organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-2-(2-Nitro-1-phenyl­eth­yl)cyclo­hexa­none

aLudwig-Maximilians-Universität, Department, Butenandtstrasse 5–13, 81377 München, Germany
*Correspondence e-mail: pemay@cup.uni-muenchen.de

(Received 22 October 2010; accepted 5 November 2010; online 13 November 2010)

In the title compound, C14H17NO3, the plane of the phenyl ring and the least-squares plane of the cyclo­hexyl moiety enclose an angle of 89.14 (6)°. The cyclohexyl ring adopts a chair conformation. In the crystal, the molecules are linked by weak C—H⋯O bonds, with each of the nitro-O atoms accepting two such interactions.

Related literature

For the history and synthesis of nitro­alkenes, see: Tsogoeva et al. (2007[Tsogoeva, S. B. (2007). Eur. J. Org. Chem. pp. 1701-1716.]); Sulzer-Mosse & Alexakis (2007[Sulzer-Mosse, S. & Alexakis, A. (2007). Chem. Commun. pp. 3123-3135.]); Mukherjee et al. (2007[Mukherjee, S., Yang, J. W., Hoffmann, S. & List, B. (2007). Chem. Rev. 107, 5471-5569.]); Kempf et al. (2003[Kempf, B., Hampel, N., Ofial, A. R. & Mayr, H. (2003). Chem. Eur. J. 9, 2209-2218.]); Blarer et al. (1982[Blarer, S. J., Schweizer, B. W. & Seebach, D. (1982). Helv. Chim. Acta, 161, 1637-1654.]); Juaristi et al. (1993[Juaristi, E., Beck, A. K., Hansen, J., Matt, T., Mukhopadhyay, T., Simson, M. & Seebach, D. (1993). Synthesis, pp. 1271-1290.]). For related structures, see: Cobb et al. (2005[Cobb, A. J. A., Shaw, D. M., Longbottom, D. A., Gold, J. B. & Ley, S. V. (2005). Org. Biomol. Chem. 3, 84-96.]), Xu et al. (2007a[Xu, D.-Q., Wang, B.-T., Luo, S.-P., Yue, H.-D., Wang, L.-P. & Xu, Z.-Y. (2007a). Chem. Commun. pp. 4393-4395.],b[Xu, D.-Q., Wang, B.-T., Luo, S.-P., Yue, H.-D., Wang, L.-P. & Xu, Z.-Y. (2007b). Tetrahedron Asymmetry, 18, 1788-1794.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17NO3

  • Mr = 247.29

  • Monoclinic, P 21 /c

  • a = 13.4567 (6) Å

  • b = 8.3618 (4) Å

  • c = 11.3668 (5) Å

  • β = 91.734 (4)°

  • V = 1278.43 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.38 × 0.27 × 0.18 mm

Data collection
  • Oxford Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.986, Tmax = 1.000

  • 9360 measured reflections

  • 2605 independent reflections

  • 1829 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 0.98

  • 2605 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O2i 0.99 2.57 3.4403 (14) 146
C5—H5A⋯O2ii 0.99 2.47 3.4312 (16) 165
C8—H8A⋯O1iii 0.99 2.53 3.3536 (16) 140
C10—H10⋯O2i 0.95 2.50 3.4289 (15) 165
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitroalkenes are important reagents in organic chemistry and they are the most prominent Michael acceptors used in organocatalytic reactions [Tsogoeva et al. (2007), Sulzer-Mosse et al. (2007), Mukherjee et al. (2007)]. During our studies on the electrophilic reactivity of trans-β-nitrostyrenes, we employed enamines of known nucleophilic reactivities and, hence, obtained the title compound from a reaction of trans-β-nitrostyrene and 1-pyrrolidinocyclohexene [Kempf et al. (2003), Blarer et al. (1982), Juaristi et al. (1993)].

In the title compound, the 1'-Phenyl-2'-nitro-ethyl moiety occupies an equatorial binding site in 2-position of the cyclohexanone ring (see Fig. 1). The plane of the phenyl ring and the least-square plane of the cyclohexyl moiety enclose an angle of 89.14 (6)° which is close to the angles found in enantiopure crystals of the title compound (87.1 (3)° at 180 K (Cobb et al. (2005)), 87.40 (8)° at 296 K (Xu et al., 2007a,b)). The plane through the nitro group and the adjacent C1 atom encloses an angle of 68.81 (7)° with the phenyl ring.

Taking into account merely interactions with hydrogen-acceptor distances at least 0.1 Å shorter than the sum of van-der-Waals radii, the molecules are linked by very weak contacts of the type C—H···O with nitro-O atoms as acceptors (see Fig. 2). The molecular structure of the title compound is stabilized by these contacts as well, as the involved hydrogen atoms are located in the cyclohexyl ring, the phenyl ring and the nitro-ethyl side chain. The keto group is not involved in hydrogen bonding. π-stacking and C—H···π-interactions are not observed.

Related literature top

For the history and synthesis of nitroalkenes, see: Tsogoeva et al. (2007); Sulzer-Mosse & Alexakis (2007); Mukherjee et al. (2007); Kempf et al. (2003); Blarer et al. (1982); Juaristi et al. (1993). For related structures, see: Cobb et al. (2005), Xu et al. (2007a,b).

Experimental top

trans-2-[1'-Phenyl-2'-nitro-ethyl]-cyclohexanone has been obtained by dissolving trans-β-nitrostyrene (4.05 mmol, 604 mg) in dry diethylether (40 ml) and dropwise addition of 1-pyrrolidinocyclohexene (4.05 mmol, 612 mg) at -78 °C. After stirring the reaction at RT for 2 h, 60 ml water, 60 ml e thanol and 5 ml 1M HCl have been added, and the mixture was stirred for 30 min at 60 °C. After removing the solvent in vacuo, a white solid has been obtained (3.01 mmol, 745 mg, 74%).

Crystallization procedure: The title compound was dissolved in ethanol and heated to the boiling point. The solvent was allowed to cool slowly to room temperature. After 24 h, colourless crystals had formed that were suitable for X-ray analysis; mp 108 °C.

Refinement top

All H atoms were calculated in ideal geometry and refined in a riding model.

Structure description top

Nitroalkenes are important reagents in organic chemistry and they are the most prominent Michael acceptors used in organocatalytic reactions [Tsogoeva et al. (2007), Sulzer-Mosse et al. (2007), Mukherjee et al. (2007)]. During our studies on the electrophilic reactivity of trans-β-nitrostyrenes, we employed enamines of known nucleophilic reactivities and, hence, obtained the title compound from a reaction of trans-β-nitrostyrene and 1-pyrrolidinocyclohexene [Kempf et al. (2003), Blarer et al. (1982), Juaristi et al. (1993)].

In the title compound, the 1'-Phenyl-2'-nitro-ethyl moiety occupies an equatorial binding site in 2-position of the cyclohexanone ring (see Fig. 1). The plane of the phenyl ring and the least-square plane of the cyclohexyl moiety enclose an angle of 89.14 (6)° which is close to the angles found in enantiopure crystals of the title compound (87.1 (3)° at 180 K (Cobb et al. (2005)), 87.40 (8)° at 296 K (Xu et al., 2007a,b)). The plane through the nitro group and the adjacent C1 atom encloses an angle of 68.81 (7)° with the phenyl ring.

Taking into account merely interactions with hydrogen-acceptor distances at least 0.1 Å shorter than the sum of van-der-Waals radii, the molecules are linked by very weak contacts of the type C—H···O with nitro-O atoms as acceptors (see Fig. 2). The molecular structure of the title compound is stabilized by these contacts as well, as the involved hydrogen atoms are located in the cyclohexyl ring, the phenyl ring and the nitro-ethyl side chain. The keto group is not involved in hydrogen bonding. π-stacking and C—H···π-interactions are not observed.

For the history and synthesis of nitroalkenes, see: Tsogoeva et al. (2007); Sulzer-Mosse & Alexakis (2007); Mukherjee et al. (2007); Kempf et al. (2003); Blarer et al. (1982); Juaristi et al. (1993). For related structures, see: Cobb et al. (2005), Xu et al. (2007a,b).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. Weak intermolecular interactions in the crystal structure of the title compound viewed along [100].
trans-2-(2-Nitro-1-phenylethyl)cyclohexanone top
Crystal data top
C14H17NO3F(000) = 528
Mr = 247.29Dx = 1.285 (1) Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3796 reflections
a = 13.4567 (6) Åθ = 4.3–26.3°
b = 8.3618 (4) ŵ = 0.09 mm1
c = 11.3668 (5) ÅT = 173 K
β = 91.734 (4)°Block, colourless
V = 1278.43 (10) Å30.38 × 0.27 × 0.18 mm
Z = 4
Data collection top
Oxford Xcalibur
diffractometer
2605 independent reflections
Radiation source: fine-focus sealed tube1829 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 26.4°, θmin = 4.3°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
h = 1616
Tmin = 0.986, Tmax = 1.000k = 1010
9360 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0503P)2]
where P = (Fo2 + 2Fc2)/3
2605 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H17NO3V = 1278.43 (10) Å3
Mr = 247.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4567 (6) ŵ = 0.09 mm1
b = 8.3618 (4) ÅT = 173 K
c = 11.3668 (5) Å0.38 × 0.27 × 0.18 mm
β = 91.734 (4)°
Data collection top
Oxford Xcalibur
diffractometer
2605 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
1829 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 1.000Rint = 0.026
9360 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 0.98Δρmax = 0.17 e Å3
2605 reflectionsΔρmin = 0.17 e Å3
163 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.41 (release 06-05-2009 CrysAlis171 .NET) (compiled May 6 2009,17:20:42) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27791 (8)0.45264 (12)0.27671 (8)0.0497 (3)
O20.30532 (7)0.25646 (11)0.39600 (7)0.0361 (3)
O30.46549 (7)0.07785 (11)0.20442 (8)0.0378 (3)
N10.30166 (8)0.31433 (13)0.29688 (9)0.0272 (3)
C10.32921 (9)0.20990 (14)0.19718 (10)0.0243 (3)
H1A0.40120.18540.20290.029*
H1B0.31550.26610.12180.029*
C20.26933 (9)0.05426 (14)0.20005 (10)0.0214 (3)
H20.28170.00360.27880.026*
C30.30432 (9)0.06309 (14)0.10615 (10)0.0217 (3)
H30.29310.01240.02720.026*
C40.41304 (9)0.11083 (15)0.11829 (11)0.0258 (3)
C50.44795 (10)0.21687 (16)0.02103 (11)0.0333 (3)
H5A0.51970.24030.03300.040*
H5B0.43830.16230.05580.040*
C60.38803 (10)0.37313 (16)0.02159 (11)0.0333 (3)
H6A0.40680.44060.04580.040*
H6B0.40370.43300.09500.040*
C70.27722 (9)0.33748 (16)0.01310 (11)0.0325 (3)
H7A0.23970.43860.02050.039*
H7B0.26050.29140.06530.039*
C80.24528 (10)0.22137 (15)0.10807 (11)0.0279 (3)
H8A0.25510.27240.18620.033*
H8B0.17350.19780.09660.033*
C90.15860 (9)0.08735 (14)0.18614 (10)0.0220 (3)
C100.11872 (9)0.16173 (15)0.08584 (10)0.0298 (3)
H100.16180.19820.02680.036*
C110.01755 (10)0.18327 (17)0.07092 (12)0.0358 (3)
H110.00820.23490.00210.043*
C120.04660 (10)0.13068 (16)0.15475 (12)0.0368 (4)
H120.11630.14390.14340.044*
C130.00848 (11)0.05889 (17)0.25497 (13)0.0393 (4)
H130.05210.02310.31360.047*
C140.09322 (10)0.03820 (16)0.27118 (11)0.0316 (3)
H140.11860.01030.34150.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0667 (8)0.0264 (6)0.0566 (7)0.0132 (5)0.0092 (5)0.0020 (5)
O20.0429 (6)0.0418 (6)0.0236 (5)0.0013 (5)0.0033 (4)0.0039 (4)
O30.0260 (5)0.0419 (6)0.0449 (6)0.0040 (4)0.0083 (4)0.0096 (5)
N10.0240 (6)0.0270 (6)0.0306 (6)0.0007 (5)0.0020 (4)0.0046 (5)
C10.0260 (7)0.0258 (7)0.0212 (6)0.0004 (6)0.0048 (5)0.0022 (5)
C20.0215 (6)0.0223 (7)0.0204 (6)0.0001 (5)0.0014 (5)0.0015 (5)
C30.0202 (6)0.0225 (7)0.0224 (6)0.0013 (5)0.0008 (5)0.0007 (5)
C40.0233 (7)0.0234 (7)0.0308 (7)0.0014 (6)0.0026 (5)0.0010 (5)
C50.0247 (7)0.0381 (8)0.0373 (7)0.0055 (6)0.0055 (6)0.0061 (6)
C60.0321 (8)0.0299 (8)0.0377 (7)0.0080 (6)0.0019 (6)0.0082 (6)
C70.0309 (8)0.0269 (7)0.0395 (8)0.0019 (6)0.0040 (6)0.0070 (6)
C80.0215 (7)0.0253 (7)0.0368 (7)0.0004 (6)0.0004 (5)0.0035 (6)
C90.0222 (7)0.0183 (6)0.0255 (6)0.0010 (5)0.0011 (5)0.0044 (5)
C100.0270 (7)0.0326 (8)0.0299 (7)0.0017 (6)0.0018 (5)0.0017 (6)
C110.0315 (8)0.0384 (8)0.0371 (8)0.0066 (7)0.0052 (6)0.0032 (6)
C120.0202 (7)0.0360 (8)0.0540 (9)0.0061 (6)0.0015 (6)0.0032 (7)
C130.0274 (8)0.0412 (9)0.0500 (8)0.0009 (7)0.0126 (6)0.0048 (7)
C140.0277 (7)0.0332 (8)0.0340 (7)0.0031 (6)0.0053 (6)0.0060 (6)
Geometric parameters (Å, º) top
O1—N11.2198 (13)C6—H6A0.9900
O2—N11.2258 (12)C6—H6B0.9900
O3—C41.2210 (14)C7—C81.5234 (17)
N1—C11.4865 (15)C7—H7A0.9900
C1—C21.5316 (16)C7—H7B0.9900
C1—H1A0.9900C8—H8A0.9900
C1—H1B0.9900C8—H8B0.9900
C2—C91.5192 (17)C9—C141.3888 (17)
C2—C31.5343 (16)C9—C101.3919 (16)
C2—H21.0000C10—C111.3786 (18)
C3—C41.5187 (17)C10—H100.9500
C3—C81.5442 (16)C11—C121.3770 (19)
C3—H31.0000C11—H110.9500
C4—C51.5035 (18)C12—C131.3732 (19)
C5—C61.5355 (19)C12—H120.9500
C5—H5A0.9900C13—C141.3862 (19)
C5—H5B0.9900C13—H130.9500
C6—C71.5209 (18)C14—H140.9500
O1—N1—O2123.37 (10)C7—C6—H6B109.6
O1—N1—C1118.92 (10)C5—C6—H6B109.6
O2—N1—C1117.70 (10)H6A—C6—H6B108.1
N1—C1—C2109.84 (9)C6—C7—C8112.15 (10)
N1—C1—H1A109.7C6—C7—H7A109.2
C2—C1—H1A109.7C8—C7—H7A109.2
N1—C1—H1B109.7C6—C7—H7B109.2
C2—C1—H1B109.7C8—C7—H7B109.2
H1A—C1—H1B108.2H7A—C7—H7B107.9
C9—C2—C1110.98 (10)C7—C8—C3112.33 (10)
C9—C2—C3111.39 (9)C7—C8—H8A109.1
C1—C2—C3110.85 (9)C3—C8—H8A109.1
C9—C2—H2107.8C7—C8—H8B109.1
C1—C2—H2107.8C3—C8—H8B109.1
C3—C2—H2107.8H8A—C8—H8B107.9
C4—C3—C2114.83 (9)C14—C9—C10117.75 (12)
C4—C3—C8105.55 (10)C14—C9—C2120.91 (10)
C2—C3—C8111.68 (10)C10—C9—C2121.29 (11)
C4—C3—H3108.2C11—C10—C9120.93 (12)
C2—C3—H3108.2C11—C10—H10119.5
C8—C3—H3108.2C9—C10—H10119.5
O3—C4—C5122.47 (12)C12—C11—C10120.70 (12)
O3—C4—C3123.05 (11)C12—C11—H11119.7
C5—C4—C3114.19 (11)C10—C11—H11119.7
C4—C5—C6108.84 (11)C13—C12—C11119.17 (13)
C4—C5—H5A109.9C13—C12—H12120.4
C6—C5—H5A109.9C11—C12—H12120.4
C4—C5—H5B109.9C12—C13—C14120.48 (13)
C6—C5—H5B109.9C12—C13—H13119.8
H5A—C5—H5B108.3C14—C13—H13119.8
C7—C6—C5110.30 (11)C13—C14—C9120.94 (12)
C7—C6—H6A109.6C13—C14—H14119.5
C5—C6—H6A109.6C9—C14—H14119.5
O1—N1—C1—C2128.32 (12)C6—C7—C8—C356.07 (15)
O2—N1—C1—C252.56 (14)C4—C3—C8—C756.14 (13)
N1—C1—C2—C961.75 (12)C2—C3—C8—C7178.44 (10)
N1—C1—C2—C3173.91 (9)C1—C2—C9—C14122.22 (12)
C9—C2—C3—C4176.37 (10)C3—C2—C9—C14113.75 (13)
C1—C2—C3—C459.53 (13)C1—C2—C9—C1060.49 (14)
C9—C2—C3—C856.26 (13)C3—C2—C9—C1063.53 (15)
C1—C2—C3—C8179.64 (9)C14—C9—C10—C111.04 (19)
C2—C3—C4—O310.01 (17)C2—C9—C10—C11176.33 (11)
C8—C3—C4—O3113.44 (13)C9—C10—C11—C120.4 (2)
C2—C3—C4—C5176.03 (10)C10—C11—C12—C131.2 (2)
C8—C3—C4—C560.52 (13)C11—C12—C13—C140.6 (2)
O3—C4—C5—C6112.56 (13)C12—C13—C14—C90.9 (2)
C3—C4—C5—C661.43 (14)C10—C9—C14—C131.68 (19)
C4—C5—C6—C755.04 (14)C2—C9—C14—C13175.70 (12)
C5—C6—C7—C853.99 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O2i0.992.573.4403 (14)146
C5—H5A···O2ii0.992.473.4312 (16)165
C8—H8A···O1iii0.992.533.3536 (16)140
C10—H10···O2i0.952.503.4289 (15)165
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H17NO3
Mr247.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)13.4567 (6), 8.3618 (4), 11.3668 (5)
β (°) 91.734 (4)
V3)1278.43 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.38 × 0.27 × 0.18
Data collection
DiffractometerOxford Xcalibur
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.986, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9360, 2605, 1829
Rint0.026
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 0.98
No. of reflections2605
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O2i0.992.573.4403 (14)146
C5—H5A···O2ii0.992.473.4312 (16)165
C8—H8A···O1iii0.992.533.3536 (16)140
C10—H10···O2i0.952.503.4289 (15)165
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y1, z.
 

Acknowledgements

The authors thank Prof. Thomas M. Klapötke for generous allocation of diffractometer time.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlarer, S. J., Schweizer, B. W. & Seebach, D. (1982). Helv. Chim. Acta, 161, 1637–1654.  CSD CrossRef Web of Science Google Scholar
First citationCobb, A. J. A., Shaw, D. M., Longbottom, D. A., Gold, J. B. & Ley, S. V. (2005). Org. Biomol. Chem. 3, 84–96.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJuaristi, E., Beck, A. K., Hansen, J., Matt, T., Mukhopadhyay, T., Simson, M. & Seebach, D. (1993). Synthesis, pp. 1271–1290.  CrossRef Google Scholar
First citationKempf, B., Hampel, N., Ofial, A. R. & Mayr, H. (2003). Chem. Eur. J. 9, 2209–2218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMukherjee, S., Yang, J. W., Hoffmann, S. & List, B. (2007). Chem. Rev. 107, 5471–5569.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSulzer-Mosse, S. & Alexakis, A. (2007). Chem. Commun. pp. 3123–3135.  Web of Science CrossRef Google Scholar
First citationTsogoeva, S. B. (2007). Eur. J. Org. Chem. pp. 1701–1716.  Web of Science CrossRef Google Scholar
First citationXu, D.-Q., Wang, B.-T., Luo, S.-P., Yue, H.-D., Wang, L.-P. & Xu, Z.-Y. (2007a). Chem. Commun. pp. 4393–4395.  Web of Science CSD CrossRef Google Scholar
First citationXu, D.-Q., Wang, B.-T., Luo, S.-P., Yue, H.-D., Wang, L.-P. & Xu, Z.-Y. (2007b). Tetrahedron Asymmetry, 18, 1788–1794.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds