organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3,4-Dihy­dr­oxy­oxolan-2-yl)methyl 4-methyl­benzene­sulfonate

aDepartment of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
*Correspondence e-mail: tch@ucsd.edu

(Received 28 October 2010; accepted 2 November 2010; online 6 November 2010)

The racemic title compound, C12H16O6S, possesses a five-membered ring that adopts an envelope-shaped conformation; the two hy­droxy groups occupy quasi-axial positions. Adjacent mol­ecules are linked by O—H⋯O hydrogen bonds to generate a ribbon that runs along the a axis of the ortho­rhom­bic unit cell. The crystal studied was an inversion twin.

Related literature

For the synthesis of the title compound, see: Kapitan & Grazca (2008[Kapitan, P. & Grazca, T. (2008). Tetrahedron Asymmetry, 19, 38-44.]); Park et al. (2005[Park, S., Anderson, C., Loeber, R., Seetharaman, M., Jones, R. & Tretyakova, N. (2005). J. Am. Chem. Soc. 127, 14355-14365.]). For the use of xylitol tosyl­ates in the synthesis of bicyclic oxetanes, see: Köll & Oetling (1987[Köll, P. & Oetling, M. (1987). Liebigs Ann. Chem. pp. 205-214.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16O6S

  • Mr = 288.31

  • Orthorhombic, P 21 21 21

  • a = 5.414 (4) Å

  • b = 10.172 (8) Å

  • c = 24.080 (18) Å

  • V = 1326.0 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 173 K

  • 0.50 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.879, Tmax = 0.949

  • 14329 measured reflections

  • 3154 independent reflections

  • 2333 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.110

  • S = 1.02

  • 3154 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1174 Friedel pairs

  • Flack parameter: 0.47 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.84 2.03 2.834 (4) 160
O3—H3⋯O3ii 0.84 2.17 2.931 (2) 151
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is the product of the cyclization of xylitol in the presence of p-toluenesulfonyl chloride. The synthetic procedure is described below. We report here the single-crystal X-ray structure.

Asymmetric unit of the title compound is composed of molecule 1 (Fig. 1). Molecules are linked together into infinite chains by the intermolecular O2—H2···O1i (Fig. 2) that form dimers by the O3—H3···O3ii hydrogen bonds. These dimeric chains propagate along the a axis (Fig. 3).

Related literature top

For the synthesis of the title compound, see: Kapitan & Grazca (2008); Park et al. (2005). For the use of xylitol tosylates in the synthesis of bicyclic oxetanes, see: Köll & Oetling (1987).

Experimental top

In our attempt to make 2,3,4-trihydroxypentane-1,5-diyl bis(4-methylbenzenesulfonate) we have obtained (3,4-dihydroxytetrahydrofuran-2-yl)methyl 4-methylbenzenesulfonate as a major product. The title compound has been synthesized by modification of procedures described by Park et al. (2005) and Kapitan & Grazca (2008). To a solution of racemic Xylitol (33 mmol) in pyridine (40 ml), p-toluenesulfonylchloride (69 mmol) in pyridine was added drop wise at -10°C. The reaction mixture was kept at 4°C overnight, resulting in formation of white precipitate which was removed by filtration. The filtrate was poured over 300 ml of water and kept in an ice bath for 20 minutes. Extraction with dichloromethane, followed by washing of the organic layer with saturated NaCl solution, drying over sodium sulfate, filtration and evaporation yielded the title compound which was finally purified by flash chromatography. In a sample vial, 20 mg of compound was taken and dissolved in MeOH. Upon slow evaporation at 273 K the crystals are formed as colorless blocks.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–1.00 Å and O—H = 0.84 Å with Uiso(H) = 1.2Ueq. The Flack parameter refined to nearly 0.5, in agreement with the racemic nature of the Xylitol reactant.

Structure description top

The title compound is the product of the cyclization of xylitol in the presence of p-toluenesulfonyl chloride. The synthetic procedure is described below. We report here the single-crystal X-ray structure.

Asymmetric unit of the title compound is composed of molecule 1 (Fig. 1). Molecules are linked together into infinite chains by the intermolecular O2—H2···O1i (Fig. 2) that form dimers by the O3—H3···O3ii hydrogen bonds. These dimeric chains propagate along the a axis (Fig. 3).

For the synthesis of the title compound, see: Kapitan & Grazca (2008); Park et al. (2005). For the use of xylitol tosylates in the synthesis of bicyclic oxetanes, see: Köll & Oetling (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SMART (Bruker, 2005); data reduction: SMART (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Hydrogen bonding showing the formation of dimeric chains. Intermolecular hydrogen bonds are shown as dashed lines. Symmetry codes: (i) x - 1, y, z; (ii) x - 1/2, -y + 3/2, -z.
[Figure 3] Fig. 3. The crystal packing of the title compound, viewed down the a axis.
(3,4-Dihydroxyoxolan-2-yl)methyl 4-methylbenzenesulfonate top
Crystal data top
C12H16O6SF(000) = 608
Mr = 288.31Dx = 1.444 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P2ac2abCell parameters from 3862 reflections
a = 5.414 (4) Åθ = 2.6–23.4°
b = 10.172 (8) ŵ = 0.26 mm1
c = 24.080 (18) ÅT = 173 K
V = 1326.0 (17) Å3Block, colourless
Z = 40.50 × 0.30 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3154 independent reflections
Radiation source: fine-focus sealed tube2333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
φ and ω scansθmax = 28.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.879, Tmax = 0.949k = 1313
14329 measured reflectionsl = 3126
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.5008P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max = 0.003
S = 1.02Δρmax = 0.26 e Å3
3154 reflectionsΔρmin = 0.19 e Å3
177 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0054 (12)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 1174 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.47 (12)
Crystal data top
C12H16O6SV = 1326.0 (17) Å3
Mr = 288.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.414 (4) ŵ = 0.26 mm1
b = 10.172 (8) ÅT = 173 K
c = 24.080 (18) Å0.50 × 0.30 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3154 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2333 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.949Rint = 0.056
14329 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.110Δρmax = 0.26 e Å3
S = 1.02Δρmin = 0.19 e Å3
3154 reflectionsAbsolute structure: Flack (1983), with 1174 Friedel pairs
177 parametersAbsolute structure parameter: 0.47 (12)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.49846 (15)0.83391 (7)0.19055 (3)0.03938 (19)
O40.3443 (4)0.9149 (2)0.14690 (8)0.0403 (5)
O30.1096 (4)0.7717 (2)0.02146 (9)0.0522 (6)
H30.23510.73080.01040.063*
O50.6954 (4)0.9196 (2)0.20441 (10)0.0558 (6)
O10.1981 (4)0.9922 (2)0.03798 (8)0.0452 (5)
O60.5516 (4)0.7081 (2)0.16814 (8)0.0533 (6)
C30.1840 (5)0.8929 (3)0.04656 (12)0.0393 (7)
H3A0.33600.88270.06980.047*
C50.1566 (5)0.8449 (3)0.11540 (12)0.0397 (6)
H5A0.03640.80310.14090.048*
H5B0.23380.77550.09240.048*
O20.3312 (4)1.1107 (2)0.02581 (11)0.0574 (6)
H20.47531.09040.03550.069*
C90.0409 (6)0.8029 (3)0.33240 (11)0.0477 (8)
C110.2748 (6)0.9224 (3)0.28326 (13)0.0469 (8)
H110.37520.99840.27930.056*
C40.0298 (5)0.9430 (3)0.07931 (11)0.0354 (6)
H40.02711.01810.10290.042*
C100.1045 (7)0.9131 (3)0.32584 (12)0.0518 (9)
H100.08720.98420.35110.062*
C70.1562 (6)0.7062 (3)0.25310 (12)0.0431 (7)
H70.17600.63420.22840.052*
C20.2121 (6)0.9991 (3)0.00288 (13)0.0429 (7)
H2A0.29840.96610.03110.051*
C60.2955 (5)0.8185 (3)0.24657 (11)0.0359 (6)
C120.2297 (8)0.7949 (4)0.37844 (14)0.0703 (11)
H12A0.34490.72280.37080.105*
H12B0.32110.87790.38060.105*
H12C0.14570.77880.41380.105*
C10.0535 (5)1.0362 (3)0.00883 (12)0.0458 (8)
H1A0.11140.99320.04330.055*
H1B0.06891.13250.01340.055*
C80.0126 (7)0.6997 (3)0.29599 (11)0.0478 (7)
H80.11060.62290.30040.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0386 (3)0.0384 (4)0.0411 (3)0.0040 (4)0.0029 (4)0.0060 (3)
O40.0423 (11)0.0401 (11)0.0385 (10)0.0032 (10)0.0059 (9)0.0067 (9)
O30.0547 (13)0.0456 (13)0.0562 (13)0.0053 (11)0.0067 (12)0.0107 (11)
O50.0423 (12)0.0619 (15)0.0633 (14)0.0097 (12)0.0080 (11)0.0074 (12)
O10.0308 (11)0.0596 (14)0.0452 (12)0.0038 (10)0.0002 (9)0.0146 (10)
O60.0641 (15)0.0438 (12)0.0518 (12)0.0142 (11)0.0056 (11)0.0022 (10)
C30.0351 (15)0.0448 (18)0.0381 (14)0.0006 (14)0.0023 (13)0.0003 (13)
C50.0376 (15)0.0412 (16)0.0404 (14)0.0025 (14)0.0027 (13)0.0007 (14)
O20.0416 (12)0.0519 (14)0.0788 (16)0.0049 (11)0.0027 (13)0.0074 (12)
C90.059 (2)0.0514 (19)0.0331 (13)0.0089 (17)0.0039 (14)0.0064 (14)
C110.061 (2)0.0351 (17)0.0441 (16)0.0009 (15)0.0106 (15)0.0002 (14)
C40.0322 (15)0.0393 (15)0.0347 (13)0.0035 (13)0.0008 (12)0.0030 (11)
C100.075 (2)0.0412 (18)0.0396 (16)0.0087 (17)0.0040 (16)0.0052 (15)
C70.0569 (19)0.0326 (15)0.0397 (15)0.0016 (15)0.0018 (15)0.0015 (13)
C20.0352 (16)0.0484 (19)0.0452 (16)0.0016 (14)0.0071 (14)0.0028 (15)
C60.0396 (15)0.0337 (15)0.0345 (13)0.0022 (13)0.0036 (12)0.0031 (12)
C120.084 (3)0.076 (3)0.0504 (19)0.009 (2)0.023 (2)0.001 (2)
C10.0361 (18)0.061 (2)0.0401 (15)0.0023 (14)0.0006 (13)0.0114 (15)
C80.0600 (18)0.0426 (16)0.0407 (14)0.0031 (18)0.0032 (16)0.0053 (12)
Geometric parameters (Å, º) top
S1—O51.417 (2)C9—C101.379 (5)
S1—O61.418 (2)C9—C121.510 (4)
S1—O41.575 (2)C11—C101.382 (5)
S1—C61.747 (3)C11—C61.382 (4)
O4—C51.454 (3)C11—H110.9500
O3—C31.430 (4)C4—H41.0000
O3—H30.8400C10—H100.9500
O1—C41.439 (3)C7—C61.378 (4)
O1—C11.443 (3)C7—C81.381 (4)
C3—C41.491 (4)C7—H70.9500
C3—C21.516 (4)C2—C11.513 (4)
C3—H3A1.0000C2—H2A1.0000
C5—C41.491 (4)C12—H12A0.9800
C5—H5A0.9900C12—H12B0.9800
C5—H5B0.9900C12—H12C0.9800
O2—C21.418 (4)C1—H1A0.9900
O2—H20.8400C1—H1B0.9900
C9—C81.376 (4)C8—H80.9500
O5—S1—O6119.47 (15)C5—C4—H4108.8
O5—S1—O4103.55 (13)C3—C4—H4108.8
O6—S1—O4109.01 (12)C9—C10—C11121.4 (3)
O5—S1—C6110.27 (14)C9—C10—H10119.3
O6—S1—C6109.91 (14)C11—C10—H10119.3
O4—S1—C6103.24 (13)C6—C7—C8119.2 (3)
C5—O4—S1117.54 (17)C6—C7—H7120.4
C3—O3—H3109.5C8—C7—H7120.4
C4—O1—C1107.7 (2)O2—C2—C1107.8 (3)
O3—C3—C4107.4 (2)O2—C2—C3110.3 (3)
O3—C3—C2110.4 (2)C1—C2—C3102.2 (2)
C4—C3—C2101.6 (2)O2—C2—H2A112.0
O3—C3—H3A112.3C1—C2—H2A112.0
C4—C3—H3A112.3C3—C2—H2A112.0
C2—C3—H3A112.3C7—C6—C11121.1 (3)
O4—C5—C4107.3 (2)C7—C6—S1120.5 (2)
O4—C5—H5A110.2C11—C6—S1118.4 (2)
C4—C5—H5A110.2C9—C12—H12A109.5
O4—C5—H5B110.2C9—C12—H12B109.5
C4—C5—H5B110.2H12A—C12—H12B109.5
H5A—C5—H5B108.5C9—C12—H12C109.5
C2—O2—H2109.5H12A—C12—H12C109.5
C8—C9—C10118.9 (3)H12B—C12—H12C109.5
C8—C9—C12120.1 (3)O1—C1—C2107.0 (2)
C10—C9—C12121.0 (3)O1—C1—H1A110.3
C10—C11—C6118.4 (3)C2—C1—H1A110.3
C10—C11—H11120.8O1—C1—H1B110.3
C6—C11—H11120.8C2—C1—H1B110.3
O1—C4—C5110.1 (2)H1A—C1—H1B108.6
O1—C4—C3104.2 (2)C9—C8—C7120.9 (3)
C5—C4—C3115.9 (2)C9—C8—H8119.5
O1—C4—H4108.8C7—C8—H8119.5
O5—S1—O4—C5167.5 (2)C4—C3—C2—C136.7 (3)
O6—S1—O4—C539.3 (2)C8—C7—C6—C112.2 (4)
C6—S1—O4—C577.5 (2)C8—C7—C6—S1176.4 (2)
S1—O4—C5—C4177.38 (18)C10—C11—C6—C72.1 (4)
C1—O1—C4—C5154.6 (2)C10—C11—C6—S1176.5 (2)
C1—O1—C4—C329.6 (3)O5—S1—C6—C7152.8 (2)
O4—C5—C4—O166.7 (3)O6—S1—C6—C719.1 (3)
O4—C5—C4—C3175.4 (2)O4—S1—C6—C797.1 (3)
O3—C3—C4—O174.7 (3)O5—S1—C6—C1128.5 (3)
C2—C3—C4—O141.3 (3)O6—S1—C6—C11162.3 (2)
O3—C3—C4—C546.5 (3)O4—S1—C6—C1181.6 (2)
C2—C3—C4—C5162.5 (2)C4—O1—C1—C25.7 (3)
C8—C9—C10—C110.8 (5)O2—C2—C1—O196.4 (3)
C12—C9—C10—C11178.9 (3)C3—C2—C1—O119.8 (3)
C6—C11—C10—C90.6 (5)C10—C9—C8—C70.7 (5)
O3—C3—C2—O2168.6 (2)C12—C9—C8—C7178.9 (3)
C4—C3—C2—O277.6 (3)C6—C7—C8—C90.7 (5)
O3—C3—C2—C177.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.842.032.834 (4)160
O3—H3···O3ii0.842.172.931 (2)151
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC12H16O6S
Mr288.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)5.414 (4), 10.172 (8), 24.080 (18)
V3)1326.0 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.50 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.879, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
14329, 3154, 2333
Rint0.056
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.110, 1.02
No. of reflections3154
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.19
Absolute structureFlack (1983), with 1174 Friedel pairs
Absolute structure parameter0.47 (12)

Computer programs: APEX2 (Bruker, 2005), SMART (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.842.032.834 (4)159.6
O3—H3···O3ii0.842.172.931 (2)151.0
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z.
 

Acknowledgements

This work was supported in part by the National Institutes of Health (grant No. R01 AI72012).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKapitan, P. & Grazca, T. (2008). Tetrahedron Asymmetry, 19, 38–44.  Web of Science CrossRef CAS Google Scholar
First citationKöll, P. & Oetling, M. (1987). Liebigs Ann. Chem. pp. 205–214.  Google Scholar
First citationPark, S., Anderson, C., Loeber, R., Seetharaman, M., Jones, R. & Tretyakova, N. (2005). J. Am. Chem. Soc. 127, 14355–14365.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds