organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-(p-Phenyl­enedi­methyl­­idene)diimidazol-3-ium bis­­{2-[(2-carb­­oxy­phen­yl)disulfan­yl]benzoate} dihydrate

aTesting Center, Yangzhou University, Yangzhou 225002, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China
*Correspondence e-mail: liuwl@yzu.edu.cn

(Received 7 November 2010; accepted 13 November 2010; online 20 November 2010)

The title salt, C14H16N42+·2C14H9O4S2·2H2O, was obtained by the co-crystalization of 2,2′-dithio­dibenzoic acid with 1,4-bis­(imidazol-1-ylmeth­yl)benzene. It consists of 2-[(2-carb­oxy­phen­yl)disulfan­yl]benzoate anions, centrosymmetric 1,1′-(p-phenyl­enedimethyl­idene)diimidazol-3-ium cations and water mol­ecules. O—H⋯O, O—H⋯S and N—H⋯O hydrogen-bonding inter­actions among the components lead to the formation of a three-dimensional network.

Related literature

For background to the co-crystalization of 2,2′-dithio­dibenzoic acid with bipyridine-type mol­ecules, see: Bi et al. (2002[Bi, W., Sun, D., Cao, R. & Hong, M. (2002). Acta Cryst. E58, o837-o839.]); Broker & Tiekink (2007[Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.]); Broker et al. (2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.]); Hu et al. (2004[Hu, R.-F., Wen, Y.-H., Zhang, J., Li, Z.-J. & Yao, Y.-G. (2004). Acta Cryst. E60, o2029-o2031.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N42+·2C14H9O4S2·2H2O

  • Mr = 887.00

  • Triclinic, [P \overline 1]

  • a = 4.6776 (11) Å

  • b = 12.201 (3) Å

  • c = 18.850 (4) Å

  • α = 107.985 (3)°

  • β = 90.686 (3)°

  • γ = 100.634 (3)°

  • V = 1002.9 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.45 × 0.43 × 0.38 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.876, Tmax = 0.894

  • 7640 measured reflections

  • 3708 independent reflections

  • 2720 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.134

  • S = 1.08

  • 3708 reflections

  • 284 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯S1i 0.88 (2) 2.80 (3) 3.507 (3) 138 (4)
O1W—H1WB⋯O2i 0.88 (2) 2.30 (2) 3.141 (4) 159 (4)
N1—H1⋯O1ii 0.91 (2) 1.75 (2) 2.657 (3) 176 (3)
O4—H4A⋯O1ii 0.87 (2) 1.73 (3) 2.567 (3) 161 (4)
O1W—H1WA⋯O2 0.88 (2) 1.94 (2) 2.811 (3) 171 (4)
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART for WNT/2000. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The dicarboxylic acid DTBA has been shown to be effective and reliable in forming a range of co-crystals with a series of bipyridine-type molecules leading to varying supramolecular architectures(Broker & Tiekink, 2007; Broker et al., 2008). In comparison, the use of biimidazole-type molecules to co-crystal with DTBA remains largely unexplored. Herein, the formation of co-crystals of 2,2'-dithiodibenzoic acid with 1,4-bis(imidazol-1-ylmethyl)benzene is described, which were isolated from methanol. The asymmetric unit of the title compound comprises a singly deprotonated DTBA anion, half a 1,4-bis(imidazolium-1-ylmethyl)benzene dication, disposed about a centre of inversion, and a solvent water molecule of crystallization (Fig. 1). The dihedral angle between the two phenyl rings of HDTBA- and torsion angle (C2/S1/S2/C9) are 73.54 (7)° and -84.93 (12)°, respectively. There are extensive hydrogen-bonding interactions between the carboxyl groups, protonated N atoms and water molecules of (I). As shown in Fig. 2, hydrogen-bonding interactions link water molecules to (C14H9O4S2)- anions, (C14H16N4)2+ cations and connect (C14H9O4S2)- anions to (C14H16N4)2+ cations to form an extended three-dimensional network.

Related literature top

For background to the co-crystalization of 2,2'-dithiodibenzoic acid with bipyridine-type molecules, see: Bi et al. (2002); Broker & Tiekink (2007); Broker et al. (2008); Hu et al. (2004).

Experimental top

2,2'-Dithiodibenzoic acid (153 mg, 0.5 mmol) was dissolved in 15 ml me thanol, and a solution of 1,4-bis(imidazol-1-ylmethyl)benzene (191 mg, 0.8 mmol) in 20 ml me thanol was added dropwise under intense agitation. The resulting mixture was stirred under reflux conditions for 1 h and allowed to cool to room temperature, filtered. After allowing the solution to stand for five days, colourless block-like crystals of (I) were obtained in 42% yield.

Refinement top

The O-bound and N-bound H atoms were located in difference Fourier maps and were refined with the distance restraints O—H = 0.84±0.02 Å, N—H = 0.87±0.03 Å, and with Uiso(H) = 1.5Ueq(O). The temperature factor of N-bound H atom was refined.

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C).

The refinement of O-bound and N-bound H atoms and the C—C distances in the phenylene ring were performed using 9 least-squares restraints by applying DFIX instructions of SHELXTL.

Structure description top

The dicarboxylic acid DTBA has been shown to be effective and reliable in forming a range of co-crystals with a series of bipyridine-type molecules leading to varying supramolecular architectures(Broker & Tiekink, 2007; Broker et al., 2008). In comparison, the use of biimidazole-type molecules to co-crystal with DTBA remains largely unexplored. Herein, the formation of co-crystals of 2,2'-dithiodibenzoic acid with 1,4-bis(imidazol-1-ylmethyl)benzene is described, which were isolated from methanol. The asymmetric unit of the title compound comprises a singly deprotonated DTBA anion, half a 1,4-bis(imidazolium-1-ylmethyl)benzene dication, disposed about a centre of inversion, and a solvent water molecule of crystallization (Fig. 1). The dihedral angle between the two phenyl rings of HDTBA- and torsion angle (C2/S1/S2/C9) are 73.54 (7)° and -84.93 (12)°, respectively. There are extensive hydrogen-bonding interactions between the carboxyl groups, protonated N atoms and water molecules of (I). As shown in Fig. 2, hydrogen-bonding interactions link water molecules to (C14H9O4S2)- anions, (C14H16N4)2+ cations and connect (C14H9O4S2)- anions to (C14H16N4)2+ cations to form an extended three-dimensional network.

For background to the co-crystalization of 2,2'-dithiodibenzoic acid with bipyridine-type molecules, see: Bi et al. (2002); Broker & Tiekink (2007); Broker et al. (2008); Hu et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structures of the title compound, showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The three-dimensional packing structure of the title compound, Hydrogen bonds are shown as dashed lines.
1,1'-(p-Phenylenedimethylidene)diimidazol-3-ium bis{2-[(2-carboxyphenyl)disulfanyl]benzoate} dihydrate top
Crystal data top
C14H16N42+·2C14H9O4S2·2H2OZ = 1
Mr = 887.00F(000) = 462
Triclinic, P1Dx = 1.469 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.6776 (11) ÅCell parameters from 1975 reflections
b = 12.201 (3) Åθ = 2.3–24.5°
c = 18.850 (4) ŵ = 0.30 mm1
α = 107.985 (3)°T = 296 K
β = 90.686 (3)°Block, colourless
γ = 100.634 (3)°0.45 × 0.43 × 0.38 mm
V = 1002.9 (4) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3708 independent reflections
Radiation source: fine-focus sealed tube2720 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 55
Tmin = 0.876, Tmax = 0.894k = 1414
7640 measured reflectionsl = 2022
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.1163P]
where P = (Fo2 + 2Fc2)/3
3708 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.26 e Å3
9 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H16N42+·2C14H9O4S2·2H2Oγ = 100.634 (3)°
Mr = 887.00V = 1002.9 (4) Å3
Triclinic, P1Z = 1
a = 4.6776 (11) ÅMo Kα radiation
b = 12.201 (3) ŵ = 0.30 mm1
c = 18.850 (4) ÅT = 296 K
α = 107.985 (3)°0.45 × 0.43 × 0.38 mm
β = 90.686 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3708 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2720 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.894Rint = 0.030
7640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0449 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.26 e Å3
3708 reflectionsΔρmin = 0.24 e Å3
284 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9224 (5)0.7640 (2)0.21093 (14)0.0356 (6)
C20.9027 (5)0.6438 (2)0.19945 (14)0.0352 (6)
C31.0412 (6)0.5796 (2)0.14067 (15)0.0443 (7)
H31.02270.49900.13130.053*
C41.2053 (6)0.6331 (2)0.09606 (16)0.0500 (7)
H41.29680.58850.05710.060*
C51.2351 (6)0.7522 (3)0.10862 (17)0.0483 (7)
H51.35070.78890.07940.058*
C61.0910 (6)0.8157 (2)0.16511 (16)0.0437 (7)
H61.10660.89580.17290.052*
C70.7699 (6)0.8391 (2)0.27118 (16)0.0405 (6)
C80.5723 (5)0.1938 (2)0.13953 (14)0.0375 (6)
C90.5950 (5)0.3156 (2)0.15799 (14)0.0357 (6)
C100.4493 (6)0.3591 (2)0.11132 (15)0.0433 (7)
H100.46680.43990.12240.052*
C110.2789 (6)0.2841 (3)0.04877 (17)0.0496 (7)
H110.18170.31480.01840.060*
C120.2513 (6)0.1640 (3)0.03089 (17)0.0530 (8)
H120.13500.11350.01100.064*
C130.3991 (6)0.1202 (2)0.07623 (16)0.0461 (7)
H130.38250.03930.06420.055*
C140.7222 (6)0.1414 (2)0.18676 (16)0.0445 (7)
S10.69255 (16)0.57314 (5)0.25775 (4)0.0440 (2)
S20.81448 (17)0.41403 (6)0.23901 (4)0.0461 (2)
O10.7530 (4)0.94073 (15)0.26811 (11)0.0504 (5)
O20.6751 (5)0.80190 (17)0.32150 (12)0.0636 (6)
O30.8747 (5)0.19838 (17)0.24241 (13)0.0676 (7)
O40.6690 (6)0.02564 (17)0.16259 (13)0.0670 (7)
H4A0.737 (8)0.003 (3)0.1976 (19)0.100*
C150.3094 (6)0.1496 (3)0.35488 (17)0.0514 (7)
H150.34040.18170.31620.062*
C160.3162 (9)0.0374 (3)0.4231 (2)0.0735 (10)
H160.35130.02340.43980.088*
C170.1658 (8)0.1195 (3)0.4573 (2)0.0731 (11)
H170.08160.12770.50260.088*
C180.0401 (6)0.2974 (2)0.43199 (18)0.0513 (7)
H18A0.11180.29360.46620.062*
H18B0.04630.30400.38680.062*
C190.2748 (5)0.4039 (2)0.46723 (14)0.0406 (6)
C200.4029 (7)0.4741 (3)0.42709 (17)0.0623 (9)
H200.33760.45760.37740.075*
C210.3731 (7)0.4311 (3)0.54080 (16)0.0656 (9)
H210.28790.38530.56920.079*
N10.4076 (5)0.0579 (2)0.36030 (15)0.0512 (6)
H10.519 (5)0.016 (2)0.3270 (14)0.056 (9)*
N20.1594 (5)0.18873 (19)0.41342 (13)0.0466 (6)
O1W0.2006 (6)0.7532 (2)0.40459 (14)0.0758 (7)
H1WA0.351 (5)0.761 (4)0.378 (2)0.114*
H1WB0.049 (5)0.747 (4)0.374 (2)0.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0361 (14)0.0302 (13)0.0407 (15)0.0070 (11)0.0009 (11)0.0114 (11)
C20.0401 (14)0.0307 (13)0.0356 (14)0.0101 (11)0.0003 (11)0.0098 (11)
C30.0482 (16)0.0360 (14)0.0505 (17)0.0155 (12)0.0083 (13)0.0120 (13)
C40.0498 (17)0.0509 (17)0.0504 (18)0.0191 (14)0.0140 (14)0.0121 (14)
C50.0459 (16)0.0509 (17)0.0537 (18)0.0078 (13)0.0100 (14)0.0252 (14)
C60.0470 (16)0.0321 (14)0.0559 (18)0.0072 (12)0.0038 (14)0.0201 (13)
C70.0451 (16)0.0284 (13)0.0477 (16)0.0093 (11)0.0017 (13)0.0105 (12)
C80.0435 (15)0.0298 (13)0.0393 (15)0.0086 (11)0.0084 (12)0.0103 (12)
C90.0403 (14)0.0293 (13)0.0380 (14)0.0082 (11)0.0092 (11)0.0103 (11)
C100.0503 (16)0.0351 (14)0.0475 (16)0.0142 (12)0.0005 (13)0.0141 (13)
C110.0501 (17)0.0482 (17)0.0500 (18)0.0097 (14)0.0029 (14)0.0148 (14)
C120.0528 (18)0.0459 (17)0.0484 (18)0.0006 (14)0.0066 (14)0.0043 (14)
C130.0561 (17)0.0312 (14)0.0462 (17)0.0035 (13)0.0066 (14)0.0083 (13)
C140.0612 (18)0.0312 (14)0.0445 (17)0.0142 (13)0.0093 (14)0.0137 (13)
S10.0631 (5)0.0266 (3)0.0436 (4)0.0107 (3)0.0119 (3)0.0114 (3)
S20.0665 (5)0.0276 (3)0.0438 (4)0.0100 (3)0.0065 (3)0.0108 (3)
O10.0689 (13)0.0263 (9)0.0578 (12)0.0160 (9)0.0077 (10)0.0122 (9)
O20.0914 (16)0.0426 (12)0.0683 (15)0.0263 (11)0.0380 (13)0.0250 (11)
O30.1023 (18)0.0354 (11)0.0633 (15)0.0134 (11)0.0240 (13)0.0143 (11)
O40.1058 (19)0.0289 (10)0.0678 (15)0.0140 (11)0.0092 (13)0.0178 (10)
C150.0584 (19)0.0508 (18)0.0452 (17)0.0190 (15)0.0045 (15)0.0108 (14)
C160.104 (3)0.0493 (19)0.079 (3)0.0279 (19)0.024 (2)0.0288 (19)
C170.106 (3)0.0486 (19)0.074 (2)0.0176 (19)0.040 (2)0.0295 (18)
C180.0451 (16)0.0388 (15)0.0627 (19)0.0098 (13)0.0029 (14)0.0049 (14)
C190.0419 (15)0.0333 (14)0.0432 (16)0.0086 (11)0.0046 (12)0.0067 (12)
C200.076 (2)0.057 (2)0.0456 (18)0.0079 (17)0.0084 (16)0.0171 (16)
C210.085 (2)0.0540 (19)0.0502 (19)0.0174 (17)0.0008 (17)0.0245 (16)
N10.0537 (15)0.0364 (13)0.0564 (16)0.0104 (11)0.0033 (13)0.0034 (12)
N20.0457 (13)0.0360 (13)0.0523 (15)0.0053 (10)0.0051 (11)0.0070 (11)
O1W0.0771 (17)0.0846 (18)0.0666 (17)0.0079 (15)0.0150 (13)0.0294 (14)
Geometric parameters (Å, º) top
C1—C61.391 (3)C14—O31.200 (3)
C1—C21.400 (3)C14—O41.317 (3)
C1—C71.502 (4)S1—S22.0515 (10)
C2—C31.389 (3)O4—H4A0.87 (2)
C2—S11.793 (3)C15—N11.316 (4)
C3—C41.376 (4)C15—N21.325 (4)
C3—H30.9300C15—H150.9300
C4—C51.378 (4)C16—C171.337 (5)
C4—H40.9300C16—N11.342 (4)
C5—C61.375 (4)C16—H160.9300
C5—H50.9300C17—N21.356 (4)
C6—H60.9300C17—H170.9300
C7—O21.226 (3)C18—N21.478 (3)
C7—O11.276 (3)C18—C191.503 (4)
C8—C131.391 (4)C18—H18A0.9700
C8—C91.400 (3)C18—H18B0.9700
C8—C141.482 (4)C19—C201.374 (3)
C9—C101.389 (4)C19—C211.374 (3)
C9—S21.790 (3)C20—C21i1.381 (3)
C10—C111.380 (4)C20—H200.9300
C10—H100.9300C21—C20i1.381 (3)
C11—C121.379 (4)C21—H210.9300
C11—H110.9300N1—H10.911 (17)
C12—C131.378 (4)O1W—H1WA0.876 (18)
C12—H120.9300O1W—H1WB0.883 (18)
C13—H130.9300
C6—C1—C2118.7 (2)C8—C13—H13119.2
C6—C1—C7118.9 (2)O3—C14—O4122.8 (3)
C2—C1—C7122.4 (2)O3—C14—C8123.6 (2)
C3—C2—C1118.8 (2)O4—C14—C8113.6 (3)
C3—C2—S1120.61 (19)C2—S1—S2106.04 (8)
C1—C2—S1120.52 (19)C9—S2—S1105.87 (8)
C4—C3—C2121.1 (2)C14—O4—H4A107 (3)
C4—C3—H3119.5N1—C15—N2109.0 (3)
C2—C3—H3119.5N1—C15—H15125.5
C3—C4—C5120.5 (3)N2—C15—H15125.5
C3—C4—H4119.7C17—C16—N1108.1 (3)
C5—C4—H4119.7C17—C16—H16125.9
C6—C5—C4118.8 (3)N1—C16—H16125.9
C6—C5—H5120.6C16—C17—N2107.0 (3)
C4—C5—H5120.6C16—C17—H17126.5
C5—C6—C1122.0 (2)N2—C17—H17126.5
C5—C6—H6119.0N2—C18—C19111.0 (2)
C1—C6—H6119.0N2—C18—H18A109.4
O2—C7—O1123.3 (2)C19—C18—H18A109.4
O2—C7—C1119.2 (2)N2—C18—H18B109.4
O1—C7—C1117.5 (2)C19—C18—H18B109.4
C13—C8—C9119.1 (2)H18A—C18—H18B108.0
C13—C8—C14119.2 (2)C20—C19—C21118.3 (2)
C9—C8—C14121.7 (2)C20—C19—C18121.7 (2)
C10—C9—C8118.8 (2)C21—C19—C18120.0 (2)
C10—C9—S2120.34 (19)C19—C20—C21i121.2 (3)
C8—C9—S2120.83 (19)C19—C20—H20119.4
C11—C10—C9120.9 (3)C21i—C20—H20119.4
C11—C10—H10119.6C19—C21—C20i120.5 (3)
C9—C10—H10119.6C19—C21—H21119.7
C12—C11—C10120.7 (3)C20i—C21—H21119.7
C12—C11—H11119.7C15—N1—C16108.1 (3)
C10—C11—H11119.7C15—N1—H1125.3 (19)
C13—C12—C11118.8 (3)C16—N1—H1126.6 (19)
C13—C12—H12120.6C15—N2—C17107.8 (3)
C11—C12—H12120.6C15—N2—C18125.6 (3)
C12—C13—C8121.7 (3)C17—N2—C18126.2 (3)
C12—C13—H13119.2H1WA—O1W—H1WB104 (3)
C6—C1—C2—C32.9 (4)C14—C8—C13—C12179.1 (3)
C7—C1—C2—C3177.6 (2)C13—C8—C14—O3179.7 (3)
C6—C1—C2—S1179.13 (19)C9—C8—C14—O31.2 (4)
C7—C1—C2—S10.4 (3)C13—C8—C14—O40.7 (4)
C1—C2—C3—C42.6 (4)C9—C8—C14—O4177.8 (2)
S1—C2—C3—C4179.4 (2)C3—C2—S1—S216.6 (2)
C2—C3—C4—C50.2 (4)C1—C2—S1—S2165.39 (19)
C3—C4—C5—C61.9 (4)C10—C9—S2—S116.4 (2)
C4—C5—C6—C11.6 (4)C8—C9—S2—S1165.10 (18)
C2—C1—C6—C50.8 (4)C2—S1—S2—C984.96 (12)
C7—C1—C6—C5179.6 (3)N1—C16—C17—N21.7 (4)
C6—C1—C7—O2164.2 (3)N2—C18—C19—C20100.9 (3)
C2—C1—C7—O215.3 (4)N2—C18—C19—C2177.0 (3)
C6—C1—C7—O113.9 (4)C21—C19—C20—C21i0.8 (5)
C2—C1—C7—O1166.5 (2)C18—C19—C20—C21i177.2 (3)
C13—C8—C9—C101.6 (4)C20—C19—C21—C20i0.8 (5)
C14—C8—C9—C10179.9 (2)C18—C19—C21—C20i177.2 (3)
C13—C8—C9—S2179.85 (19)N2—C15—N1—C160.6 (4)
C14—C8—C9—S21.4 (3)C17—C16—N1—C151.5 (4)
C8—C9—C10—C111.6 (4)N1—C15—N2—C170.5 (4)
S2—C9—C10—C11179.8 (2)N1—C15—N2—C18173.2 (2)
C9—C10—C11—C120.5 (4)C16—C17—N2—C151.4 (4)
C10—C11—C12—C130.6 (4)C16—C17—N2—C18174.1 (3)
C11—C12—C13—C80.6 (4)C19—C18—N2—C1578.1 (3)
C9—C8—C13—C120.5 (4)C19—C18—N2—C1793.3 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···S1ii0.88 (2)2.80 (3)3.507 (3)138 (4)
O1W—H1WB···O2ii0.88 (2)2.30 (2)3.141 (4)159 (4)
N1—H1···O1iii0.91 (2)1.75 (2)2.657 (3)176 (3)
O4—H4A···O1iii0.87 (2)1.73 (3)2.567 (3)161 (4)
O1W—H1WA···O20.88 (2)1.94 (2)2.811 (3)171 (4)
Symmetry codes: (ii) x1, y, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H16N42+·2C14H9O4S2·2H2O
Mr887.00
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)4.6776 (11), 12.201 (3), 18.850 (4)
α, β, γ (°)107.985 (3), 90.686 (3), 100.634 (3)
V3)1002.9 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.45 × 0.43 × 0.38
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.876, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
7640, 3708, 2720
Rint0.030
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.134, 1.08
No. of reflections3708
No. of parameters284
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.24

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···S1i0.883 (18)2.80 (3)3.507 (3)138 (4)
O1W—H1WB···O2i0.883 (18)2.30 (2)3.141 (4)159 (4)
N1—H1···O1ii0.911 (17)1.748 (18)2.657 (3)176 (3)
O4—H4A···O1ii0.87 (2)1.73 (3)2.567 (3)161 (4)
O1W—H1WA···O20.876 (18)1.94 (2)2.811 (3)171 (4)
Symmetry codes: (i) x1, y, z; (ii) x, y1, z.
 

Acknowledgements

This work was supported by the Foundation of the Key Laboratory of Environmental Materials and Environmental Engineering of Jiangsu Province.

References

First citationBi, W., Sun, D., Cao, R. & Hong, M. (2002). Acta Cryst. E58, o837–o839.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2002). SMART for WNT/2000. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, R.-F., Wen, Y.-H., Zhang, J., Li, Z.-J. & Yao, Y.-G. (2004). Acta Cryst. E60, o2029–o2031.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds