organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Allyl-3-(2-methyl-4-quinol­yl)-1H-1,2,4-triazole-5(4H)-thione

aSamara State Technical University, Molodogvardeyskay Str. 244, 443100 Samara, Russian Federation, and bDepartment of Chemistry, Moscow State University, 119992 Moscow, Russian Federation
*Correspondence e-mail: rybakov20021@yandex.ru

(Received 13 October 2010; accepted 1 November 2010; online 6 November 2010)

In the title compound, C15H14N4S, the quinoline and triazole rings form a dihedral angle of 41.48 (7)°. In the crystal, adjacent mol­ecules are linked by N—H⋯N hydrogen bonds, forming chains along [100].

Related literature

For the use of hydrazides and their functional derivatives in the preparation of a series of anti­tubercular and anti­bacterial compounds, see: Anghel & Silberg (1971[Anghel, C. & Silberg, A. (1971). Studia Univ. Babes-Bolyai Chem. 16, 9-12.]); Figueiredo et al. (2000[Figueiredo, J. M., Camara, C. de A., Amarante, E. G., Miranda, A. L. P., Santos, F. M., Rodrigues, C. R., Fraga, C. A. M. & Barreiro, E. J. (2000). Bioorg. Med. Chem. 8, 2243-2248.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N4S

  • Mr = 282.37

  • Monoclinic, P 21 /n

  • a = 7.8184 (8) Å

  • b = 11.5159 (13) Å

  • c = 15.7723 (14) Å

  • β = 96.034 (9)°

  • V = 1412.2 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.99 mm−1

  • T = 295 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 2897 measured reflections

  • 2897 independent reflections

  • 2570 reflections with I > 2σ(I)

  • 1 standard reflections every 60 min intensity decay: 4%

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.171

  • S = 1.09

  • 2897 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N14—H14⋯N1i 0.86 2.21 2.978 (3) 148
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hydrazides and their functional derivatives were used to prepare a series of antitubercular and antibacterial compounds (Anghel & Silberg, 1971; Figueiredo et al., 2000). Many heterocyclic compounds directly prepared from hydrazides, too, possess valuable biological and physicochemical properties. This causes an attention to new synthetic methods and investigation of similar compounds. N–(Allylthiocarbonyl)–4–(2–methyl–4–quinolyl)–carbohydrazide, I, was synthesized from allyl isothiocyanate and hydrazide 2–methyl–4–quinoline carboxylic acid. When heated with alkali for 1 h, the product undergoes cyclization into 4-allyl-3-(2-methyl-4-quinolyl)-4,5-dihydro-1H-1,2,4-triazole-5-thione, II (Fig. 1).

In title molecule, guinoline moiety is planar (max deviation of C6 = 0.039 (2) Å) and assential planar triazole moiety form dihedral angle 41.48 (7)° (Fig. 2). In the crystal structure is found classical hydrogen bond N14—H14···N1i with parameters N14—H14 = 0.86 Å, N14···N1i = 2.978 (3) Å, H14···N1i = 2.21Å and angle N14—H14···N1i = 147.8°. Non–classical H bond is found too: C21—H21A···N15ii with parameters C21—H21A = 0.96 Å, C21···N15ii = 3.330 (3) Å, H21A···N15ii = 2.450Å and angle C21—H21A···N15ii = 152°. Is found σ···π–interaction between H8—>C17iiiC18iii (H8···C17iii = 2.800Å and H8···C18iii = 2.896 Å). Symmetry codes: (i) x + 1/2, -y + 3/2, z + 1/2; (ii) x - 1/2, -y + 3/2, z - 1/2; (iii) x, y - 1, z.

Related literature top

For the use of hydrazides and their functional derivatives in the preparation of a series of

antitubercular and antibacterial compounds, see: Anghel & Silberg (1971); Figueiredo et al. (2000).

Experimental top

A solution of 1.43 mmol of NaOH in 10 ml of water was added to 0.95 mmol of N–(allylthiocarbonyl)–4–(2–methyl–4–quinolyl)–carbohydrazide, and the mixture was refluxed for 1 h. The solution was cooled and acidified with acetic acid to pH 4. The precipitate that formed was filtered off and recrystallized from ethanol. Recrystallization of the crude product from ethanol gave 0.2 g of colourless crystals. Yield 73%, m.p. 494–495 K.

IR, ν, cm-1: 3432 (NH), 3324 (NH), 1348 (CS). MS, m/z: 282 (100) [M]+, 245 (39), 267 (62), 169 (66), 168 (61), 140 (23). 1H NMR, δ: 2.68 s (3H, CH3), 3.92 s (1H, NH), 4.53 d (2H, J = 5.04, —CH2—CHCH2), 4.67 d (1H, J = 10.53, —CHCH2 trans), 5.17 dd (1H, J = 16.94, —CHCH2 cis), 5.62 m (1H, —CH), 7.55 t (1H, J = 7.34, 7–H), 7.66 s (1H, 3–H), 7.76 t (1H, J = 7.74, 6–H), 7.78 d (1H, J = 8.24, 8–H), 8.00 d (1H, J = 8.70, 5–H). Anal. calc. for C15H14N4S, %: C 63.80; H 5.00; N 19.84; S 11.36. Found, %: C 63.68; H 5.09; N 11.44; S 11.31.

Single crystals for X–ray analysis were obtained by slow evaporation of an ethanol. IR spectrum was recorded (in KBr) on Shimadzu FTIR–8400S. Mass spectrum was measured on Finnigan Trance DSQ spectrometer. 1H NMR spectrum was obtained in DMSO–d6 on Bruker AM 300 (300 MHz), using TMS as internal standard. Elemental composition was determined on Euro Vector EA–3000 elemental analyzer.

Refinement top

C– or N–bound H–atoms were placed in calculated positions (C—H 0.93–0.97Å and N—H 0.86 Å) and refined as riding, with Uiso(H) = 1.2(1.5)Ueq(C, N).

Structure description top

Hydrazides and their functional derivatives were used to prepare a series of antitubercular and antibacterial compounds (Anghel & Silberg, 1971; Figueiredo et al., 2000). Many heterocyclic compounds directly prepared from hydrazides, too, possess valuable biological and physicochemical properties. This causes an attention to new synthetic methods and investigation of similar compounds. N–(Allylthiocarbonyl)–4–(2–methyl–4–quinolyl)–carbohydrazide, I, was synthesized from allyl isothiocyanate and hydrazide 2–methyl–4–quinoline carboxylic acid. When heated with alkali for 1 h, the product undergoes cyclization into 4-allyl-3-(2-methyl-4-quinolyl)-4,5-dihydro-1H-1,2,4-triazole-5-thione, II (Fig. 1).

In title molecule, guinoline moiety is planar (max deviation of C6 = 0.039 (2) Å) and assential planar triazole moiety form dihedral angle 41.48 (7)° (Fig. 2). In the crystal structure is found classical hydrogen bond N14—H14···N1i with parameters N14—H14 = 0.86 Å, N14···N1i = 2.978 (3) Å, H14···N1i = 2.21Å and angle N14—H14···N1i = 147.8°. Non–classical H bond is found too: C21—H21A···N15ii with parameters C21—H21A = 0.96 Å, C21···N15ii = 3.330 (3) Å, H21A···N15ii = 2.450Å and angle C21—H21A···N15ii = 152°. Is found σ···π–interaction between H8—>C17iiiC18iii (H8···C17iii = 2.800Å and H8···C18iii = 2.896 Å). Symmetry codes: (i) x + 1/2, -y + 3/2, z + 1/2; (ii) x - 1/2, -y + 3/2, z - 1/2; (iii) x, y - 1, z.

