metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(pyridine-2-carboximidamide-κ2N1,N2)zinc(II) chloride dihydrate

aJinzhong Vocational & Technical College, Yuci 030600, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: lxf7777@sxu.edu.cn

(Received 3 November 2010; accepted 8 November 2010; online 13 November 2010)

In the title salt, [ZnCl(C6H7N3)2]Cl·2H2O, the pyridine-2-carboximidamide ligands chelate to the ZnII atom, which is also coordinated by a Cl atom. The ZnII atom shows a trigonal–bipyramidal coordination, with the pyridyl N atoms occupying the axial positions. The cation, anion and water mol­ecules are linked by N—H⋯Cl, N—H⋯O, O—H⋯Cl and O—H⋯O hydrogen bonds into a three-dimensional structure.

Related literature

For a related compound with a similar coordination mode, see: Li et al. (2006[Li, L., Murthy, N. N., Telser, J., Zakharov, L. N., Yap, G. P. A., Rheingold, A. L., Karlin, K. D. & Rokita, S. E. (2006). Inorg. Chem. 45, 7144-7159.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl(C6H7N3)2]Cl·2H2O

  • Mr = 414.59

  • Triclinic, [P \overline 1]

  • a = 7.1658 (14) Å

  • b = 9.7120 (18) Å

  • c = 13.233 (3) Å

  • α = 92.225 (3)°

  • β = 96.138 (3)°

  • γ = 104.302 (3)°

  • V = 885.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.629, Tmax = 0.727

  • 3618 measured reflections

  • 3026 independent reflections

  • 2575 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.115

  • S = 1.11

  • 3026 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2 0.86 2.86 3.553 (3) 138
N2—H2A⋯O2i 0.86 2.13 2.942 (4) 156
N2—H2B⋯Cl2ii 0.86 2.61 3.434 (3) 160
N4—H4B⋯Cl2iii 0.86 2.68 3.432 (3) 147
N5—H5B⋯Cl2iii 0.86 2.51 3.295 (3) 152
N5—H5C⋯Cl1iv 0.86 2.56 3.289 (3) 144
O1—H1C⋯Cl1 0.82 2.64 3.320 (4) 142
O1—H1D⋯Cl2 0.82 2.44 3.237 (4) 165
O2—H2D⋯Cl2v 0.83 2.40 3.182 (4) 157
O2—H2C⋯O1 0.83 1.92 2.753 (5) 173
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+2; (iii) x, y+1, z; (iv) -x+1, -y+2, -z+1; (v) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

The zinc ion is coordinated via two nitrogen of the ligand, two five rings of N1—C1—C2—N3—Zn1 and N4—C7—C8—N6—Zn1 are formed. The torsion angle between the two five-membered rings is 168.41°. The bond lengthes of Zn1—N1 and Zn1—N3 of the compound are 1.980 (3) and 2.201 (3) Å, respectively. The coordination geometry of Zn2+ is distorted tetragonal pyramid. This is comparable to the compound 7 reported by Karlin group (Li et al., 2006), which can provide three nitrogen and two oxygen to coordination zinc(II), the average bond length of Zn—N is 2.104 (3) Å. There are four types of hydrogen bond, namely O···H—N, Cl···H—N and O···H—O, Cl···H—O, in the packing structure. These multi hydrogen bond are due to the chloride anions and exogenous water molecules existed in the interspace of compound. By the interactions of hydrogen bond, the infinite three dimensional structure is formed.

Related literature top

For a related compound with a similar coordination mode, see: Li et al. (2006).

Experimental top

Synthesis: Zinc chloride 0.221 g (1.5 mmol) was added to the solution of LiN(SiMe3)2 (3.0 mmol) and 2-cyanopyridine(0.30 ml, 3.0 mmol) in thf (30 ml) at 195 K. The mixture was stirred for 12 h at ambient temperature, then filtered. The filtrate was concentrated and the residue was crystallized from ethanol at ambient temperature, yielding colorless crystal [ZnCl(C6H7N3)2]Cl.2H2O(0.28 g, 42%). 1H NMR([D6]DMSO): 7.56(s, 4H, NH), 7.94 (d, J 4.4 Hz, 8H, pyridyl) and 8.73 (d, J 4.4 Hz, 8H, pyridyl). mp 506–507 K.

Refinement top

The water H atoms were found by using fourier difference map and constrained to their related atoms, with O—H distances in the range 0.82 Å and Uiso(H) = 1.5Ueq(O). The other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93 Å and Uiso(H) = 1.2Ueq(C), N—H distances in the range 0.86 Å and Uiso(H) = 1.2Ueq(N),

Structure description top

The zinc ion is coordinated via two nitrogen of the ligand, two five rings of N1—C1—C2—N3—Zn1 and N4—C7—C8—N6—Zn1 are formed. The torsion angle between the two five-membered rings is 168.41°. The bond lengthes of Zn1—N1 and Zn1—N3 of the compound are 1.980 (3) and 2.201 (3) Å, respectively. The coordination geometry of Zn2+ is distorted tetragonal pyramid. This is comparable to the compound 7 reported by Karlin group (Li et al., 2006), which can provide three nitrogen and two oxygen to coordination zinc(II), the average bond length of Zn—N is 2.104 (3) Å. There are four types of hydrogen bond, namely O···H—N, Cl···H—N and O···H—O, Cl···H—O, in the packing structure. These multi hydrogen bond are due to the chloride anions and exogenous water molecules existed in the interspace of compound. By the interactions of hydrogen bond, the infinite three dimensional structure is formed.

For a related compound with a similar coordination mode, see: Li et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The cation structure, showing the atom-numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
Chlorido(pyridine-2-carboximidamide-κ2N1,N2)zinc(II) chloride dihydrate top
Crystal data top
[ZnCl(C6H7N3)2]Cl·2H2OZ = 2
Mr = 414.59F(000) = 424
Triclinic, P1Dx = 1.555 Mg m3
a = 7.1658 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7120 (18) ÅCell parameters from 1653 reflections
c = 13.233 (3) Åθ = 2.6–25.1°
α = 92.225 (3)°µ = 1.71 mm1
β = 96.138 (3)°T = 293 K
γ = 104.302 (3)°Block, colorless
V = 885.3 (3) Å30.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
3026 independent reflections
Radiation source: fine-focus sealed tube2575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.629, Tmax = 0.727k = 1111
3618 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.0845P]
where P = (Fo2 + 2Fc2)/3
3026 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[ZnCl(C6H7N3)2]Cl·2H2Oγ = 104.302 (3)°
Mr = 414.59V = 885.3 (3) Å3
Triclinic, P1Z = 2
a = 7.1658 (14) ÅMo Kα radiation
b = 9.7120 (18) ŵ = 1.71 mm1
c = 13.233 (3) ÅT = 293 K
α = 92.225 (3)°0.30 × 0.25 × 0.20 mm
β = 96.138 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3026 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2575 reflections with I > 2σ(I)
Tmin = 0.629, Tmax = 0.727Rint = 0.017
3618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.11Δρmax = 0.44 e Å3
3026 reflectionsΔρmin = 0.42 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.56451 (5)0.85104 (4)0.73653 (3)0.04193 (17)
Cl10.84868 (13)0.83366 (11)0.67568 (7)0.0547 (3)
N10.4601 (4)0.7076 (3)0.8321 (2)0.0471 (7)
H1A0.38370.62720.80870.056*
N20.4396 (5)0.6468 (3)0.9992 (2)0.0500 (7)
H2A0.35960.56560.98120.060*
H2B0.47670.67151.06270.060*
N30.6905 (4)0.9590 (3)0.8866 (2)0.0376 (6)
C10.5059 (5)0.7339 (3)0.9290 (2)0.0394 (7)
C20.6376 (4)0.8761 (3)0.9628 (2)0.0354 (7)
C30.7007 (5)0.9224 (4)1.0639 (3)0.0431 (8)
H3A0.66380.86381.11600.052*
C40.8217 (5)1.0602 (4)1.0854 (3)0.0490 (9)
H4A0.86661.09381.15260.059*
C50.8737 (5)1.1449 (4)1.0082 (3)0.0481 (9)
H5A0.95231.23691.02150.058*
C60.8061 (5)1.0899 (4)0.9094 (3)0.0440 (8)
H6A0.84281.14660.85630.053*
N40.4526 (4)1.0103 (3)0.6875 (2)0.0439 (7)
H4B0.47711.08950.72380.053*
N50.2741 (4)1.0951 (3)0.5595 (2)0.0521 (8)
H5B0.30011.17890.58960.063*
H5C0.20241.07670.50180.063*
N60.3721 (4)0.7541 (3)0.5968 (2)0.0433 (7)
C70.3450 (5)0.9937 (4)0.6023 (2)0.0395 (7)
C80.2952 (4)0.8486 (4)0.5478 (2)0.0404 (8)
C90.1806 (5)0.8141 (4)0.4551 (3)0.0532 (9)
H9A0.12760.88110.42220.064*
C100.1473 (6)0.6754 (5)0.4125 (3)0.0641 (11)
H10A0.07000.64830.35040.077*
C110.2283 (6)0.5785 (5)0.4621 (3)0.0643 (11)
H11A0.20960.48640.43370.077*
C120.3374 (6)0.6215 (4)0.5547 (3)0.0544 (9)
H12A0.38950.55570.58960.065*
O10.8460 (6)0.5476 (4)0.8055 (3)0.1095 (13)
H1C0.89180.60260.76370.164*
H1D0.74330.49330.77950.164*
O21.1203 (5)0.4197 (3)0.8929 (3)0.0831 (9)
H2C1.04370.46530.86870.125*
H2D1.16470.38780.84430.125*
Cl20.41075 (19)0.34820 (11)0.74501 (8)0.0690 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0489 (3)0.0424 (3)0.0349 (3)0.01345 (18)0.00115 (17)0.00644 (16)
Cl10.0507 (5)0.0773 (7)0.0398 (5)0.0231 (5)0.0043 (4)0.0085 (4)
N10.0593 (18)0.0356 (15)0.0403 (17)0.0031 (13)0.0005 (13)0.0015 (12)
N20.068 (2)0.0389 (16)0.0420 (17)0.0115 (14)0.0069 (14)0.0090 (13)
N30.0405 (14)0.0374 (15)0.0357 (15)0.0117 (12)0.0031 (11)0.0043 (11)
C10.0448 (18)0.0355 (18)0.043 (2)0.0175 (14)0.0080 (14)0.0073 (14)
C20.0357 (16)0.0370 (17)0.0373 (17)0.0163 (13)0.0035 (13)0.0051 (13)
C30.0460 (19)0.050 (2)0.0371 (18)0.0202 (16)0.0017 (14)0.0066 (15)
C40.049 (2)0.056 (2)0.044 (2)0.0231 (17)0.0051 (16)0.0092 (17)
C50.0380 (18)0.045 (2)0.059 (2)0.0105 (15)0.0011 (16)0.0051 (17)
C60.0442 (18)0.0388 (19)0.048 (2)0.0086 (15)0.0070 (15)0.0065 (15)
N40.0559 (17)0.0414 (16)0.0354 (16)0.0162 (13)0.0006 (13)0.0036 (12)
N50.065 (2)0.0533 (19)0.0432 (17)0.0263 (15)0.0002 (14)0.0086 (14)
N60.0460 (16)0.0441 (17)0.0389 (16)0.0111 (13)0.0015 (12)0.0041 (13)
C70.0405 (17)0.0446 (19)0.0382 (19)0.0159 (14)0.0115 (14)0.0103 (14)
C80.0345 (17)0.054 (2)0.0325 (17)0.0084 (15)0.0075 (13)0.0063 (15)
C90.054 (2)0.064 (3)0.042 (2)0.0182 (18)0.0002 (16)0.0044 (18)
C100.065 (3)0.075 (3)0.045 (2)0.012 (2)0.0090 (18)0.008 (2)
C110.079 (3)0.053 (2)0.056 (3)0.012 (2)0.001 (2)0.009 (2)
C120.064 (2)0.048 (2)0.051 (2)0.0149 (18)0.0012 (18)0.0043 (18)
O10.119 (3)0.102 (3)0.112 (3)0.045 (2)0.011 (2)0.017 (2)
O20.076 (2)0.075 (2)0.094 (2)0.0119 (17)0.0074 (17)0.0119 (18)
Cl20.1080 (9)0.0486 (6)0.0525 (6)0.0233 (6)0.0097 (5)0.0055 (4)
Geometric parameters (Å, º) top
Zn1—N11.981 (3)N4—C71.277 (4)
Zn1—N42.009 (3)N4—H4B0.8600
Zn1—N32.201 (3)N5—C71.334 (4)
Zn1—N62.210 (3)N5—H5B0.8600
Zn1—Cl12.3095 (10)N5—H5C0.8600
N1—C11.288 (4)N6—C81.336 (4)
N1—H1A0.8600N6—C121.337 (5)
N2—C11.328 (4)C7—C81.500 (5)
N2—H2A0.8600C8—C91.382 (5)
N2—H2B0.8600C9—C101.394 (6)
N3—C61.338 (4)C9—H9A0.9300
N3—C21.342 (4)C10—C111.375 (6)
C1—C21.489 (5)C10—H10A0.9300
C2—C31.386 (5)C11—C121.371 (5)
C3—C41.403 (5)C11—H11A0.9300
C3—H3A0.9300C12—H12A0.9300
C4—C51.362 (5)O1—H1C0.8202
C4—H4A0.9300O1—H1D0.8235
C5—C61.382 (5)O2—H2C0.8330
C5—H5A0.9300O2—H2D0.8300
C6—H6A0.9300
N1—Zn1—N4127.46 (12)C6—C5—H5A121.0
N1—Zn1—N377.12 (11)N3—C6—C5123.1 (3)
N4—Zn1—N395.03 (11)N3—C6—H6A118.4
N1—Zn1—N698.65 (11)C5—C6—H6A118.4
N4—Zn1—N676.70 (11)C7—N4—Zn1119.8 (2)
N3—Zn1—N6165.87 (10)C7—N4—H4B120.1
N1—Zn1—Cl1116.09 (10)Zn1—N4—H4B120.1
N4—Zn1—Cl1116.45 (9)C7—N5—H5B120.0
N3—Zn1—Cl198.33 (7)C7—N5—H5C120.0
N6—Zn1—Cl195.63 (8)H5B—N5—H5C120.0
C1—N1—Zn1120.5 (2)C8—N6—C12119.0 (3)
C1—N1—H1A119.8C8—N6—Zn1112.2 (2)
Zn1—N1—H1A119.8C12—N6—Zn1128.6 (3)
C1—N2—H2A120.0N4—C7—N5124.7 (3)
C1—N2—H2B120.0N4—C7—C8116.8 (3)
H2A—N2—H2B120.0N5—C7—C8118.4 (3)
C6—N3—C2118.9 (3)N6—C8—C9122.3 (3)
C6—N3—Zn1129.3 (2)N6—C8—C7114.1 (3)
C2—N3—Zn1111.8 (2)C9—C8—C7123.6 (3)
N1—C1—N2125.1 (3)C8—C9—C10117.6 (4)
N1—C1—C2116.2 (3)C8—C9—H9A121.2
N2—C1—C2118.6 (3)C10—C9—H9A121.2
N3—C2—C3121.7 (3)C11—C10—C9120.1 (4)
N3—C2—C1114.4 (3)C11—C10—H10A119.9
C3—C2—C1123.9 (3)C9—C10—H10A119.9
C2—C3—C4118.1 (3)C12—C11—C10118.2 (4)
C2—C3—H3A121.0C12—C11—H11A120.9
C4—C3—H3A121.0C10—C11—H11A120.9
C5—C4—C3120.2 (3)N6—C12—C11122.7 (4)
C5—C4—H4A119.9N6—C12—H12A118.6
C3—C4—H4A119.9C11—C12—H12A118.6
C4—C5—C6118.0 (3)H1C—O1—H1D109.8
C4—C5—H5A121.0H2C—O2—H2D107.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl20.862.863.553 (3)138
N2—H2A···O2i0.862.132.942 (4)156
N2—H2B···Cl2ii0.862.613.434 (3)160
N4—H4B···Cl2iii0.862.683.432 (3)147
N5—H5B···Cl2iii0.862.513.295 (3)152
N5—H5C···Cl1iv0.862.563.289 (3)144
O1—H1C···Cl10.822.643.320 (4)142
O1—H1D···Cl20.822.443.237 (4)165
O2—H2D···Cl2v0.832.403.182 (4)157
O2—H2C···O10.831.922.753 (5)173
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2; (iii) x, y+1, z; (iv) x+1, y+2, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[ZnCl(C6H7N3)2]Cl·2H2O
Mr414.59
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.1658 (14), 9.7120 (18), 13.233 (3)
α, β, γ (°)92.225 (3), 96.138 (3), 104.302 (3)
V3)885.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.629, 0.727
No. of measured, independent and
observed [I > 2σ(I)] reflections
3618, 3026, 2575
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.11
No. of reflections3026
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.42

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl20.862.863.553 (3)138.3
N2—H2A···O2i0.862.132.942 (4)156.2
N2—H2B···Cl2ii0.862.613.434 (3)159.7
N4—H4B···Cl2iii0.862.683.432 (3)146.8
N5—H5B···Cl2iii0.862.513.295 (3)151.9
N5—H5C···Cl1iv0.862.563.289 (3)143.7
O1—H1C···Cl10.822.643.320 (4)141.6
O1—H1D···Cl20.822.443.237 (4)164.9
O2—H2D···Cl2v0.832.403.182 (4)156.7
O2—H2C···O10.831.922.753 (5)172.7
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2; (iii) x, y+1, z; (iv) x+1, y+2, z+1; (v) x+1, y, z.
 

Acknowledgements

This work was carried out under the sponsorship of the National Natural Science Foundation of China (No. 20872084).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, L., Murthy, N. N., Telser, J., Zakharov, L. N., Yap, G. P. A., Rheingold, A. L., Karlin, K. D. & Rokita, S. E. (2006). Inorg. Chem. 45, 7144–7159.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds