organic compounds
4-Allyl-3-(2-methyl-4-quinolyl)-1H-1,2,4-triazole-5(4H)-thione
aSamara State Technical University, Molodogvardeyskay Str. 244, 443100 Samara, Russian Federation, and bDepartment of Chemistry, Moscow State University, 119992 Moscow, Russian Federation
*Correspondence e-mail: rybakov20021@yandex.ru
In the title compound, C15H14N4S, the quinoline and triazole rings form a dihedral angle of 41.48 (7)°. In the crystal, adjacent molecules are linked by N—H⋯N hydrogen bonds, forming chains along [100].
Related literature
and their functional derivatives in the preparation of a series of antitubercular and antibacterial compounds, see: Anghel & Silberg (1971Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810044697/ng5047sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810044697/ng5047Isup2.hkl
A solution of 1.43 mmol of NaOH in 10 ml of water was added to 0.95 mmol of N–(allylthiocarbonyl)–4–(2–methyl–4–quinolyl)–carbohydrazide, and the mixture was refluxed for 1 h. The solution was cooled and acidified with acetic acid to pH 4. The precipitate that formed was filtered off and recrystallized from ethanol. Recrystallization of the crude product from ethanol gave 0.2 g of colourless crystals. Yield 73%, m.p. 494–495 K.
IR, ν, cm-1: 3432 (NH), 3324 (NH), 1348 (C═S). MS, m/z: 282 (100) [M]+, 245 (39), 267 (62), 169 (66), 168 (61), 140 (23). 1H NMR, δ: 2.68 s (3H, CH3), 3.92 s (1H, NH), 4.53 d (2H, J = 5.04, —CH2—CH═CH2), 4.67 d (1H, J = 10.53, —CH═CH2 trans), 5.17 dd (1H, J = 16.94, —CH═CH2 cis), 5.62 m (1H, —CH═), 7.55 t (1H, J = 7.34, 7–H), 7.66 s (1H, 3–H), 7.76 t (1H, J = 7.74, 6–H), 7.78 d (1H, J = 8.24, 8–H), 8.00 d (1H, J = 8.70, 5–H). Anal. calc. for C15H14N4S, %: C 63.80; H 5.00; N 19.84; S 11.36. Found, %: C 63.68; H 5.09; N 11.44; S 11.31.
Single crystals for X–ray analysis were obtained by slow evaporation of an ethanol. IR spectrum was recorded (in KBr) on Shimadzu FTIR–8400S.
was measured on Finnigan Trance DSQ spectrometer. 1H NMR spectrum was obtained in DMSO–d6 on Bruker AM 300 (300 MHz), using TMS as internal standard. Elemental composition was determined on Euro Vector EA–3000 elemental analyzer.C– or N–bound H–atoms were placed in calculated positions (C—H 0.93–0.97Å and N—H 0.86 Å) and refined as riding, with Uiso(H) = 1.2(1.5)Ueq(C, N).
Hydrazides and their functional derivatives were used to prepare a series of antitubercular and antibacterial compounds (Anghel & Silberg, 1971; Figueiredo et al., 2000). Many
directly prepared from too, possess valuable biological and physicochemical properties. This causes an attention to new synthetic methods and investigation of similar compounds. N–(Allylthiocarbonyl)–4–(2–methyl–4–quinolyl)–carbohydrazide, I, was synthesized from allyl isothiocyanate and hydrazide 2–methyl–4–quinoline carboxylic acid. When heated with alkali for 1 h, the product undergoes into 4-allyl-3-(2-methyl-4-quinolyl)-4,5-dihydro-1H-1,2,4-triazole-5-thione, II (Fig. 1).In title molecule, guinoline moiety is planar (max deviation of C6 = 0.039 (2) Å) and assential planar triazole moiety form dihedral angle 41.48 (7)° (Fig. 2). In the σ···π–interaction between H8—>C17iii═C18iii (H8···C17iii = 2.800Å and H8···C18iii = 2.896 Å). Symmetry codes: (i) x + 1/2, -y + 3/2, z + 1/2; (ii) x - 1/2, -y + 3/2, z - 1/2; (iii) x, y - 1, z.
is found classical hydrogen bond N14—H14···N1i with parameters N14—H14 = 0.86 Å, N14···N1i = 2.978 (3) Å, H14···N1i = 2.21Å and angle N14—H14···N1i = 147.8°. Non–classical H bond is found too: C21—H21A···N15ii with parameters C21—H21A = 0.96 Å, C21···N15ii = 3.330 (3) Å, H21A···N15ii = 2.450Å and angle C21—H21A···N15ii = 152°. Is foundFor the use of
and their functional derivatives in the preparation of a series ofantitubercular and antibacterial compounds, see: Anghel & Silberg (1971); Figueiredo et al. (2000).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C15H14N4S | F(000) = 592 |
Mr = 282.37 | Dx = 1.328 Mg m−3 |
Monoclinic, P21/n | Melting point = 494–495 K |
Hall symbol: -P 2yn | Cu Kα radiation, λ = 1.54184 Å |
a = 7.8184 (8) Å | Cell parameters from 25 reflections |
b = 11.5159 (13) Å | θ = 29.9–32.4° |
c = 15.7723 (14) Å | µ = 1.99 mm−1 |
β = 96.034 (9)° | T = 295 K |
V = 1412.2 (3) Å3 | Prism, colourless |
Z = 4 | 0.20 × 0.20 × 0.20 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.000 |
Radiation source: Fine–focus sealed tube | θmax = 74.9°, θmin = 4.8° |
Graphite monochromator | h = −9→9 |
non–profiled ω scans | k = 0→14 |
2897 measured reflections | l = 0→19 |
2897 independent reflections | 1 standard reflections every 60 min |
2570 reflections with I > 2σ(I) | intensity decay: 4% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.171 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0953P)2 + 0.6742P] where P = (Fo2 + 2Fc2)/3 |
2897 reflections | (Δ/σ)max = 0.001 |
182 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.60 e Å−3 |
C15H14N4S | V = 1412.2 (3) Å3 |
Mr = 282.37 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 7.8184 (8) Å | µ = 1.99 mm−1 |
b = 11.5159 (13) Å | T = 295 K |
c = 15.7723 (14) Å | 0.20 × 0.20 × 0.20 mm |
β = 96.034 (9)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.000 |
2897 measured reflections | 1 standard reflections every 60 min |
2897 independent reflections | intensity decay: 4% |
2570 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.061 | 0 restraints |
wR(F2) = 0.171 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.28 e Å−3 |
2897 reflections | Δρmin = −0.60 e Å−3 |
182 parameters |
Geometry. All s.u.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | −0.0256 (3) | 0.68265 (17) | 0.64417 (12) | 0.0489 (4) | |
C2 | 0.0117 (3) | 0.7945 (2) | 0.64169 (14) | 0.0510 (5) | |
C21 | −0.0078 (5) | 0.8565 (2) | 0.55821 (17) | 0.0707 (8) | |
H21A | −0.0327 | 0.8014 | 0.5129 | 0.106* | |
H21B | 0.0971 | 0.8967 | 0.5505 | 0.106* | |
H21C | −0.1002 | 0.9115 | 0.5575 | 0.106* | |
C3 | 0.0741 (3) | 0.8566 (2) | 0.71541 (14) | 0.0504 (5) | |
H3 | 0.1053 | 0.9340 | 0.7105 | 0.060* | |
C4 | 0.0898 (3) | 0.80569 (19) | 0.79389 (13) | 0.0450 (5) | |
C5 | 0.0448 (3) | 0.6859 (2) | 0.79967 (13) | 0.0452 (5) | |
C6 | 0.0506 (4) | 0.6230 (2) | 0.87675 (16) | 0.0572 (6) | |
H6 | 0.0809 | 0.6605 | 0.9284 | 0.069* | |
C7 | 0.0115 (4) | 0.5067 (2) | 0.87563 (18) | 0.0677 (7) | |
H7 | 0.0161 | 0.4656 | 0.9266 | 0.081* | |
C8 | −0.0351 (4) | 0.4498 (2) | 0.79841 (18) | 0.0636 (7) | |
H8 | −0.0601 | 0.3708 | 0.7986 | 0.076* | |
C9 | −0.0446 (3) | 0.5078 (2) | 0.72313 (15) | 0.0521 (5) | |
H9 | −0.0757 | 0.4685 | 0.6723 | 0.063* | |
C10 | −0.0073 (3) | 0.62756 (19) | 0.72191 (14) | 0.0445 (5) | |
C11 | 0.1589 (3) | 0.87239 (19) | 0.86904 (13) | 0.0438 (5) | |
N12 | 0.1212 (2) | 0.98612 (16) | 0.88595 (11) | 0.0426 (4) | |
C13 | 0.2140 (3) | 1.0161 (2) | 0.96191 (13) | 0.0461 (5) | |
S13 | 0.20807 (9) | 1.14068 (5) | 1.01518 (4) | 0.0584 (2) | |
N14 | 0.3062 (3) | 0.91993 (18) | 0.98323 (11) | 0.0509 (5) | |
H14 | 0.3792 | 0.9153 | 1.0279 | 0.061* | |
N15 | 0.2733 (3) | 0.83085 (18) | 0.92762 (12) | 0.0512 (5) | |
C16 | −0.0166 (3) | 1.0582 (2) | 0.84356 (15) | 0.0479 (5) | |
H16A | −0.0686 | 1.1025 | 0.8864 | 0.057* | |
H16B | −0.1045 | 1.0080 | 0.8154 | 0.057* | |
C17 | 0.0426 (3) | 1.1402 (2) | 0.77948 (17) | 0.0544 (6) | |
H17 | 0.1430 | 1.1819 | 0.7946 | 0.065* | |
C18 | −0.0369 (4) | 1.1571 (3) | 0.70368 (19) | 0.0670 (7) | |
H18A | −0.1377 | 1.1167 | 0.6865 | 0.080* | |
H18B | 0.0070 | 1.2096 | 0.6667 | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0549 (11) | 0.0500 (10) | 0.0402 (9) | 0.0018 (8) | −0.0018 (8) | −0.0032 (8) |
C2 | 0.0626 (14) | 0.0476 (12) | 0.0413 (11) | 0.0030 (10) | −0.0012 (9) | −0.0011 (9) |
C21 | 0.109 (2) | 0.0540 (15) | 0.0459 (13) | −0.0009 (14) | −0.0077 (14) | 0.0031 (11) |
C3 | 0.0633 (14) | 0.0436 (12) | 0.0431 (12) | 0.0006 (10) | −0.0004 (10) | −0.0017 (9) |
C4 | 0.0485 (11) | 0.0460 (11) | 0.0398 (11) | 0.0019 (9) | 0.0016 (8) | −0.0034 (9) |
C5 | 0.0489 (11) | 0.0448 (11) | 0.0413 (11) | 0.0035 (9) | 0.0025 (8) | −0.0019 (9) |
C6 | 0.0772 (17) | 0.0522 (13) | 0.0417 (12) | −0.0016 (12) | 0.0037 (11) | 0.0006 (10) |
C7 | 0.099 (2) | 0.0514 (14) | 0.0521 (14) | −0.0034 (14) | 0.0051 (13) | 0.0072 (11) |
C8 | 0.0819 (19) | 0.0430 (12) | 0.0656 (16) | −0.0012 (12) | 0.0059 (13) | −0.0003 (11) |
C9 | 0.0570 (13) | 0.0467 (12) | 0.0517 (13) | 0.0013 (10) | 0.0017 (10) | −0.0068 (10) |
C10 | 0.0457 (11) | 0.0454 (11) | 0.0421 (11) | 0.0032 (9) | 0.0027 (8) | −0.0024 (8) |
C11 | 0.0487 (11) | 0.0439 (11) | 0.0384 (10) | 0.0003 (9) | 0.0022 (8) | −0.0025 (8) |
N12 | 0.0456 (9) | 0.0429 (9) | 0.0392 (9) | −0.0006 (7) | 0.0045 (7) | −0.0013 (7) |
C13 | 0.0497 (11) | 0.0497 (12) | 0.0394 (10) | −0.0056 (9) | 0.0070 (8) | −0.0023 (9) |
S13 | 0.0753 (5) | 0.0485 (4) | 0.0524 (4) | −0.0073 (3) | 0.0107 (3) | −0.0104 (2) |
N14 | 0.0568 (11) | 0.0537 (11) | 0.0402 (9) | 0.0034 (9) | −0.0039 (8) | −0.0066 (8) |
N15 | 0.0582 (11) | 0.0496 (10) | 0.0436 (10) | 0.0068 (9) | −0.0044 (8) | −0.0062 (8) |
C16 | 0.0475 (11) | 0.0469 (12) | 0.0498 (12) | 0.0049 (9) | 0.0071 (9) | 0.0032 (9) |
C17 | 0.0574 (13) | 0.0440 (12) | 0.0626 (14) | −0.0004 (10) | 0.0106 (11) | 0.0053 (10) |
C18 | 0.0805 (19) | 0.0596 (15) | 0.0617 (16) | 0.0015 (13) | 0.0115 (13) | 0.0118 (12) |
N1—C2 | 1.322 (3) | C8—H8 | 0.9300 |
N1—C10 | 1.375 (3) | C9—C10 | 1.411 (3) |
C2—C3 | 1.408 (3) | C9—H9 | 0.9300 |
C2—C21 | 1.492 (3) | C11—N15 | 1.307 (3) |
C21—H21A | 0.9600 | C11—N12 | 1.375 (3) |
C21—H21B | 0.9600 | N12—C13 | 1.377 (3) |
C21—H21C | 0.9600 | N12—C16 | 1.465 (3) |
C3—C4 | 1.363 (3) | C13—N14 | 1.345 (3) |
C3—H3 | 0.9300 | C13—S13 | 1.666 (2) |
C4—C5 | 1.430 (3) | N14—N15 | 1.357 (3) |
C4—C11 | 1.467 (3) | N14—H14 | 0.8600 |
C5—C6 | 1.411 (3) | C16—C17 | 1.491 (3) |
C5—C10 | 1.420 (3) | C16—H16A | 0.9700 |
C6—C7 | 1.374 (4) | C16—H16B | 0.9700 |
C6—H6 | 0.9300 | C17—C18 | 1.303 (4) |
C7—C8 | 1.397 (4) | C17—H17 | 0.9300 |
C7—H7 | 0.9300 | C18—H18A | 0.9300 |
C8—C9 | 1.357 (4) | C18—H18B | 0.9300 |
C2—N1—C10 | 118.25 (19) | C10—C9—H9 | 120.0 |
N1—C2—C3 | 121.9 (2) | N1—C10—C9 | 117.5 (2) |
N1—C2—C21 | 119.4 (2) | N1—C10—C5 | 123.1 (2) |
C3—C2—C21 | 118.7 (2) | C9—C10—C5 | 119.4 (2) |
C2—C21—H21A | 109.5 | N15—C11—N12 | 110.86 (19) |
C2—C21—H21B | 109.5 | N15—C11—C4 | 123.1 (2) |
H21A—C21—H21B | 109.5 | N12—C11—C4 | 125.98 (19) |
C2—C21—H21C | 109.5 | C11—N12—C13 | 107.68 (18) |
H21A—C21—H21C | 109.5 | C11—N12—C16 | 127.87 (18) |
H21B—C21—H21C | 109.5 | C13—N12—C16 | 123.32 (19) |
C4—C3—C2 | 121.5 (2) | N14—C13—N12 | 103.32 (19) |
C4—C3—H3 | 119.3 | N14—C13—S13 | 128.73 (17) |
C2—C3—H3 | 119.3 | N12—C13—S13 | 127.93 (18) |
C3—C4—C5 | 118.3 (2) | C13—N14—N15 | 113.62 (18) |
C3—C4—C11 | 119.9 (2) | C13—N14—H14 | 123.2 |
C5—C4—C11 | 121.75 (19) | N15—N14—H14 | 123.2 |
C6—C5—C10 | 118.8 (2) | C11—N15—N14 | 104.45 (19) |
C6—C5—C4 | 124.3 (2) | N12—C16—C17 | 113.73 (19) |
C10—C5—C4 | 116.8 (2) | N12—C16—H16A | 108.8 |
C7—C6—C5 | 120.1 (2) | C17—C16—H16A | 108.8 |
C7—C6—H6 | 119.9 | N12—C16—H16B | 108.8 |
C5—C6—H6 | 119.9 | C17—C16—H16B | 108.8 |
C6—C7—C8 | 120.4 (2) | H16A—C16—H16B | 107.7 |
C6—C7—H7 | 119.8 | C18—C17—C16 | 124.4 (3) |
C8—C7—H7 | 119.8 | C18—C17—H17 | 117.8 |
C9—C8—C7 | 121.1 (2) | C16—C17—H17 | 117.8 |
C9—C8—H8 | 119.4 | C17—C18—H18A | 120.0 |
C7—C8—H8 | 119.4 | C17—C18—H18B | 120.0 |
C8—C9—C10 | 120.0 (2) | H18A—C18—H18B | 120.0 |
C8—C9—H9 | 120.0 | ||
C10—N1—C2—C3 | 2.0 (4) | C4—C5—C10—C9 | 176.7 (2) |
C10—N1—C2—C21 | −179.7 (2) | C3—C4—C11—N15 | −135.3 (3) |
N1—C2—C3—C4 | −3.8 (4) | C5—C4—C11—N15 | 41.9 (3) |
C21—C2—C3—C4 | 178.0 (3) | C3—C4—C11—N12 | 41.3 (3) |
C2—C3—C4—C5 | 1.4 (4) | C5—C4—C11—N12 | −141.6 (2) |
C2—C3—C4—C11 | 178.6 (2) | N15—C11—N12—C13 | −2.3 (3) |
C3—C4—C5—C6 | −178.3 (2) | C4—C11—N12—C13 | −179.2 (2) |
C11—C4—C5—C6 | 4.5 (4) | N15—C11—N12—C16 | −170.3 (2) |
C3—C4—C5—C10 | 2.3 (3) | C4—C11—N12—C16 | 12.7 (4) |
C11—C4—C5—C10 | −174.9 (2) | C11—N12—C13—N14 | 2.6 (2) |
C10—C5—C6—C7 | 2.0 (4) | C16—N12—C13—N14 | 171.29 (19) |
C4—C5—C6—C7 | −177.3 (3) | C11—N12—C13—S13 | −175.96 (17) |
C5—C6—C7—C8 | −0.3 (5) | C16—N12—C13—S13 | −7.2 (3) |
C6—C7—C8—C9 | −0.7 (5) | N12—C13—N14—N15 | −2.2 (3) |
C7—C8—C9—C10 | −0.1 (4) | S13—C13—N14—N15 | 176.36 (17) |
C2—N1—C10—C9 | −178.8 (2) | N12—C11—N15—N14 | 0.9 (3) |
C2—N1—C10—C5 | 2.0 (3) | C4—C11—N15—N14 | 178.0 (2) |
C8—C9—C10—N1 | −177.5 (2) | C13—N14—N15—C11 | 0.8 (3) |
C8—C9—C10—C5 | 1.8 (4) | C11—N12—C16—C17 | −100.9 (3) |
C6—C5—C10—N1 | 176.5 (2) | C13—N12—C16—C17 | 92.8 (3) |
C4—C5—C10—N1 | −4.1 (3) | N12—C16—C17—C18 | 134.9 (3) |
C6—C5—C10—C9 | −2.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N14—H14···N1i | 0.86 | 2.21 | 2.978 (3) | 148 |
Symmetry code: (i) x+1/2, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C15H14N4S |
Mr | 282.37 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 295 |
a, b, c (Å) | 7.8184 (8), 11.5159 (13), 15.7723 (14) |
β (°) | 96.034 (9) |
V (Å3) | 1412.2 (3) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 1.99 |
Crystal size (mm) | 0.20 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2897, 2897, 2570 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.626 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.171, 1.09 |
No. of reflections | 2897 |
No. of parameters | 182 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.60 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N14—H14···N1i | 0.86 | 2.21 | 2.978 (3) | 147.8 |
Symmetry code: (i) x+1/2, −y+3/2, z+1/2. |
Acknowledgements
The authors are indebted to Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database.
References
Anghel, C. & Silberg, A. (1971). Studia Univ. Babes–Bolyai Chem. 16, 9–12. CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Figueiredo, J. M., Camara, C. de A., Amarante, E. G., Miranda, A. L. P., Santos, F. M., Rodrigues, C. R., Fraga, C. A. M. & Barreiro, E. J. (2000). Bioorg. Med. Chem. 8, 2243–2248. Web of Science CrossRef PubMed CAS Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrazides and their functional derivatives were used to prepare a series of antitubercular and antibacterial compounds (Anghel & Silberg, 1971; Figueiredo et al., 2000). Many heterocyclic compounds directly prepared from hydrazides, too, possess valuable biological and physicochemical properties. This causes an attention to new synthetic methods and investigation of similar compounds. N–(Allylthiocarbonyl)–4–(2–methyl–4–quinolyl)–carbohydrazide, I, was synthesized from allyl isothiocyanate and hydrazide 2–methyl–4–quinoline carboxylic acid. When heated with alkali for 1 h, the product undergoes cyclization into 4-allyl-3-(2-methyl-4-quinolyl)-4,5-dihydro-1H-1,2,4-triazole-5-thione, II (Fig. 1).
In title molecule, guinoline moiety is planar (max deviation of C6 = 0.039 (2) Å) and assential planar triazole moiety form dihedral angle 41.48 (7)° (Fig. 2). In the crystal structure is found classical hydrogen bond N14—H14···N1i with parameters N14—H14 = 0.86 Å, N14···N1i = 2.978 (3) Å, H14···N1i = 2.21Å and angle N14—H14···N1i = 147.8°. Non–classical H bond is found too: C21—H21A···N15ii with parameters C21—H21A = 0.96 Å, C21···N15ii = 3.330 (3) Å, H21A···N15ii = 2.450Å and angle C21—H21A···N15ii = 152°. Is found σ···π–interaction between H8—>C17iii═C18iii (H8···C17iii = 2.800Å and H8···C18iii = 2.896 Å). Symmetry codes: (i) x + 1/2, -y + 3/2, z + 1/2; (ii) x - 1/2, -y + 3/2, z - 1/2; (iii) x, y - 1, z.