For the use of hydrazides and their functional derivatives in the preparation of a series of

antitubercular and antibacterial compounds, see: Anghel & Silberg (1971); Figueiredo et al. (2000).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Synthesis of the title compound.
[Figure 2] Fig. 2. ORTEP–3 (Farrugia, 1997) plot of molecular structure of the title compound showing the atom–numbering scheme. Thermal displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
4-Allyl-3-(2-methyl-4-quinolyl)-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C15H14N4SF(000) = 592
Mr = 282.37Dx = 1.328 Mg m3
Monoclinic, P21/nMelting point = 494–495 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54184 Å
a = 7.8184 (8) ÅCell parameters from 25 reflections
b = 11.5159 (13) Åθ = 29.9–32.4°
c = 15.7723 (14) ŵ = 1.99 mm1
β = 96.034 (9)°T = 295 K
V = 1412.2 (3) Å3Prism, colourless
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: Fine–focus sealed tubeθmax = 74.9°, θmin = 4.8°
Graphite monochromatorh = 99
non–profiled ω scansk = 014
2897 measured reflectionsl = 019
2897 independent reflections1 standard reflections every 60 min
2570 reflections with I > 2σ(I) intensity decay: 4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0953P)2 + 0.6742P]
where P = (Fo2 + 2Fc2)/3
2897 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C15H14N4SV = 1412.2 (3) Å3
Mr = 282.37Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.8184 (8) ŵ = 1.99 mm1
b = 11.5159 (13) ÅT = 295 K
c = 15.7723 (14) Å0.20 × 0.20 × 0.20 mm
β = 96.034 (9)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.000
2897 measured reflections1 standard reflections every 60 min
2897 independent reflections intensity decay: 4%
2570 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.09Δρmax = 0.28 e Å3
2897 reflectionsΔρmin = 0.60 e Å3
182 parameters
Special details top

Geometry. All s.u.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0256 (3)0.68265 (17)0.64417 (12)0.0489 (4)
C20.0117 (3)0.7945 (2)0.64169 (14)0.0510 (5)
C210.0078 (5)0.8565 (2)0.55821 (17)0.0707 (8)
H21A0.03270.80140.51290.106*
H21B0.09710.89670.55050.106*
H21C0.10020.91150.55750.106*
C30.0741 (3)0.8566 (2)0.71541 (14)0.0504 (5)
H30.10530.93400.71050.060*
C40.0898 (3)0.80569 (19)0.79389 (13)0.0450 (5)
C50.0448 (3)0.6859 (2)0.79967 (13)0.0452 (5)
C60.0506 (4)0.6230 (2)0.87675 (16)0.0572 (6)
H60.08090.66050.92840.069*
C70.0115 (4)0.5067 (2)0.87563 (18)0.0677 (7)
H70.01610.46560.92660.081*
C80.0351 (4)0.4498 (2)0.79841 (18)0.0636 (7)
H80.06010.37080.79860.076*
C90.0446 (3)0.5078 (2)0.72313 (15)0.0521 (5)
H90.07570.46850.67230.063*
C100.0073 (3)0.62756 (19)0.72191 (14)0.0445 (5)
C110.1589 (3)0.87239 (19)0.86904 (13)0.0438 (5)
N120.1212 (2)0.98612 (16)0.88595 (11)0.0426 (4)
C130.2140 (3)1.0161 (2)0.96191 (13)0.0461 (5)
S130.20807 (9)1.14068 (5)1.01518 (4)0.0584 (2)
N140.3062 (3)0.91993 (18)0.98323 (11)0.0509 (5)
H140.37920.91531.02790.061*
N150.2733 (3)0.83085 (18)0.92762 (12)0.0512 (5)
C160.0166 (3)1.0582 (2)0.84356 (15)0.0479 (5)
H16A0.06861.10250.88640.057*
H16B0.10451.00800.81540.057*
C170.0426 (3)1.1402 (2)0.77948 (17)0.0544 (6)
H170.14301.18190.79460.065*
C180.0369 (4)1.1571 (3)0.70368 (19)0.0670 (7)
H18A0.13771.11670.68650.080*
H18B0.00701.20960.66670.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0549 (11)0.0500 (10)0.0402 (9)0.0018 (8)0.0018 (8)0.0032 (8)
C20.0626 (14)0.0476 (12)0.0413 (11)0.0030 (10)0.0012 (9)0.0011 (9)
C210.109 (2)0.0540 (15)0.0459 (13)0.0009 (14)0.0077 (14)0.0031 (11)
C30.0633 (14)0.0436 (12)0.0431 (12)0.0006 (10)0.0004 (10)0.0017 (9)
C40.0485 (11)0.0460 (11)0.0398 (11)0.0019 (9)0.0016 (8)0.0034 (9)
C50.0489 (11)0.0448 (11)0.0413 (11)0.0035 (9)0.0025 (8)0.0019 (9)
C60.0772 (17)0.0522 (13)0.0417 (12)0.0016 (12)0.0037 (11)0.0006 (10)
C70.099 (2)0.0514 (14)0.0521 (14)0.0034 (14)0.0051 (13)0.0072 (11)
C80.0819 (19)0.0430 (12)0.0656 (16)0.0012 (12)0.0059 (13)0.0003 (11)
C90.0570 (13)0.0467 (12)0.0517 (13)0.0013 (10)0.0017 (10)0.0068 (10)
C100.0457 (11)0.0454 (11)0.0421 (11)0.0032 (9)0.0027 (8)0.0024 (8)
C110.0487 (11)0.0439 (11)0.0384 (10)0.0003 (9)0.0022 (8)0.0025 (8)
N120.0456 (9)0.0429 (9)0.0392 (9)0.0006 (7)0.0045 (7)0.0013 (7)
C130.0497 (11)0.0497 (12)0.0394 (10)0.0056 (9)0.0070 (8)0.0023 (9)
S130.0753 (5)0.0485 (4)0.0524 (4)0.0073 (3)0.0107 (3)0.0104 (2)
N140.0568 (11)0.0537 (11)0.0402 (9)0.0034 (9)0.0039 (8)0.0066 (8)
N150.0582 (11)0.0496 (10)0.0436 (10)0.0068 (9)0.0044 (8)0.0062 (8)
C160.0475 (11)0.0469 (12)0.0498 (12)0.0049 (9)0.0071 (9)0.0032 (9)
C170.0574 (13)0.0440 (12)0.0626 (14)0.0004 (10)0.0106 (11)0.0053 (10)
C180.0805 (19)0.0596 (15)0.0617 (16)0.0015 (13)0.0115 (13)0.0118 (12)
Geometric parameters (Å, º) top
N1—C21.322 (3)C8—H80.9300
N1—C101.375 (3)C9—C101.411 (3)
C2—C31.408 (3)C9—H90.9300
C2—C211.492 (3)C11—N151.307 (3)
C21—H21A0.9600C11—N121.375 (3)
C21—H21B0.9600N12—C131.377 (3)
C21—H21C0.9600N12—C161.465 (3)
C3—C41.363 (3)C13—N141.345 (3)
C3—H30.9300C13—S131.666 (2)
C4—C51.430 (3)N14—N151.357 (3)
C4—C111.467 (3)N14—H140.8600
C5—C61.411 (3)C16—C171.491 (3)
C5—C101.420 (3)C16—H16A0.9700
C6—C71.374 (4)C16—H16B0.9700
C6—H60.9300C17—C181.303 (4)
C7—C81.397 (4)C17—H170.9300
C7—H70.9300C18—H18A0.9300
C8—C91.357 (4)C18—H18B0.9300
C2—N1—C10118.25 (19)C10—C9—H9120.0
N1—C2—C3121.9 (2)N1—C10—C9117.5 (2)
N1—C2—C21119.4 (2)N1—C10—C5123.1 (2)
C3—C2—C21118.7 (2)C9—C10—C5119.4 (2)
C2—C21—H21A109.5N15—C11—N12110.86 (19)
C2—C21—H21B109.5N15—C11—C4123.1 (2)
H21A—C21—H21B109.5N12—C11—C4125.98 (19)
C2—C21—H21C109.5C11—N12—C13107.68 (18)
H21A—C21—H21C109.5C11—N12—C16127.87 (18)
H21B—C21—H21C109.5C13—N12—C16123.32 (19)
C4—C3—C2121.5 (2)N14—C13—N12103.32 (19)
C4—C3—H3119.3N14—C13—S13128.73 (17)
C2—C3—H3119.3N12—C13—S13127.93 (18)
C3—C4—C5118.3 (2)C13—N14—N15113.62 (18)
C3—C4—C11119.9 (2)C13—N14—H14123.2
C5—C4—C11121.75 (19)N15—N14—H14123.2
C6—C5—C10118.8 (2)C11—N15—N14104.45 (19)
C6—C5—C4124.3 (2)N12—C16—C17113.73 (19)
C10—C5—C4116.8 (2)N12—C16—H16A108.8
C7—C6—C5120.1 (2)C17—C16—H16A108.8
C7—C6—H6119.9N12—C16—H16B108.8
C5—C6—H6119.9C17—C16—H16B108.8
C6—C7—C8120.4 (2)H16A—C16—H16B107.7
C6—C7—H7119.8C18—C17—C16124.4 (3)
C8—C7—H7119.8C18—C17—H17117.8
C9—C8—C7121.1 (2)C16—C17—H17117.8
C9—C8—H8119.4C17—C18—H18A120.0
C7—C8—H8119.4C17—C18—H18B120.0
C8—C9—C10120.0 (2)H18A—C18—H18B120.0
C8—C9—H9120.0
C10—N1—C2—C32.0 (4)C4—C5—C10—C9176.7 (2)
C10—N1—C2—C21179.7 (2)C3—C4—C11—N15135.3 (3)
N1—C2—C3—C43.8 (4)C5—C4—C11—N1541.9 (3)
C21—C2—C3—C4178.0 (3)C3—C4—C11—N1241.3 (3)
C2—C3—C4—C51.4 (4)C5—C4—C11—N12141.6 (2)
C2—C3—C4—C11178.6 (2)N15—C11—N12—C132.3 (3)
C3—C4—C5—C6178.3 (2)C4—C11—N12—C13179.2 (2)
C11—C4—C5—C64.5 (4)N15—C11—N12—C16170.3 (2)
C3—C4—C5—C102.3 (3)C4—C11—N12—C1612.7 (4)
C11—C4—C5—C10174.9 (2)C11—N12—C13—N142.6 (2)
C10—C5—C6—C72.0 (4)C16—N12—C13—N14171.29 (19)
C4—C5—C6—C7177.3 (3)C11—N12—C13—S13175.96 (17)
C5—C6—C7—C80.3 (5)C16—N12—C13—S137.2 (3)
C6—C7—C8—C90.7 (5)N12—C13—N14—N152.2 (3)
C7—C8—C9—C100.1 (4)S13—C13—N14—N15176.36 (17)
C2—N1—C10—C9178.8 (2)N12—C11—N15—N140.9 (3)
C2—N1—C10—C52.0 (3)C4—C11—N15—N14178.0 (2)
C8—C9—C10—N1177.5 (2)C13—N14—N15—C110.8 (3)
C8—C9—C10—C51.8 (4)C11—N12—C16—C17100.9 (3)
C6—C5—C10—N1176.5 (2)C13—N12—C16—C1792.8 (3)
C4—C5—C10—N14.1 (3)N12—C16—C17—C18134.9 (3)
C6—C5—C10—C92.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···N1i0.862.212.978 (3)148
Symmetry code: (i) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14N4S
Mr282.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)7.8184 (8), 11.5159 (13), 15.7723 (14)
β (°) 96.034 (9)
V3)1412.2 (3)
Z4
Radiation typeCu Kα
µ (mm1)1.99
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2897, 2897, 2570
Rint0.000
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.171, 1.09
No. of reflections2897
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.60

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···N1i0.862.212.978 (3)147.8
Symmetry code: (i) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors are indebted to Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database.

References

First citationAnghel, C. & Silberg, A. (1971). Studia Univ. Babes–Bolyai Chem. 16, 9–12.  CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFigueiredo, J. M., Camara, C. de A., Amarante, E. G., Miranda, A. L. P., Santos, F. M., Rodrigues, C. R., Fraga, C. A. M. & Barreiro, E. J. (2000). Bioorg. Med. Chem. 8, 2243–2248.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds