organic compounds
trans-2-(2-Nitro-1-phenylethyl)cyclohexanone
aLudwig-Maximilians-Universität, Department, Butenandtstrasse 5–13, 81377 München, Germany
*Correspondence e-mail: pemay@cup.uni-muenchen.de
In the title compound, C14H17NO3, the plane of the phenyl ring and the least-squares plane of the cyclohexyl moiety enclose an angle of 89.14 (6)°. The cyclohexyl ring adopts a chair conformation. In the crystal, the molecules are linked by weak C—H⋯O bonds, with each of the nitro-O atoms accepting two such interactions.
Related literature
For the history and synthesis of nitroalkenes, see: Tsogoeva et al. (2007); Sulzer-Mosse & Alexakis (2007); Mukherjee et al. (2007); Kempf et al. (2003); Blarer et al. (1982); Juaristi et al. (1993). For related structures, see: Cobb et al. (2005), Xu et al. (2007a,b).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810045423/ng5052sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810045423/ng5052Isup2.hkl
trans-2-[1'-Phenyl-2'-nitro-ethyl]-cyclohexanone has been obtained by dissolving trans-β-nitrostyrene (4.05 mmol, 604 mg) in dry diethylether (40 ml) and dropwise addition of 1-pyrrolidinocyclohexene (4.05 mmol, 612 mg) at -78 °C. After stirring the reaction at RT for 2 h, 60 ml water, 60 ml e thanol and 5 ml 1M HCl have been added, and the mixture was stirred for 30 min at 60 °C. After removing the solvent in vacuo, a white solid has been obtained (3.01 mmol, 745 mg, 74%).
Crystallization procedure: The title compound was dissolved in ethanol and heated to the boiling point. The solvent was allowed to cool slowly to room temperature. After 24 h, colourless crystals had formed that were suitable for X-ray analysis; mp 108 °C.
Nitroalkenes are important reagents in organic chemistry and they are the most prominent Michael acceptors used in organocatalytic reactions [Tsogoeva et al. (2007), Sulzer-Mosse et al. (2007), Mukherjee et al. (2007)]. During our studies on the electrophilic reactivity of trans-β-nitrostyrenes, we employed of known nucleophilic reactivities and, hence, obtained the title compound from a reaction of trans-β-nitrostyrene and 1-pyrrolidinocyclohexene [Kempf et al. (2003), Blarer et al. (1982), Juaristi et al. (1993)].
In the title compound, the 1'-Phenyl-2'-nitro-ethyl moiety occupies an equatorial binding site in 2-position of the cyclohexanone ring (see Fig. 1). The plane of the phenyl ring and the least-square plane of the cyclohexyl moiety enclose an angle of 89.14 (6)° which is close to the angles found in
crystals of the title compound (87.1 (3)° at 180 K (Cobb et al. (2005)), 87.40 (8)° at 296 K (Xu et al., 2007a,b)). The plane through the nitro group and the adjacent C1 atom encloses an angle of 68.81 (7)° with the phenyl ring.Taking into account merely interactions with hydrogen-acceptor distances at least 0.1 Å shorter than the sum of van-der-Waals radii, the molecules are linked by very weak contacts of the type C—H···O with nitro-O atoms as acceptors (see Fig. 2). The molecular structure of the title compound is stabilized by these contacts as well, as the involved hydrogen atoms are located in the cyclohexyl ring, the phenyl ring and the nitro-ethyl side chain. The keto group is not involved in hydrogen bonding. π-stacking and C—H···π-interactions are not observed.
For the history and synthesis of nitroalkenes, see: Tsogoeva et al. (2007); Sulzer-Mosse & Alexakis (2007); Mukherjee et al. (2007); Kempf et al. (2003); Blarer et al. (1982); Juaristi et al. (1993). For related structures, see: Cobb et al. (2005), Xu et al. (2007a,b).
Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell
CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).C14H17NO3 | F(000) = 528 |
Mr = 247.29 | Dx = 1.285 (1) Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3796 reflections |
a = 13.4567 (6) Å | θ = 4.3–26.3° |
b = 8.3618 (4) Å | µ = 0.09 mm−1 |
c = 11.3668 (5) Å | T = 173 K |
β = 91.734 (4)° | Block, colourless |
V = 1278.43 (10) Å3 | 0.38 × 0.27 × 0.18 mm |
Z = 4 |
Oxford Xcalibur diffractometer | 2605 independent reflections |
Radiation source: fine-focus sealed tube | 1829 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ω scans | θmax = 26.4°, θmin = 4.3° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) | h = −16→16 |
Tmin = 0.986, Tmax = 1.000 | k = −10→10 |
9360 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0503P)2] where P = (Fo2 + 2Fc2)/3 |
2605 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
C14H17NO3 | V = 1278.43 (10) Å3 |
Mr = 247.29 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.4567 (6) Å | µ = 0.09 mm−1 |
b = 8.3618 (4) Å | T = 173 K |
c = 11.3668 (5) Å | 0.38 × 0.27 × 0.18 mm |
β = 91.734 (4)° |
Oxford Xcalibur diffractometer | 2605 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) | 1829 reflections with I > 2σ(I) |
Tmin = 0.986, Tmax = 1.000 | Rint = 0.026 |
9360 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.17 e Å−3 |
2605 reflections | Δρmin = −0.17 e Å−3 |
163 parameters |
Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.41 (release 06-05-2009 CrysAlis171 .NET) (compiled May 6 2009,17:20:42) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.27791 (8) | 0.45264 (12) | 0.27671 (8) | 0.0497 (3) | |
O2 | 0.30532 (7) | 0.25646 (11) | 0.39600 (7) | 0.0361 (3) | |
O3 | 0.46549 (7) | −0.07785 (11) | 0.20442 (8) | 0.0378 (3) | |
N1 | 0.30166 (8) | 0.31433 (13) | 0.29688 (9) | 0.0272 (3) | |
C1 | 0.32921 (9) | 0.20990 (14) | 0.19718 (10) | 0.0243 (3) | |
H1A | 0.4012 | 0.1854 | 0.2029 | 0.029* | |
H1B | 0.3155 | 0.2661 | 0.1218 | 0.029* | |
C2 | 0.26933 (9) | 0.05426 (14) | 0.20005 (10) | 0.0214 (3) | |
H2 | 0.2817 | 0.0036 | 0.2788 | 0.026* | |
C3 | 0.30432 (9) | −0.06309 (14) | 0.10615 (10) | 0.0217 (3) | |
H3 | 0.2931 | −0.0124 | 0.0272 | 0.026* | |
C4 | 0.41304 (9) | −0.11083 (15) | 0.11829 (11) | 0.0258 (3) | |
C5 | 0.44795 (10) | −0.21687 (16) | 0.02103 (11) | 0.0333 (3) | |
H5A | 0.5197 | −0.2403 | 0.0330 | 0.040* | |
H5B | 0.4383 | −0.1623 | −0.0558 | 0.040* | |
C6 | 0.38803 (10) | −0.37313 (16) | 0.02159 (11) | 0.0333 (3) | |
H6A | 0.4068 | −0.4406 | −0.0458 | 0.040* | |
H6B | 0.4037 | −0.4330 | 0.0950 | 0.040* | |
C7 | 0.27722 (9) | −0.33748 (16) | 0.01310 (11) | 0.0325 (3) | |
H7A | 0.2397 | −0.4386 | 0.0205 | 0.039* | |
H7B | 0.2605 | −0.2914 | −0.0653 | 0.039* | |
C8 | 0.24528 (10) | −0.22137 (15) | 0.10807 (11) | 0.0279 (3) | |
H8A | 0.2551 | −0.2724 | 0.1862 | 0.033* | |
H8B | 0.1735 | −0.1978 | 0.0966 | 0.033* | |
C9 | 0.15860 (9) | 0.08735 (14) | 0.18614 (10) | 0.0220 (3) | |
C10 | 0.11872 (9) | 0.16173 (15) | 0.08584 (10) | 0.0298 (3) | |
H10 | 0.1618 | 0.1982 | 0.0268 | 0.036* | |
C11 | 0.01755 (10) | 0.18327 (17) | 0.07092 (12) | 0.0358 (3) | |
H11 | −0.0082 | 0.2349 | 0.0021 | 0.043* | |
C12 | −0.04660 (10) | 0.13068 (16) | 0.15475 (12) | 0.0368 (4) | |
H12 | −0.1163 | 0.1439 | 0.1434 | 0.044* | |
C13 | −0.00848 (11) | 0.05889 (17) | 0.25497 (13) | 0.0393 (4) | |
H13 | −0.0521 | 0.0231 | 0.3136 | 0.047* | |
C14 | 0.09322 (10) | 0.03820 (16) | 0.27118 (11) | 0.0316 (3) | |
H14 | 0.1186 | −0.0103 | 0.3415 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0667 (8) | 0.0264 (6) | 0.0566 (7) | 0.0132 (5) | 0.0092 (5) | −0.0020 (5) |
O2 | 0.0429 (6) | 0.0418 (6) | 0.0236 (5) | −0.0013 (5) | 0.0033 (4) | −0.0039 (4) |
O3 | 0.0260 (5) | 0.0419 (6) | 0.0449 (6) | 0.0040 (4) | −0.0083 (4) | −0.0096 (5) |
N1 | 0.0240 (6) | 0.0270 (6) | 0.0306 (6) | −0.0007 (5) | 0.0020 (4) | −0.0046 (5) |
C1 | 0.0260 (7) | 0.0258 (7) | 0.0212 (6) | −0.0004 (6) | 0.0048 (5) | −0.0022 (5) |
C2 | 0.0215 (6) | 0.0223 (7) | 0.0204 (6) | 0.0001 (5) | 0.0014 (5) | 0.0015 (5) |
C3 | 0.0202 (6) | 0.0225 (7) | 0.0224 (6) | 0.0013 (5) | −0.0008 (5) | 0.0007 (5) |
C4 | 0.0233 (7) | 0.0234 (7) | 0.0308 (7) | −0.0014 (6) | 0.0026 (5) | 0.0010 (5) |
C5 | 0.0247 (7) | 0.0381 (8) | 0.0373 (7) | 0.0055 (6) | 0.0055 (6) | −0.0061 (6) |
C6 | 0.0321 (8) | 0.0299 (8) | 0.0377 (7) | 0.0080 (6) | −0.0019 (6) | −0.0082 (6) |
C7 | 0.0309 (8) | 0.0269 (7) | 0.0395 (8) | 0.0019 (6) | −0.0040 (6) | −0.0070 (6) |
C8 | 0.0215 (7) | 0.0253 (7) | 0.0368 (7) | −0.0004 (6) | 0.0004 (5) | −0.0035 (6) |
C9 | 0.0222 (7) | 0.0183 (6) | 0.0255 (6) | 0.0010 (5) | 0.0011 (5) | −0.0044 (5) |
C10 | 0.0270 (7) | 0.0326 (8) | 0.0299 (7) | 0.0017 (6) | 0.0018 (5) | 0.0017 (6) |
C11 | 0.0315 (8) | 0.0384 (8) | 0.0371 (8) | 0.0066 (7) | −0.0052 (6) | 0.0032 (6) |
C12 | 0.0202 (7) | 0.0360 (8) | 0.0540 (9) | 0.0061 (6) | −0.0015 (6) | −0.0032 (7) |
C13 | 0.0274 (8) | 0.0412 (9) | 0.0500 (8) | 0.0009 (7) | 0.0126 (6) | 0.0048 (7) |
C14 | 0.0277 (7) | 0.0332 (8) | 0.0340 (7) | 0.0031 (6) | 0.0053 (6) | 0.0060 (6) |
O1—N1 | 1.2198 (13) | C6—H6A | 0.9900 |
O2—N1 | 1.2258 (12) | C6—H6B | 0.9900 |
O3—C4 | 1.2210 (14) | C7—C8 | 1.5234 (17) |
N1—C1 | 1.4865 (15) | C7—H7A | 0.9900 |
C1—C2 | 1.5316 (16) | C7—H7B | 0.9900 |
C1—H1A | 0.9900 | C8—H8A | 0.9900 |
C1—H1B | 0.9900 | C8—H8B | 0.9900 |
C2—C9 | 1.5192 (17) | C9—C14 | 1.3888 (17) |
C2—C3 | 1.5343 (16) | C9—C10 | 1.3919 (16) |
C2—H2 | 1.0000 | C10—C11 | 1.3786 (18) |
C3—C4 | 1.5187 (17) | C10—H10 | 0.9500 |
C3—C8 | 1.5442 (16) | C11—C12 | 1.3770 (19) |
C3—H3 | 1.0000 | C11—H11 | 0.9500 |
C4—C5 | 1.5035 (18) | C12—C13 | 1.3732 (19) |
C5—C6 | 1.5355 (19) | C12—H12 | 0.9500 |
C5—H5A | 0.9900 | C13—C14 | 1.3862 (19) |
C5—H5B | 0.9900 | C13—H13 | 0.9500 |
C6—C7 | 1.5209 (18) | C14—H14 | 0.9500 |
O1—N1—O2 | 123.37 (10) | C7—C6—H6B | 109.6 |
O1—N1—C1 | 118.92 (10) | C5—C6—H6B | 109.6 |
O2—N1—C1 | 117.70 (10) | H6A—C6—H6B | 108.1 |
N1—C1—C2 | 109.84 (9) | C6—C7—C8 | 112.15 (10) |
N1—C1—H1A | 109.7 | C6—C7—H7A | 109.2 |
C2—C1—H1A | 109.7 | C8—C7—H7A | 109.2 |
N1—C1—H1B | 109.7 | C6—C7—H7B | 109.2 |
C2—C1—H1B | 109.7 | C8—C7—H7B | 109.2 |
H1A—C1—H1B | 108.2 | H7A—C7—H7B | 107.9 |
C9—C2—C1 | 110.98 (10) | C7—C8—C3 | 112.33 (10) |
C9—C2—C3 | 111.39 (9) | C7—C8—H8A | 109.1 |
C1—C2—C3 | 110.85 (9) | C3—C8—H8A | 109.1 |
C9—C2—H2 | 107.8 | C7—C8—H8B | 109.1 |
C1—C2—H2 | 107.8 | C3—C8—H8B | 109.1 |
C3—C2—H2 | 107.8 | H8A—C8—H8B | 107.9 |
C4—C3—C2 | 114.83 (9) | C14—C9—C10 | 117.75 (12) |
C4—C3—C8 | 105.55 (10) | C14—C9—C2 | 120.91 (10) |
C2—C3—C8 | 111.68 (10) | C10—C9—C2 | 121.29 (11) |
C4—C3—H3 | 108.2 | C11—C10—C9 | 120.93 (12) |
C2—C3—H3 | 108.2 | C11—C10—H10 | 119.5 |
C8—C3—H3 | 108.2 | C9—C10—H10 | 119.5 |
O3—C4—C5 | 122.47 (12) | C12—C11—C10 | 120.70 (12) |
O3—C4—C3 | 123.05 (11) | C12—C11—H11 | 119.7 |
C5—C4—C3 | 114.19 (11) | C10—C11—H11 | 119.7 |
C4—C5—C6 | 108.84 (11) | C13—C12—C11 | 119.17 (13) |
C4—C5—H5A | 109.9 | C13—C12—H12 | 120.4 |
C6—C5—H5A | 109.9 | C11—C12—H12 | 120.4 |
C4—C5—H5B | 109.9 | C12—C13—C14 | 120.48 (13) |
C6—C5—H5B | 109.9 | C12—C13—H13 | 119.8 |
H5A—C5—H5B | 108.3 | C14—C13—H13 | 119.8 |
C7—C6—C5 | 110.30 (11) | C13—C14—C9 | 120.94 (12) |
C7—C6—H6A | 109.6 | C13—C14—H14 | 119.5 |
C5—C6—H6A | 109.6 | C9—C14—H14 | 119.5 |
O1—N1—C1—C2 | −128.32 (12) | C6—C7—C8—C3 | 56.07 (15) |
O2—N1—C1—C2 | 52.56 (14) | C4—C3—C8—C7 | −56.14 (13) |
N1—C1—C2—C9 | 61.75 (12) | C2—C3—C8—C7 | 178.44 (10) |
N1—C1—C2—C3 | −173.91 (9) | C1—C2—C9—C14 | −122.22 (12) |
C9—C2—C3—C4 | −176.37 (10) | C3—C2—C9—C14 | 113.75 (13) |
C1—C2—C3—C4 | 59.53 (13) | C1—C2—C9—C10 | 60.49 (14) |
C9—C2—C3—C8 | −56.26 (13) | C3—C2—C9—C10 | −63.53 (15) |
C1—C2—C3—C8 | 179.64 (9) | C14—C9—C10—C11 | −1.04 (19) |
C2—C3—C4—O3 | 10.01 (17) | C2—C9—C10—C11 | 176.33 (11) |
C8—C3—C4—O3 | −113.44 (13) | C9—C10—C11—C12 | −0.4 (2) |
C2—C3—C4—C5 | −176.03 (10) | C10—C11—C12—C13 | 1.2 (2) |
C8—C3—C4—C5 | 60.52 (13) | C11—C12—C13—C14 | −0.6 (2) |
O3—C4—C5—C6 | 112.56 (13) | C12—C13—C14—C9 | −0.9 (2) |
C3—C4—C5—C6 | −61.43 (14) | C10—C9—C14—C13 | 1.68 (19) |
C4—C5—C6—C7 | 55.04 (14) | C2—C9—C14—C13 | −175.70 (12) |
C5—C6—C7—C8 | −53.99 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···O2i | 0.99 | 2.57 | 3.4403 (14) | 146 |
C5—H5A···O2ii | 0.99 | 2.47 | 3.4312 (16) | 165 |
C8—H8A···O1iii | 0.99 | 2.53 | 3.3536 (16) | 140 |
C10—H10···O2i | 0.95 | 2.50 | 3.4289 (15) | 165 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C14H17NO3 |
Mr | 247.29 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 13.4567 (6), 8.3618 (4), 11.3668 (5) |
β (°) | 91.734 (4) |
V (Å3) | 1278.43 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.38 × 0.27 × 0.18 |
Data collection | |
Diffractometer | Oxford Xcalibur |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.986, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9360, 2605, 1829 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.090, 0.98 |
No. of reflections | 2605 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.17 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···O2i | 0.99 | 2.57 | 3.4403 (14) | 146 |
C5—H5A···O2ii | 0.99 | 2.47 | 3.4312 (16) | 165 |
C8—H8A···O1iii | 0.99 | 2.53 | 3.3536 (16) | 140 |
C10—H10···O2i | 0.95 | 2.50 | 3.4289 (15) | 165 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) x, y−1, z. |
Acknowledgements
The authors thank Prof. Thomas M. Klapötke for generous allocation of diffractometer time.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blarer, S. J., Schweizer, B. W. & Seebach, D. (1982). Helv. Chim. Acta, 161, 1637–1654. CSD CrossRef Web of Science Google Scholar
Cobb, A. J. A., Shaw, D. M., Longbottom, D. A., Gold, J. B. & Ley, S. V. (2005). Org. Biomol. Chem. 3, 84–96. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Juaristi, E., Beck, A. K., Hansen, J., Matt, T., Mukhopadhyay, T., Simson, M. & Seebach, D. (1993). Synthesis, pp. 1271–1290. CrossRef Google Scholar
Kempf, B., Hampel, N., Ofial, A. R. & Mayr, H. (2003). Chem. Eur. J. 9, 2209–2218. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mukherjee, S., Yang, J. W., Hoffmann, S. & List, B. (2007). Chem. Rev. 107, 5471–5569. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sulzer-Mosse, S. & Alexakis, A. (2007). Chem. Commun. pp. 3123–3135. Web of Science CrossRef Google Scholar
Tsogoeva, S. B. (2007). Eur. J. Org. Chem. pp. 1701–1716. Web of Science CrossRef Google Scholar
Xu, D.-Q., Wang, B.-T., Luo, S.-P., Yue, H.-D., Wang, L.-P. & Xu, Z.-Y. (2007a). Chem. Commun. pp. 4393–4395. Web of Science CSD CrossRef Google Scholar
Xu, D.-Q., Wang, B.-T., Luo, S.-P., Yue, H.-D., Wang, L.-P. & Xu, Z.-Y. (2007b). Tetrahedron Asymmetry, 18, 1788–1794. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nitroalkenes are important reagents in organic chemistry and they are the most prominent Michael acceptors used in organocatalytic reactions [Tsogoeva et al. (2007), Sulzer-Mosse et al. (2007), Mukherjee et al. (2007)]. During our studies on the electrophilic reactivity of trans-β-nitrostyrenes, we employed enamines of known nucleophilic reactivities and, hence, obtained the title compound from a reaction of trans-β-nitrostyrene and 1-pyrrolidinocyclohexene [Kempf et al. (2003), Blarer et al. (1982), Juaristi et al. (1993)].
In the title compound, the 1'-Phenyl-2'-nitro-ethyl moiety occupies an equatorial binding site in 2-position of the cyclohexanone ring (see Fig. 1). The plane of the phenyl ring and the least-square plane of the cyclohexyl moiety enclose an angle of 89.14 (6)° which is close to the angles found in enantiopure crystals of the title compound (87.1 (3)° at 180 K (Cobb et al. (2005)), 87.40 (8)° at 296 K (Xu et al., 2007a,b)). The plane through the nitro group and the adjacent C1 atom encloses an angle of 68.81 (7)° with the phenyl ring.
Taking into account merely interactions with hydrogen-acceptor distances at least 0.1 Å shorter than the sum of van-der-Waals radii, the molecules are linked by very weak contacts of the type C—H···O with nitro-O atoms as acceptors (see Fig. 2). The molecular structure of the title compound is stabilized by these contacts as well, as the involved hydrogen atoms are located in the cyclohexyl ring, the phenyl ring and the nitro-ethyl side chain. The keto group is not involved in hydrogen bonding. π-stacking and C—H···π-interactions are not observed.