metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­aqua­(nitrato-κ2O,O′)(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)ytterbium(III)]-μ-cyanido-κ2N:C-[dicyanido­platinum(II)]-μ-cyanido-κ2C:N] aceto­nitrile monosolvate]

aDepartment of Chemistry, University of South Alabama, Mobile, AL 36688-0002, USA
*Correspondence e-mail: rsykora@jaguar1.usouthal.edu

(Received 28 October 2010; accepted 15 November 2010; online 20 November 2010)

The title compound, {[PtYb(CN)4(NO3)(C15H11N3)(H2O)2]·CH3CN}n, was isolated from solution as a one-dimensional coordination polymer. The Yb3+ site has ninefold coordination with a distorted tricapped trigonal–prismatic geometry, while the PtII ion is coordinated by four cyanide groups in an almost regular square-planar geometry. cis-Bridging by the tetra­cyanidoplatinate(II) anions links the Yb3+ cations, forming chains. Additionally, each Yb3+ is coordinated by two water mol­ecules, one bidentate nitrate anion, and one tridentate 2,2′:6′,2′′-terpyridine mol­ecule. O—H⋯N hydrogen-bonding inter­actions are found between adjacent chains and help to consolidate the crystal packing. In addition, ππ stacking inter­actions exist between the terpyridine ligand and the two corresponding terpyridine ligands along the adjacent chain (average inter­planar distance = 3.667 Å). Moderate Pt⋯Pt inter­actions [3.5033 (4) Å] are observed in the structure.

Related literature

For related lanthanide tetra­cyanidoplatinate structures containing 2,2′:6′,2′′- terpyridine, see: Maynard et al. (2008[Maynard, B. A., Kalachnikova, K., Whitehead, K., Assefa, Z. & Sykora, R. E. (2008). Inorg. Chem. 47, 1895-1897.], 2010[Maynard, B. A., Smith, P. A., Jaleel, A., Ladner, L. & Sykora, R. E. (2010). J. Chem. Crystallogr. 40, 616-623.]); Maynard, Smith, Ladner et al. (2009[Maynard, B. A., Smith, P. A., Ladner, L., Jaleel, A., Beedoe, N., Crawford, C., Assefa, Z. & Sykora, R. E. (2009). Inorg. Chem. 48, 6425-6435.]); Maynard, Smith & Sykora (2009[Maynard, B. A., Smith, P. A. & Sykora, R. E. (2009). Acta Cryst. E65, m1132-m1133.]). For structural and spectroscopic information on additional lanthanide tetra­cyanidoplatinates, see: Gliemann & Yersin (1985[Gliemann, G. & Yersin, H. (1985). Struct. Bond. 62, 87-153.]). For luminescence data on lanthanide terpyridine systems, see: Mukkala et al. (1995[Mukkala, V.-M., Takalo, H., Liitti, P. & Hemmilä, I. (1995). J. Alloys Compd, 225, 507-510.]).

[Scheme 1]

Experimental

Crystal data
  • [PtYb(CN)4(NO3)(C15H11N3)(H2O)2]·C2H3N

  • Mr = 844.57

  • Triclinic, [P \overline 1]

  • a = 9.0810 (3) Å

  • b = 10.1939 (3) Å

  • c = 14.4718 (6) Å

  • α = 79.083 (3)°

  • β = 72.689 (3)°

  • γ = 78.660 (3)°

  • V = 1241.70 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 9.42 mm−1

  • T = 290 K

  • 0.49 × 0.31 × 0.27 mm

Data collection
  • Oxford Diffraction Xcalibur E diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England]) Tmin = 0.249, Tmax = 1.00

  • 9396 measured reflections

  • 4701 independent reflections

  • 4049 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.059

  • S = 1.07

  • 4701 reflections

  • 336 parameters

  • H-atom parameters constrained

  • Δρmax = 1.73 e Å−3

  • Δρmin = −1.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯N9 0.85 2.07 2.868 (7) 156.5
O4—H4B⋯N3i 0.85 2.28 3.125 (6) 169.6
O5—H5A⋯N3ii 0.85 1.96 2.802 (6) 170.4
O5—H5B⋯N4iii 0.85 2.00 2.842 (6) 172.7
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z; (iii) -x+2, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

One of our research goals is to prepare systems in which weak Ln3+ emissions are enhanced through the use of sensitizing ligands. Recent efforts in our lab have focused on lanthanide compounds that incorporate both tetracyanidoplatinate(II) anions (TCP) and 2,2':6',2''-terpyridine (tpy), to achieve this goal (Maynard et al., 2008; Maynard, Smith, Ladner et al., 2009), since both of these ligands are known sensitizers for Ln3+ (Gliemann & Yersin, 1985; Mukkala et al., 1995). We have also reported the structures of several related compounds (Maynard et al., 2010; Maynard, Smith & Sykora, 2009).

The title compound is a cocrystal similar to several previously reported compounds in that it contains one-dimensional [Yb(C15H11N3)(H2O)2(NO3)Pt(CN)4]n chains similar to those found in Eu(C15H11N3)(H2O)2(NO3)Pt(CN)4].CH3CN (Maynard et al., 2008), [Nd(C15H11N3)(H2O)2(NO3)Pt(CN)4].CH3CN.0.5C15H11N3 (Maynard, Smith & Sykora, 2009)), and Yb(C15H11N3)(H2O)2(NO3)Pt(CN)4].0.5CH3CN.1.5H2O (Maynard et al., 2010). The major structural differences can be attributed to the crystallization of solvent or guest molecules between the 1—D chains. While the formulae of the title compound and Eu(C15H11N3)(H2O)2(NO3)Pt(CN)4].CH3CN appear similar, the compounds are not true isomorphs due to different packing arrangements.

The neutral, 1—D [Yb(C15H11N3)(H2O)2(NO3)(Pt(CN)4)]n chains in the structure of the title compound are illustrated in Figure 1 and a thermal ellipsoid plot is shown in Figure 2. The chains are formed by the linkage of the Yb3+ cations by cis-bridging TCP. The coordination of Yb1 is ninefold and is best described as a distorted [YbO4N5] tri-capped trigonal prism.

The packing diagram of the title compound along the a axis is shown in Figure 3. There are two dominant inter-chain features that exist in the compound: those of Pi-stacking interactions whose inter-planar distances average 3.667 Å, and Pt···Pt interactions of 3.5033 (4) Å. These former interactions are between the coordinated tpy of one chain and the tpy of the adjacent chain, overlapping one-two rings from the inversely directed tpy ligands that resideon opposite sides of the adjacent chains, thus bringing them into partial alignment. This situation is unlike that in [Eu(C15H11N3)(H2O)2(NO3)Pt(CN)4].CH3CN, where the tpy ligands are not all unidirectional along the chain, as they are in the title compound, but instead flip nearly 180° with each successive cation. The dimeric Pt···Pt interactions occur between parallel TCP ligands on adjacent chains, opposite that of the tpy Pi-stacking interactions. Additional features for the title compound include channels along the a axis that contain acetonitrile solvate molecules (hydrogen bound to water) and additional inter-chain O—H···N h-bonding interactions between water molcules and TCP anions of neighboring chains (Table 1).

Related literature top

For related lanthanide tetracyanidoplatinate structures containing 2,2':6',2''- terpyridine, see: Maynard et al. (2008, 2010); Maynard, Smith, Ladner et al. (2009); Maynard, Smith & Sykora (2009). For structural and spectroscopic information on additional lanthanide tetracyanidoplatinates, see: Gliemann & Yersin (1985). For luminescence data on lanthanide terpyridine systems, see: Mukkala et al. (1995).

Experimental top

Yb(NO3)3.6H2O (Strem, 99.9%), K2Pt(CN)4.3H2O (Alfa Aesar, 99.9%), and 2,2':6',2''-terpyridine (tpy) (Aldrich, 98%) were used as received without further purification. The reaction proceeded by reacting a 1:1:1 molar ratio of reactants: 1 ml of a 0.10 M solution of Yb(NO3)3 was mixed with 1 ml of a 0.10 M solution of Pt(CN)42– followed by layering of 1 ml of 0.10 M tpy. The tpy and Yb3+ solutions were prepared in acetonitrile, whereas the Pt(CN)42– solution was prepared using acetonitrile, with drop-wise addition of H2O until the K2Pt(CN)4.3H2O was completely dissolved. Slow evaporation of the solvents over a period of 1–2 weeks resulted in the crystallization of the title compound as colorless prisms in a yield of 46%.

Refinement top

Hydrogen atoms on the terpyridine ring and acetonitrile molecule were placed in calculated positions (the acetonitrile H atoms were allowed to rotate but not to tip) and allowed to ride during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å for the former and Uiso(H) = 1.5Ueq(C) and C—H distances of 0.96 Å for the latter. H-atoms contained in the water molecules were initially located in the difference map and then constrained to have O—H distances of 0.85 Å and Uiso(H) = 1.5Ueq(O).

Structure description top

One of our research goals is to prepare systems in which weak Ln3+ emissions are enhanced through the use of sensitizing ligands. Recent efforts in our lab have focused on lanthanide compounds that incorporate both tetracyanidoplatinate(II) anions (TCP) and 2,2':6',2''-terpyridine (tpy), to achieve this goal (Maynard et al., 2008; Maynard, Smith, Ladner et al., 2009), since both of these ligands are known sensitizers for Ln3+ (Gliemann & Yersin, 1985; Mukkala et al., 1995). We have also reported the structures of several related compounds (Maynard et al., 2010; Maynard, Smith & Sykora, 2009).

The title compound is a cocrystal similar to several previously reported compounds in that it contains one-dimensional [Yb(C15H11N3)(H2O)2(NO3)Pt(CN)4]n chains similar to those found in Eu(C15H11N3)(H2O)2(NO3)Pt(CN)4].CH3CN (Maynard et al., 2008), [Nd(C15H11N3)(H2O)2(NO3)Pt(CN)4].CH3CN.0.5C15H11N3 (Maynard, Smith & Sykora, 2009)), and Yb(C15H11N3)(H2O)2(NO3)Pt(CN)4].0.5CH3CN.1.5H2O (Maynard et al., 2010). The major structural differences can be attributed to the crystallization of solvent or guest molecules between the 1—D chains. While the formulae of the title compound and Eu(C15H11N3)(H2O)2(NO3)Pt(CN)4].CH3CN appear similar, the compounds are not true isomorphs due to different packing arrangements.

The neutral, 1—D [Yb(C15H11N3)(H2O)2(NO3)(Pt(CN)4)]n chains in the structure of the title compound are illustrated in Figure 1 and a thermal ellipsoid plot is shown in Figure 2. The chains are formed by the linkage of the Yb3+ cations by cis-bridging TCP. The coordination of Yb1 is ninefold and is best described as a distorted [YbO4N5] tri-capped trigonal prism.

The packing diagram of the title compound along the a axis is shown in Figure 3. There are two dominant inter-chain features that exist in the compound: those of Pi-stacking interactions whose inter-planar distances average 3.667 Å, and Pt···Pt interactions of 3.5033 (4) Å. These former interactions are between the coordinated tpy of one chain and the tpy of the adjacent chain, overlapping one-two rings from the inversely directed tpy ligands that resideon opposite sides of the adjacent chains, thus bringing them into partial alignment. This situation is unlike that in [Eu(C15H11N3)(H2O)2(NO3)Pt(CN)4].CH3CN, where the tpy ligands are not all unidirectional along the chain, as they are in the title compound, but instead flip nearly 180° with each successive cation. The dimeric Pt···Pt interactions occur between parallel TCP ligands on adjacent chains, opposite that of the tpy Pi-stacking interactions. Additional features for the title compound include channels along the a axis that contain acetonitrile solvate molecules (hydrogen bound to water) and additional inter-chain O—H···N h-bonding interactions between water molcules and TCP anions of neighboring chains (Table 1).

For related lanthanide tetracyanidoplatinate structures containing 2,2':6',2''- terpyridine, see: Maynard et al. (2008, 2010); Maynard, Smith, Ladner et al. (2009); Maynard, Smith & Sykora (2009). For structural and spectroscopic information on additional lanthanide tetracyanidoplatinates, see: Gliemann & Yersin (1985). For luminescence data on lanthanide terpyridine systems, see: Mukkala et al. (1995).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A representation of the 1—D chains that extend along the a axis in the title compound.
[Figure 2] Fig. 2. A thermal ellipsoid plot of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 50% probability level. H-atoms are shown as spheres of arbitrary size. Symmetry code: (i) x + 1, y, z.
[Figure 3] Fig. 3. A packing diagram for the title compound viewed along the a axis, the direction parallel to the 1—D chains. H-bonding interactions are shown by the dashed lines.
catena-Poly[[[diaqua(nitrato-κ2O,O')(2,2':6',2''- terpyridine-κ3N,N',N'')ytterbium(III)]-µ-cyanido- κ2N:C-[dicyanidoplatinum(II)]-µ-cyanido- κ2C:N] acetonitrile monosolvate] top
Crystal data top
[PtYb(CN)4(NO3)(C15H11N3)(H2O)2]·C2H3NZ = 2
Mr = 844.57F(000) = 790
Triclinic, P1Dx = 2.259 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0810 (3) ÅCell parameters from 8297 reflections
b = 10.1939 (3) Åθ = 3.1–25.6°
c = 14.4718 (6) ŵ = 9.42 mm1
α = 79.083 (3)°T = 290 K
β = 72.689 (3)°Prism, colorless
γ = 78.660 (3)°0.49 × 0.31 × 0.27 mm
V = 1241.70 (8) Å3
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
4701 independent reflections
Radiation source: fine-focus sealed tube4049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.0514 pixels mm-1θmax = 25.7°, θmin = 3.1°
ω scansh = 711
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1212
Tmin = 0.249, Tmax = 1.00l = 1617
9396 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0345P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4701 reflectionsΔρmax = 1.73 e Å3
336 parametersΔρmin = 1.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00308 (18)
Crystal data top
[PtYb(CN)4(NO3)(C15H11N3)(H2O)2]·C2H3Nγ = 78.660 (3)°
Mr = 844.57V = 1241.70 (8) Å3
Triclinic, P1Z = 2
a = 9.0810 (3) ÅMo Kα radiation
b = 10.1939 (3) ŵ = 9.42 mm1
c = 14.4718 (6) ÅT = 290 K
α = 79.083 (3)°0.49 × 0.31 × 0.27 mm
β = 72.689 (3)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
4701 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
4049 reflections with I > 2σ(I)
Tmin = 0.249, Tmax = 1.00Rint = 0.023
9396 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.07Δρmax = 1.73 e Å3
4701 reflectionsΔρmin = 1.37 e Å3
336 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.92271 (2)0.322575 (18)0.273932 (13)0.01623 (8)
Pt10.435115 (18)0.553063 (17)0.115578 (12)0.01752 (7)
C10.5961 (5)0.4697 (5)0.1840 (3)0.0208 (10)
C20.2881 (5)0.4280 (5)0.1947 (3)0.0222 (10)
C30.2702 (5)0.6376 (5)0.0495 (3)0.0222 (10)
C40.5788 (6)0.6826 (5)0.0358 (4)0.0262 (11)
C50.6801 (6)0.5675 (5)0.3990 (4)0.0290 (12)
H50.65600.59230.33940.035*
C60.5988 (6)0.6420 (5)0.4742 (4)0.0347 (13)
H60.52350.71560.46470.042*
C70.6317 (7)0.6050 (6)0.5630 (4)0.0413 (15)
H70.57890.65260.61500.050*
C80.7439 (6)0.4963 (6)0.5732 (4)0.0349 (13)
H80.76670.46910.63320.042*
C90.8235 (5)0.4269 (5)0.4960 (3)0.0222 (11)
C100.9491 (5)0.3122 (5)0.5027 (3)0.0236 (11)
C111.0075 (6)0.2769 (6)0.5838 (4)0.0337 (13)
H110.96690.32540.63640.040*
C121.1257 (7)0.1696 (6)0.5862 (4)0.0387 (14)
H121.16610.14520.64010.046*
C131.1823 (6)0.1004 (5)0.5088 (4)0.0338 (13)
H131.26360.02880.50860.041*
C141.1188 (5)0.1363 (5)0.4292 (4)0.0230 (11)
C151.1671 (5)0.0578 (5)0.3465 (4)0.0243 (11)
C161.2804 (6)0.0557 (5)0.3421 (5)0.0390 (14)
H161.33410.08160.38980.047*
C171.3126 (7)0.1298 (6)0.2663 (5)0.0510 (17)
H171.38890.20570.26210.061*
C181.2322 (8)0.0915 (6)0.1978 (5)0.0464 (16)
H181.25100.14170.14700.056*
C191.1228 (7)0.0226 (5)0.2048 (4)0.0364 (13)
H191.06890.04950.15720.044*
C200.7057 (9)0.9079 (7)0.1599 (5)0.0537 (17)
C210.6432 (11)1.0314 (7)0.1050 (6)0.076 (3)
H21A0.72161.08950.07900.114*
H21B0.55371.07700.14780.114*
H21C0.61341.00850.05250.114*
N10.6910 (5)0.4234 (4)0.2230 (3)0.0305 (10)
N20.1890 (5)0.3662 (4)0.2380 (3)0.0250 (9)
N30.1670 (5)0.6804 (5)0.0164 (3)0.0359 (11)
N40.6653 (5)0.7528 (5)0.0099 (3)0.0381 (12)
N50.7917 (4)0.4617 (4)0.4075 (3)0.0223 (9)
N61.0054 (4)0.2434 (4)0.4258 (3)0.0196 (8)
N71.0901 (4)0.0980 (4)0.2785 (3)0.0232 (9)
N80.6955 (5)0.1430 (4)0.3293 (3)0.0285 (10)
N90.7471 (9)0.8127 (6)0.2038 (5)0.0695 (18)
O10.7876 (4)0.1492 (4)0.2458 (3)0.0356 (9)
O20.7216 (4)0.2084 (3)0.3877 (2)0.0278 (8)
O30.5860 (5)0.0800 (4)0.3544 (3)0.0509 (12)
O40.9449 (4)0.5562 (4)0.2090 (3)0.0386 (10)
H4A0.86680.61850.21860.058*
H4B1.00570.58050.15370.058*
O51.0152 (4)0.3114 (4)0.1110 (2)0.0325 (9)
H5A0.95680.30530.07620.049*
H5B1.11140.29960.08060.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.01534 (11)0.01848 (12)0.01563 (12)0.00102 (8)0.00609 (8)0.00271 (8)
Pt10.01570 (10)0.01992 (11)0.01880 (11)0.00175 (7)0.00724 (7)0.00400 (8)
C10.015 (2)0.027 (3)0.022 (3)0.0023 (19)0.009 (2)0.003 (2)
C20.023 (2)0.024 (3)0.022 (3)0.002 (2)0.014 (2)0.003 (2)
C30.025 (2)0.024 (3)0.020 (3)0.005 (2)0.009 (2)0.001 (2)
C40.024 (2)0.031 (3)0.026 (3)0.001 (2)0.007 (2)0.012 (2)
C50.031 (3)0.029 (3)0.028 (3)0.004 (2)0.008 (2)0.007 (2)
C60.027 (3)0.027 (3)0.046 (4)0.001 (2)0.002 (2)0.016 (3)
C70.042 (3)0.040 (3)0.037 (3)0.008 (3)0.009 (3)0.024 (3)
C80.038 (3)0.043 (3)0.023 (3)0.010 (3)0.000 (2)0.011 (2)
C90.024 (2)0.024 (3)0.020 (3)0.011 (2)0.004 (2)0.004 (2)
C100.027 (2)0.024 (3)0.022 (3)0.009 (2)0.007 (2)0.001 (2)
C110.046 (3)0.044 (3)0.016 (3)0.017 (3)0.012 (2)0.001 (2)
C120.053 (4)0.042 (3)0.033 (3)0.016 (3)0.032 (3)0.010 (3)
C130.038 (3)0.031 (3)0.037 (3)0.004 (2)0.023 (3)0.004 (3)
C140.024 (2)0.019 (2)0.029 (3)0.0081 (19)0.013 (2)0.004 (2)
C150.023 (2)0.017 (2)0.036 (3)0.0053 (19)0.013 (2)0.001 (2)
C160.035 (3)0.030 (3)0.054 (4)0.007 (2)0.021 (3)0.006 (3)
C170.037 (3)0.030 (3)0.077 (5)0.010 (3)0.008 (3)0.014 (3)
C180.052 (4)0.032 (3)0.051 (4)0.002 (3)0.004 (3)0.019 (3)
C190.047 (3)0.029 (3)0.032 (3)0.001 (3)0.009 (3)0.009 (2)
C200.073 (5)0.045 (4)0.054 (4)0.009 (4)0.032 (4)0.011 (3)
C210.126 (7)0.042 (4)0.077 (6)0.023 (5)0.060 (5)0.013 (4)
N10.026 (2)0.038 (3)0.028 (2)0.005 (2)0.0088 (19)0.002 (2)
N20.025 (2)0.029 (2)0.024 (2)0.0059 (18)0.0107 (18)0.0006 (19)
N30.033 (2)0.049 (3)0.029 (3)0.002 (2)0.017 (2)0.003 (2)
N40.036 (3)0.042 (3)0.037 (3)0.016 (2)0.003 (2)0.006 (2)
N50.027 (2)0.020 (2)0.021 (2)0.0055 (17)0.0051 (17)0.0056 (17)
N60.0231 (19)0.019 (2)0.018 (2)0.0045 (16)0.0079 (16)0.0003 (16)
N70.024 (2)0.018 (2)0.029 (2)0.0002 (16)0.0091 (18)0.0072 (17)
N80.023 (2)0.025 (2)0.038 (3)0.0027 (18)0.012 (2)0.001 (2)
N90.110 (5)0.040 (3)0.065 (4)0.006 (3)0.046 (4)0.005 (3)
O10.0312 (19)0.041 (2)0.038 (2)0.0078 (17)0.0063 (18)0.0178 (18)
O20.0313 (18)0.0274 (19)0.0269 (19)0.0089 (15)0.0072 (16)0.0053 (16)
O30.038 (2)0.054 (3)0.068 (3)0.029 (2)0.012 (2)0.008 (2)
O40.0292 (19)0.025 (2)0.048 (2)0.0009 (16)0.0019 (17)0.0051 (18)
O50.0223 (17)0.058 (2)0.0196 (18)0.0038 (17)0.0087 (15)0.0094 (17)
Geometric parameters (Å, º) top
Yb1—O52.272 (3)C11—C121.377 (8)
Yb1—O22.392 (3)C11—H110.9300
Yb1—N12.411 (4)C12—C131.353 (8)
Yb1—O42.413 (3)C12—H120.9300
Yb1—N2i2.430 (4)C13—C141.394 (7)
Yb1—N62.473 (4)C13—H130.9300
Yb1—N52.484 (4)C14—N61.350 (6)
Yb1—N72.488 (4)C14—C151.476 (7)
Yb1—O12.494 (4)C15—N71.330 (6)
Yb1—N82.863 (4)C15—C161.387 (7)
Pt1—C11.973 (5)C16—C171.377 (9)
Pt1—C21.981 (5)C16—H160.9300
Pt1—C31.983 (5)C17—C181.356 (9)
Pt1—C41.996 (5)C17—H170.9300
C1—N11.146 (6)C18—C191.371 (8)
C2—N21.156 (6)C18—H180.9300
C3—N31.151 (6)C19—N71.360 (7)
C4—N41.140 (6)C19—H190.9300
C5—N51.341 (6)C20—N91.118 (8)
C5—C61.386 (7)C20—C211.465 (9)
C5—H50.9300C21—H21A0.9600
C6—C71.371 (8)C21—H21B0.9600
C6—H60.9300C21—H21C0.9600
C7—C81.368 (8)N2—Yb1ii2.430 (4)
C7—H70.9300N8—O31.217 (5)
C8—C91.375 (7)N8—O11.247 (5)
C8—H80.9300N8—O21.269 (5)
C9—N51.363 (6)O4—H4A0.8500
C9—C101.475 (7)O4—H4B0.8500
C10—N61.345 (6)O5—H5A0.8499
C10—C111.387 (7)O5—H5B0.8500
O5—Yb1—O2126.83 (12)C9—C8—H8119.6
O5—Yb1—N180.34 (13)N5—C9—C8121.5 (5)
O2—Yb1—N175.96 (13)N5—C9—C10115.8 (4)
O5—Yb1—O478.62 (14)C8—C9—C10122.7 (5)
O2—Yb1—O4134.27 (12)N6—C10—C11121.3 (5)
N1—Yb1—O471.99 (14)N6—C10—C9116.7 (4)
O5—Yb1—N2i77.33 (13)C11—C10—C9122.0 (5)
O2—Yb1—N2i145.37 (13)C12—C11—C10119.8 (5)
N1—Yb1—N2i137.41 (13)C12—C11—H11120.1
O4—Yb1—N2i68.35 (13)C10—C11—H11120.1
O5—Yb1—N6139.51 (12)C13—C12—C11118.9 (5)
O2—Yb1—N672.88 (12)C13—C12—H12120.6
N1—Yb1—N6139.64 (14)C11—C12—H12120.6
O4—Yb1—N6114.33 (13)C12—C13—C14120.0 (5)
N2i—Yb1—N673.30 (12)C12—C13—H13120.0
O5—Yb1—N5148.52 (13)C14—C13—H13120.0
O2—Yb1—N571.87 (12)N6—C14—C13121.1 (5)
N1—Yb1—N580.97 (14)N6—C14—C15116.5 (4)
O4—Yb1—N571.61 (13)C13—C14—C15122.4 (5)
N2i—Yb1—N5100.34 (13)N7—C15—C16121.6 (5)
N6—Yb1—N565.42 (13)N7—C15—C14116.2 (4)
O5—Yb1—N780.43 (13)C16—C15—C14122.2 (5)
O2—Yb1—N785.64 (12)C17—C16—C15119.3 (5)
N1—Yb1—N7137.01 (14)C17—C16—H16120.4
O4—Yb1—N7139.58 (12)C15—C16—H16120.4
N2i—Yb1—N773.55 (13)C18—C17—C16119.6 (5)
N6—Yb1—N764.99 (13)C18—C17—H17120.2
N5—Yb1—N7129.60 (13)C16—C17—H17120.2
O5—Yb1—O175.44 (13)C17—C18—C19118.8 (6)
O2—Yb1—O151.64 (12)C17—C18—H18120.6
N1—Yb1—O168.10 (14)C19—C18—H18120.6
O4—Yb1—O1135.18 (13)N7—C19—C18122.6 (6)
N2i—Yb1—O1137.30 (13)N7—C19—H19118.7
N6—Yb1—O1109.16 (12)C18—C19—H19118.7
N5—Yb1—O1119.84 (12)N9—C20—C21177.0 (9)
N7—Yb1—O169.99 (12)C20—C21—H21A109.5
O5—Yb1—N8100.82 (13)C20—C21—H21B109.5
O2—Yb1—N826.03 (12)H21A—C21—H21B109.5
N1—Yb1—N868.10 (13)C20—C21—H21C109.5
O4—Yb1—N8139.51 (12)H21A—C21—H21C109.5
N2i—Yb1—N8151.76 (13)H21B—C21—H21C109.5
N6—Yb1—N892.51 (12)C1—N1—Yb1169.0 (4)
N5—Yb1—N895.38 (13)C2—N2—Yb1ii150.9 (3)
N7—Yb1—N878.34 (12)C5—N5—C9116.9 (4)
O1—Yb1—N825.75 (12)C5—N5—Yb1122.4 (3)
C1—Pt1—C292.89 (18)C9—N5—Yb1120.5 (3)
C1—Pt1—C3178.77 (18)C10—N6—C14118.8 (4)
C2—Pt1—C386.46 (19)C10—N6—Yb1121.1 (3)
C1—Pt1—C488.27 (19)C14—N6—Yb1119.9 (3)
C2—Pt1—C4178.60 (18)C15—N7—C19118.1 (4)
C3—Pt1—C492.37 (19)C15—N7—Yb1120.0 (3)
N1—C1—Pt1178.7 (4)C19—N7—Yb1121.2 (3)
N2—C2—Pt1172.2 (4)O3—N8—O1123.2 (5)
N3—C3—Pt1174.7 (4)O3—N8—O2121.1 (4)
N4—C4—Pt1177.5 (5)O1—N8—O2115.7 (4)
N5—C5—C6123.6 (5)O3—N8—Yb1172.4 (4)
N5—C5—H5118.2O1—N8—Yb160.4 (2)
C6—C5—H5118.2O2—N8—Yb155.8 (2)
C7—C6—C5118.7 (5)N8—O1—Yb193.9 (3)
C7—C6—H6120.7N8—O2—Yb198.2 (3)
C5—C6—H6120.7Yb1—O4—H4A122.0
C8—C7—C6118.5 (5)Yb1—O4—H4B122.9
C8—C7—H7120.8H4A—O4—H4B106.8
C6—C7—H7120.8Yb1—O5—H5A122.5
C7—C8—C9120.8 (5)Yb1—O5—H5B124.3
C7—C8—H8119.6H5A—O5—H5B112.5
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N90.852.072.868 (7)156.5
O4—H4B···N3i0.852.283.125 (6)169.6
O5—H5A···N3iii0.851.962.802 (6)170.4
O5—H5B···N4iv0.852.002.842 (6)172.7
Symmetry codes: (i) x+1, y, z; (iii) x+1, y+1, z; (iv) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[PtYb(CN)4(NO3)(C15H11N3)(H2O)2]·C2H3N
Mr844.57
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)9.0810 (3), 10.1939 (3), 14.4718 (6)
α, β, γ (°)79.083 (3), 72.689 (3), 78.660 (3)
V3)1241.70 (8)
Z2
Radiation typeMo Kα
µ (mm1)9.42
Crystal size (mm)0.49 × 0.31 × 0.27
Data collection
DiffractometerOxford Diffraction Xcalibur E
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.249, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
9396, 4701, 4049
Rint0.023
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.059, 1.07
No. of reflections4701
No. of parameters336
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.73, 1.37

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N90.852.072.868 (7)156.5
O4—H4B···N3i0.852.283.125 (6)169.6
O5—H5A···N3ii0.851.962.802 (6)170.4
O5—H5B···N4iii0.852.002.842 (6)172.7
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+2, y+1, z.
 

Acknowledgements

The authors gratefully acknowledge the National Science Foundation for their generous support (NSF-CAREER grant to RES, CHE-0846680).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGliemann, G. & Yersin, H. (1985). Struct. Bond. 62, 87–153.  CrossRef CAS Google Scholar
First citationMaynard, B. A., Kalachnikova, K., Whitehead, K., Assefa, Z. & Sykora, R. E. (2008). Inorg. Chem. 47, 1895–1897.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMaynard, B. A., Smith, P. A., Jaleel, A., Ladner, L. & Sykora, R. E. (2010). J. Chem. Crystallogr. 40, 616–623.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaynard, B. A., Smith, P. A., Ladner, L., Jaleel, A., Beedoe, N., Crawford, C., Assefa, Z. & Sykora, R. E. (2009). Inorg. Chem. 48, 6425–6435.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMaynard, B. A., Smith, P. A. & Sykora, R. E. (2009). Acta Cryst. E65, m1132–m1133.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMukkala, V.-M., Takalo, H., Liitti, P. & Hemmilä, I. (1995). J. Alloys Compd, 225, 507–510.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds