.0053 (6)0.0016 (6)
C250.0145 (7)0.0220 (8)0.0195 (8)0.0002 (6)0.0049 (6)0.0022 (6)
C260.0204 (8)0.0201 (8)0.0232 (8)0.0021 (6)0.0061 (7)0.0015 (7)
C270.0226 (9)0.0235 (9)0.0233 (9)0.0035 (7)0.0027 (7)0.0047 (7)
C280.0218 (8)0.0289 (9)0.0185 (8)0.0022 (7)0.0011 (7)0.0003 (7)
C290.0207 (8)0.0209 (8)0.0260 (9)0.0023 (6)0.0058 (7)0.0037 (7)
C300.0162 (8)0.0197 (8)0.0257 (9)0.0016 (6)0.0037 (6)0.0029 (7)
N10.0183 (7)0.0226 (7)0.0273 (8)0.0009 (6)0.0051 (6)0.0010 (6)
N20.0190 (7)0.0222 (7)0.0184 (7)0.0008 (5)0.0034 (5)0.0001 (6)
S10.0206 (2)0.0211 (2)0.0203 (2)0.00339 (15)0.00639 (16)0.00296 (16)
S20.0230 (2)0.0238 (2)0.0160 (2)0.00575 (16)0.00063 (16)0.00236 (16)
Geometric parameters (Å, º) top
C1—C61.388 (2)C16—C171.406 (2)
C1—C21.405 (2)C16—S21.7790 (16)
C1—N11.418 (2)C17—C181.395 (2)
C2—C31.386 (2)C17—N21.415 (2)
C2—S11.7815 (16)C18—C191.384 (2)
C3—C41.386 (2)C18—H180.9500
C3—H30.9500C19—C201.386 (2)
C4—C51.388 (3)C19—H190.9500
C4—H40.9500C20—C211.388 (2)
C5—C61.389 (2)C20—H200.9500
C5—H50.9500C21—H210.9500
C6—H60.9500C22—N21.280 (2)
C7—N11.271 (2)C22—C231.443 (2)
C7—C81.446 (2)C22—H220.9500
C7—H70.9500C23—C241.337 (2)
C8—C91.340 (2)C23—H230.9500
C8—H80.9500C24—C251.463 (2)
C9—C101.467 (2)C24—H240.9500
C9—H90.9500C25—C261.394 (2)
C10—C151.397 (2)C25—C301.404 (2)
C10—C111.400 (2)C26—C271.388 (2)
C11—C121.390 (2)C26—H260.9500
C11—H110.9500C27—C281.385 (2)
C12—C131.387 (3)C27—H270.9500
C12—H120.9500C28—C291.393 (2)
C13—C141.384 (2)C28—H280.9500
C13—H130.9500C29—C301.376 (2)
C14—C151.382 (2)C29—H290.9500
C14—H140.9500C30—H300.9500
C15—H150.9500S1—S22.0302 (6)
C16—C211.386 (2)
C6—C1—C2119.62 (15)C17—C16—S2115.69 (12)
C6—C1—N1123.68 (15)C18—C17—C16118.56 (15)
C2—C1—N1116.53 (15)C18—C17—N2124.75 (15)
C3—C2—C1120.12 (15)C16—C17—N2116.54 (14)
C3—C2—S1126.42 (13)C19—C18—C17120.73 (15)
C1—C2—S1113.46 (12)C19—C18—H18119.6
C4—C3—C2119.72 (16)C17—C18—H18119.6
C4—C3—H3120.1C18—C19—C20120.31 (15)
C2—C3—H3120.1C18—C19—H19119.8
C3—C4—C5120.45 (16)C20—C19—H19119.8
C3—C4—H4119.8C19—C20—C21119.72 (15)
C5—C4—H4119.8C19—C20—H20120.1
C4—C5—C6120.11 (16)C21—C20—H20120.1
C4—C5—H5119.9C16—C21—C20120.36 (15)
C6—C5—H5119.9C16—C21—H21119.8
C1—C6—C5119.98 (16)C20—C21—H21119.8
C1—C6—H6120.0N2—C22—C23121.28 (15)
C5—C6—H6120.0N2—C22—H22119.4
N1—C7—C8121.00 (16)C23—C22—H22119.4
N1—C7—H7119.5C24—C23—C22122.86 (16)
C8—C7—H7119.5C24—C23—H23118.6
C9—C8—C7121.56 (16)C22—C23—H23118.6
C9—C8—H8119.2C23—C24—C25126.82 (16)
C7—C8—H8119.2C23—C24—H24116.6
C8—C9—C10127.03 (16)C25—C24—H24116.6
C8—C9—H9116.5C26—C25—C30118.10 (15)
C10—C9—H9116.5C26—C25—C24119.41 (15)
C15—C10—C11118.30 (16)C30—C25—C24122.43 (15)
C15—C10—C9119.53 (15)C27—C26—C25121.07 (16)
C11—C10—C9122.17 (15)C27—C26—H26119.5
C12—C11—C10120.67 (16)C25—C26—H26119.5
C12—C11—H11119.7C28—C27—C26119.99 (16)
C10—C11—H11119.7C28—C27—H27120.0
C13—C12—C11120.05 (16)C26—C27—H27120.0
C13—C12—H12120.0C27—C28—C29119.62 (16)
C11—C12—H12120.0C27—C28—H28120.2
C14—C13—C12119.71 (17)C29—C28—H28120.2
C14—C13—H13120.1C30—C29—C28120.28 (16)
C12—C13—H13120.1C30—C29—H29119.9
C15—C14—C13120.45 (16)C28—C29—H29119.9
C15—C14—H14119.8C29—C30—C25120.91 (15)
C13—C14—H14119.8C29—C30—H30119.5
C14—C15—C10120.80 (16)C25—C30—H30119.5
C14—C15—H15119.6C7—N1—C1119.70 (15)
C10—C15—H15119.6C22—N2—C17120.57 (14)
C21—C16—C17120.31 (14)C2—S1—S2106.46 (6)
C21—C16—S2123.95 (12)C16—S2—S1105.61 (6)
C6—C1—C2—C30.4 (2)C17—C18—C19—C200.8 (3)
N1—C1—C2—C3175.08 (15)C18—C19—C20—C210.1 (3)
C6—C1—C2—S1179.93 (12)C17—C16—C21—C200.8 (2)
N1—C1—C2—S14.46 (19)S2—C16—C21—C20176.64 (12)
C1—C2—C3—C40.2 (2)C19—C20—C21—C160.9 (2)
S1—C2—C3—C4179.67 (13)N2—C22—C23—C24173.89 (16)
C2—C3—C4—C50.2 (3)C22—C23—C24—C25172.68 (15)
C3—C4—C5—C60.5 (3)C23—C24—C25—C26175.30 (16)
C2—C1—C6—C50.1 (2)C23—C24—C25—C301.8 (3)
N1—C1—C6—C5174.99 (16)C30—C25—C26—C270.2 (2)
C4—C5—C6—C10.3 (3)C24—C25—C26—C27177.00 (15)
N1—C7—C8—C9166.62 (17)C25—C26—C27—C281.2 (3)
C7—C8—C9—C10174.57 (16)C26—C27—C28—C291.3 (3)
C8—C9—C10—C15178.26 (17)C27—C28—C29—C300.1 (3)
C8—C9—C10—C111.3 (3)C28—C29—C30—C251.5 (2)
C15—C10—C11—C122.1 (2)C26—C25—C30—C291.6 (2)
C9—C10—C11—C12178.36 (16)C24—C25—C30—C29175.55 (15)
C10—C11—C12—C131.6 (3)C8—C7—N1—C1173.79 (15)
C11—C12—C13—C140.0 (3)C6—C1—N1—C774.5 (2)
C12—C13—C14—C151.0 (3)C2—C1—N1—C7110.26 (18)
C13—C14—C15—C100.5 (3)C23—C22—N2—C17179.07 (15)
C11—C10—C15—C141.1 (2)C18—C17—N2—C2230.3 (2)
C9—C10—C15—C14179.36 (15)C16—C17—N2—C22154.31 (15)
C21—C16—C17—C180.0 (2)C3—C2—S1—S28.01 (16)
S2—C16—C17—C18177.67 (12)C1—C2—S1—S2172.48 (10)
C21—C16—C17—N2175.68 (14)C21—C16—S2—S113.04 (15)
S2—C16—C17—N21.99 (19)C17—C16—S2—S1169.38 (11)
C16—C17—C18—C190.8 (2)C2—S1—S2—C1686.14 (8)
N2—C17—C18—C19174.51 (15)

Experimental details

Crystal data
Chemical formulaC30H24N2S2
Mr476.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)20.2393 (13), 9.1593 (6), 13.5335 (8)
β (°) 104.995 (1)
V3)2423.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.35 × 0.31 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20381, 5736, 4962
Rint0.041
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.112, 1.08
No. of reflections5736
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.22

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBhowon, M. G., Jhaumeer-Laulloo, S., Dowlut, M., Curpen, S. & Jumnoodoo, V. (2005). Transition Met. Chem. 30, 35–39.  Web of Science CrossRef CAS Google Scholar
First citationBhowon, M. G., Jhaumeer-Laulloo, S. & Ramnial, T. (2001). Transition Met. Chem. 26, 329–332.  Web of Science CrossRef CAS Google Scholar
First citationBhowon, M. G., Jhaumeer Laulloo, S., Soukhee, N., Allibacus, A. & Shiboo, V. (2007). J. Coord. Chem. 60, 1335–1343.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRaftery, J., Lallbeeharry, H., Bhowon, M. G., Laulloo, S. J. & Joule, J. A. (2009). Acta Cryst. E65, o16.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds