organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Di­methyl­amino)­anthra­quinone

aKey Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: feizhuan123@163.com

(Received 13 October 2010; accepted 1 November 2010; online 6 November 2010)

The mol­ecule of the title compound, C16H13NO2, is almost planar, with a maximum deviation of 0.013 (2) Å from the best plane; the dihedral angle between the two aromatic rings is 1.06 (1)°. In the crystal, mol­ecules are linked through weak intra­molecular C—H⋯O inter­actions, forming chains running parallel to [10[\overline{1}]].

Related literature

For the preparation, see: Havlik et al. (2008[Havlik, M., Kral, V., Kaplanek, R. & Dolensky, B. (2008). Org. Lett. 10, 4767-4769.]). For a related structure, see: Janczak (1995[Janczak, J. (1995). Acta Cryst. C51, 1381-1382.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO2

  • Mr = 251.27

  • Monoclinic, P 21 /n

  • a = 4.8614 (6) Å

  • b = 19.945 (2) Å

  • c = 12.8624 (15) Å

  • β = 95.979 (2)°

  • V = 1240.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 14833 measured reflections

  • 3050 independent reflections

  • 2267 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.161

  • S = 1.03

  • 3050 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.93 2.50 3.272 (2) 140
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The aminoanthraquinone derivatives are important compounds as dyes and intermediates. We report here the crystal structure of the title compound.

The molecular is almost planar, with a maximum deviation of 0.013 (2)Å from the best plane. The dihedral angle between the two benzene rings is 1.06 (1)° (Fig 1). The bond distances and bond angles are in good agreement with those in a closely related crystal structure (Janczak et al., 1995). In the crystal structure, the crystal packing is stabilized by a weak intramolecular C(9)—H(9)···O(1) (x + 1/2, -y + 1/2, z - 1/2) hydrogen bond [C(9)···O(1) 3.275 (2) Å1,Table 1].

Related literature top

For the preparation, see: Havlik et al. (2008). For a related structure, see: Janczak (1995).

Experimental top

The title compound was synthesized according to the reported literature (Havlik et al., 2008). Crystals of (I) suitablefor X-ray diffraction were grown by slow evaporation of a chloroform-methanol(1:1) solution of the title compound under 293 K.

Refinement top

All H atoms were positioned in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C).

Structure description top

The aminoanthraquinone derivatives are important compounds as dyes and intermediates. We report here the crystal structure of the title compound.

The molecular is almost planar, with a maximum deviation of 0.013 (2)Å from the best plane. The dihedral angle between the two benzene rings is 1.06 (1)° (Fig 1). The bond distances and bond angles are in good agreement with those in a closely related crystal structure (Janczak et al., 1995). In the crystal structure, the crystal packing is stabilized by a weak intramolecular C(9)—H(9)···O(1) (x + 1/2, -y + 1/2, z - 1/2) hydrogen bond [C(9)···O(1) 3.275 (2) Å1,Table 1].

For the preparation, see: Havlik et al. (2008). For a related structure, see: Janczak (1995).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 30% probability level. H atoms omitted for clarity.
2-(Dimethylamino)anthraquinone top
Crystal data top
C16H13NO2F(000) = 528
Mr = 251.27Dx = 1.346 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4567 reflections
a = 4.8614 (6) Åθ = 2.6–28.1°
b = 19.945 (2) ŵ = 0.09 mm1
c = 12.8624 (15) ÅT = 298 K
β = 95.979 (2)°Block, red
V = 1240.3 (3) Å30.23 × 0.20 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2267 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 28.3°, θmin = 2.6°
phi and ω scansh = 66
14833 measured reflectionsk = 2626
3050 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0842P)2 + 0.2178P]
where P = (Fo2 + 2Fc2)/3
3050 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C16H13NO2V = 1240.3 (3) Å3
Mr = 251.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.8614 (6) ŵ = 0.09 mm1
b = 19.945 (2) ÅT = 298 K
c = 12.8624 (15) Å0.23 × 0.20 × 0.12 mm
β = 95.979 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2267 reflections with I > 2σ(I)
14833 measured reflectionsRint = 0.022
3050 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
3050 reflectionsΔρmin = 0.17 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6324 (3)0.00602 (7)0.25988 (10)0.0429 (3)
C20.6624 (3)0.00659 (8)0.36860 (11)0.0478 (3)
H20.56030.01840.41200.057*
C30.8390 (3)0.05496 (8)0.41090 (10)0.0478 (4)
H30.85330.06230.48270.057*
C40.9988 (3)0.09367 (7)0.34945 (10)0.0426 (3)
C51.1903 (3)0.14348 (8)0.39853 (11)0.0505 (4)
C61.3534 (3)0.18380 (7)0.32916 (12)0.0473 (3)
C71.5374 (4)0.23222 (9)0.37330 (14)0.0618 (4)
H71.55560.23950.44510.074*
C81.6923 (4)0.26926 (9)0.30989 (17)0.0708 (5)
H81.81590.30120.33950.085*
C91.6661 (4)0.25959 (9)0.20389 (17)0.0677 (5)
H91.77120.28500.16210.081*
C101.4840 (3)0.21210 (8)0.15899 (14)0.0580 (4)
H101.46650.20570.08700.070*
C111.3265 (3)0.17382 (7)0.22145 (11)0.0461 (3)
C121.1329 (3)0.12237 (8)0.17157 (11)0.0471 (3)
C130.9685 (3)0.08246 (7)0.24153 (10)0.0407 (3)
C140.7881 (3)0.03404 (7)0.19746 (10)0.0438 (3)
H140.76940.02790.12540.053*
C150.3016 (4)0.09571 (9)0.28401 (14)0.0622 (4)
H15A0.42100.11270.34220.093*
H15B0.21820.13250.24430.093*
H15C0.15970.06850.30920.093*
C160.3996 (4)0.06205 (9)0.10626 (13)0.0647 (5)
H16A0.32660.02040.07780.097*
H16B0.26550.09700.09110.097*
H16C0.56560.07300.07550.097*
N10.4616 (3)0.05562 (7)0.21809 (10)0.0534 (3)
O11.2204 (3)0.15165 (7)0.49310 (9)0.0779 (4)
O21.1100 (3)0.11368 (7)0.07767 (8)0.0725 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0394 (7)0.0500 (7)0.0395 (7)0.0056 (6)0.0045 (5)0.0006 (6)
C20.0503 (8)0.0574 (8)0.0372 (7)0.0002 (6)0.0118 (6)0.0048 (6)
C30.0533 (8)0.0607 (9)0.0300 (6)0.0038 (6)0.0072 (5)0.0004 (6)
C40.0428 (7)0.0500 (8)0.0348 (7)0.0063 (6)0.0031 (5)0.0003 (5)
C50.0528 (8)0.0572 (8)0.0405 (7)0.0033 (7)0.0007 (6)0.0029 (6)
C60.0428 (7)0.0468 (7)0.0511 (8)0.0049 (6)0.0008 (6)0.0015 (6)
C70.0619 (10)0.0573 (9)0.0636 (10)0.0020 (8)0.0054 (8)0.0038 (8)
C80.0616 (11)0.0525 (9)0.0953 (15)0.0101 (8)0.0066 (9)0.0051 (9)
C90.0583 (10)0.0566 (10)0.0880 (14)0.0053 (8)0.0064 (9)0.0207 (9)
C100.0536 (9)0.0602 (9)0.0604 (10)0.0034 (7)0.0073 (7)0.0147 (7)
C110.0403 (7)0.0492 (8)0.0486 (8)0.0069 (6)0.0037 (6)0.0068 (6)
C120.0456 (8)0.0590 (8)0.0371 (7)0.0037 (6)0.0060 (6)0.0040 (6)
C130.0389 (7)0.0486 (7)0.0347 (6)0.0064 (5)0.0043 (5)0.0024 (5)
C140.0456 (7)0.0558 (8)0.0301 (6)0.0039 (6)0.0043 (5)0.0002 (6)
C150.0617 (10)0.0640 (10)0.0616 (10)0.0096 (8)0.0105 (8)0.0028 (8)
C160.0747 (11)0.0685 (10)0.0499 (9)0.0116 (9)0.0008 (8)0.0073 (8)
N10.0556 (7)0.0605 (8)0.0445 (7)0.0093 (6)0.0065 (5)0.0016 (6)
O10.0973 (10)0.0948 (10)0.0405 (6)0.0258 (8)0.0023 (6)0.0124 (6)
O20.0806 (8)0.1016 (10)0.0368 (6)0.0258 (7)0.0128 (5)0.0003 (6)
Geometric parameters (Å, º) top
C1—N11.3651 (19)C9—C101.381 (3)
C1—C141.4079 (19)C9—H90.9300
C1—C21.4133 (19)C10—C111.394 (2)
C2—C31.366 (2)C10—H100.9300
C2—H20.9300C11—C121.491 (2)
C3—C41.3970 (19)C12—O21.2138 (17)
C3—H30.9300C12—C131.4939 (19)
C4—C131.3987 (18)C13—C141.385 (2)
C4—C51.459 (2)C14—H140.9300
C5—O11.2208 (17)C15—N11.449 (2)
C5—C61.490 (2)C15—H15A0.9600
C6—C111.392 (2)C15—H15B0.9600
C6—C71.396 (2)C15—H15C0.9600
C7—C81.380 (3)C16—N11.444 (2)
C7—H70.9300C16—H16A0.9600
C8—C91.370 (3)C16—H16B0.9600
C8—H80.9300C16—H16C0.9600
N1—C1—C14121.85 (12)C11—C10—H10120.0
N1—C1—C2120.95 (13)C6—C11—C10119.66 (14)
C14—C1—C2117.20 (13)C6—C11—C12121.08 (13)
C3—C2—C1121.02 (13)C10—C11—C12119.26 (14)
C3—C2—H2119.5O2—C12—C11120.97 (13)
C1—C2—H2119.5O2—C12—C13121.60 (14)
C2—C3—C4121.89 (12)C11—C12—C13117.43 (12)
C2—C3—H3119.1C14—C13—C4120.94 (12)
C4—C3—H3119.1C14—C13—C12118.73 (12)
C3—C4—C13117.77 (13)C4—C13—C12120.33 (13)
C3—C4—C5119.92 (12)C13—C14—C1121.15 (12)
C13—C4—C5122.31 (13)C13—C14—H14119.4
O1—C5—C4121.78 (14)C1—C14—H14119.4
O1—C5—C6120.58 (14)N1—C15—H15A109.5
C4—C5—C6117.64 (12)N1—C15—H15B109.5
C11—C6—C7119.56 (14)H15A—C15—H15B109.5
C11—C6—C5121.20 (13)N1—C15—H15C109.5
C7—C6—C5119.23 (14)H15A—C15—H15C109.5
C8—C7—C6119.71 (17)H15B—C15—H15C109.5
C8—C7—H7120.1N1—C16—H16A109.5
C6—C7—H7120.1N1—C16—H16B109.5
C9—C8—C7120.86 (17)H16A—C16—H16B109.5
C9—C8—H8119.6N1—C16—H16C109.5
C7—C8—H8119.6H16A—C16—H16C109.5
C8—C9—C10120.12 (16)H16B—C16—H16C109.5
C8—C9—H9119.9C1—N1—C16120.78 (13)
C10—C9—H9119.9C1—N1—C15120.72 (12)
C9—C10—C11120.08 (17)C16—N1—C15117.68 (13)
C9—C10—H10120.0
N1—C1—C2—C3178.16 (13)C9—C10—C11—C60.1 (2)
C14—C1—C2—C31.1 (2)C9—C10—C11—C12179.45 (14)
C1—C2—C3—C40.5 (2)C6—C11—C12—O2179.89 (14)
C2—C3—C4—C131.3 (2)C10—C11—C12—O20.4 (2)
C2—C3—C4—C5178.30 (14)C6—C11—C12—C130.4 (2)
C3—C4—C5—O11.6 (2)C10—C11—C12—C13179.92 (13)
C13—C4—C5—O1178.05 (14)C3—C4—C13—C140.7 (2)
C3—C4—C5—C6179.42 (12)C5—C4—C13—C14178.97 (13)
C13—C4—C5—C61.0 (2)C3—C4—C13—C12179.82 (12)
O1—C5—C6—C11178.32 (15)C5—C4—C13—C120.5 (2)
C4—C5—C6—C110.7 (2)O2—C12—C13—C140.6 (2)
O1—C5—C6—C71.4 (2)C11—C12—C13—C14179.66 (12)
C4—C5—C6—C7179.60 (13)O2—C12—C13—C4179.87 (14)
C11—C6—C7—C80.5 (2)C11—C12—C13—C40.14 (19)
C5—C6—C7—C8179.16 (15)C4—C13—C14—C10.9 (2)
C6—C7—C8—C90.6 (3)C12—C13—C14—C1178.63 (12)
C7—C8—C9—C100.3 (3)N1—C1—C14—C13177.49 (13)
C8—C9—C10—C110.1 (3)C2—C1—C14—C131.7 (2)
C7—C6—C11—C100.2 (2)C14—C1—N1—C1610.0 (2)
C5—C6—C11—C10179.49 (13)C2—C1—N1—C16170.79 (14)
C7—C6—C11—C12179.74 (13)C14—C1—N1—C15179.41 (14)
C5—C6—C11—C120.0 (2)C2—C1—N1—C151.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.503.272 (2)140
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H13NO2
Mr251.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)4.8614 (6), 19.945 (2), 12.8624 (15)
β (°) 95.979 (2)
V3)1240.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14833, 3050, 2267
Rint0.022
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.161, 1.03
No. of reflections3050
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.17

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.503.272 (2)140.1
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The author are grateful to Central China Normal University for financial support and thank Dr Xiang-Gao Meng for the data collection.

References

First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHavlik, M., Kral, V., Kaplanek, R. & Dolensky, B. (2008). Org. Lett. 10, 4767–4769.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJanczak, J. (1995). Acta Cryst. C51, 1381–1382.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds