metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-2,2′-disulfanediyldibenzoato)bis­­[aqua­(2,2′-bi­pyridine)­nickel(II)]

aTesting Center, Yangzhou Universitry, Yangzhou, 225002, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Yangzhou Universitry, Yangzhou, 225002, People's Republic of China
*Correspondence e-mail: liuwl@yzu.edu.cn

(Received 7 November 2010; accepted 8 November 2010; online 13 November 2010)

In the centrosymmetric title complex, [Ni2(C14H8O4S2)2(C10H8N2)2(H2O)2], the NiII atom is coordinated by two N atoms from one 2,2′-bipyridine ligand, three carboxyl­ate O atoms (one bidentate and one monodentate) from two different disulfanediyldibenzoate ligands and one O atom from a coordinated water mol­ecule in an octa­hedral coordination geometry. The disulfanediyldibenzo­ate dianion bridges two NiII atoms. Adjacent mol­ecules are linked through the coordinated water mol­ecules, forming a O—H⋯O hydrogen-bonded chain running along the a axis.

Related literature

For complexes of 2,2′-disulfanediyldibenzoic acid, see: Feng et al. (2009[Feng, R., Jiang, F. L., Chen, L., Yan, C. F., Wu, M. Y. & Hong, M. C. (2009). Chem. Commun. pp. 5296-5298.]); Humphrey et al. (2004[Humphrey, S. M., Mole, R. A., Rawson, J. M. & Wood, P. T. (2004). Dalton Trans. pp. 1670-1678.]); Li et al. (2007[Li, X.-H., Jia, S.-C. & Jalbout, A. F. (2007). Z. Kristallogr. New Cryst. Struct. 222, 117-118.]); Murugavel et al. (2001[Murugavel, R., Baheti, K. & Anantharaman, G. (2001). Inorg. Chem. 40, 6870-6878.]); Zhou et al. (2009[Zhou, L.-M., Zhang, Q. & Hu, M. (2009). Acta Cryst. E65, m1221-m1222.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C14H8O4S2)2(C10H8N2)2(H2O)2]

  • Mr = 1074.47

  • Monoclinic, P 21 /c

  • a = 13.498 (4) Å

  • b = 16.769 (5) Å

  • c = 10.238 (3) Å

  • β = 93.196 (4)°

  • V = 2313.7 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 296 K

  • 0.35 × 0.33 × 0.28 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.708, Tmax = 0.756

  • 19861 measured reflections

  • 5302 independent reflections

  • 4428 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.080

  • S = 1.06

  • 5302 reflections

  • 307 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O2 0.85 (1) 1.82 (1) 2.646 (2) 162 (2)
O5—H5A⋯O4i 0.84 (1) 1.89 (1) 2.7187 (18) 169 (2)
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2002)[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]; cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The flexible 2,2'-disulfanediyldibenzoic acid, a multifunctional ligand containing both carboxylic and thio groups, can potentially afford various coordination modes and diverse coordination architectures. Many complexes with this ligand show unique structural topologies and interesting properties (Murugavel et al., 2001; Humphrey et al., 2004; Li et al., 2007; Zhou et al., 2009; Feng et al., 2009). In this work, we have used this ligand to react with a NiII salt in the presence of 2,2'-bipyridine as a chelating co-ligand, to obtain the title binuclear compound, Ni2(H2O)2(C10H8N2)2(C14H8O4S2)2.

The asymmetric unit of the title compound is composed of one NiII ion, one 2,2'-disulfanediyldibenzoate ligand, one 2,2'-bipyridine ligand and one coordinated water molecule (Fig. 1). The NiII center is six-coordinated, in a distorted octahedral geometry, by two N atoms from one 2,2'-bipyridine ligand, three carboxylate O atoms from two different disulfanediyldibenzoate ligands and one O atom from a coordinated water molecule Two disulfanediyldibenzoate dianions bridge two NiII ions about a center of inversion with its two carboxylate groups in bidentate chelating and monodentate modes, respectively, generating the title binuclear compound. The Ni···Ni distance bridged by two 2, 2'-disulfanediyldibenzoate is 10.061 (3) Å. Adjacent molecules are linked through both O5—H5A···O2 and O5—H5B···O4(x + 1, y, z) hydrogen bonds and lead to the formation of a one-dimensional hydrogen-bonded chain running along the a axis (Fig. 2).

Related literature top

For complexes of 2,2'-disulfanediyldibenzoic acid, see: Feng et al. (2009); Humphrey et al. (2004); Li et al. (2007); Murugavel et al. (2001); Zhou et al. (2009).

Experimental top

A mixture of Ni(NO3)2.6H2O (21.0 mg, 0.1 mmol) with 2,2'-disulfanediyldibenzoic acid (30.6 mg, 0.1 mmol), 2,2'-bipyridine (15.6 mg, 0.1 mmol) and water (10 ml) was sealed in a 25 ml Teflon-lined stainless steel vessel, and heated at 383 K for 3 d. A number of green block crystals of (I) were obtained after cooling the solution to room temperature. The yield of (I) was ca 65%, based on 2, 2'-disulfanediyldibenzoic acid.

Refinement top

The water H atoms were located in a difference Fourier map with a distance restraint of O—H = 0.85 Å and Uiso(H) =1.5Ueq(O). The refinement of water H atoms were performed using 3 least-squares restraints by applying DFIX instructions of SHELXTL. All other H atoms were positioned geometrically and constrained as riding atoms, with C—H distances of 0.93 Å and Uiso(H) set to 1.2eq(C) of the parent atom.

Structure description top

The flexible 2,2'-disulfanediyldibenzoic acid, a multifunctional ligand containing both carboxylic and thio groups, can potentially afford various coordination modes and diverse coordination architectures. Many complexes with this ligand show unique structural topologies and interesting properties (Murugavel et al., 2001; Humphrey et al., 2004; Li et al., 2007; Zhou et al., 2009; Feng et al., 2009). In this work, we have used this ligand to react with a NiII salt in the presence of 2,2'-bipyridine as a chelating co-ligand, to obtain the title binuclear compound, Ni2(H2O)2(C10H8N2)2(C14H8O4S2)2.

The asymmetric unit of the title compound is composed of one NiII ion, one 2,2'-disulfanediyldibenzoate ligand, one 2,2'-bipyridine ligand and one coordinated water molecule (Fig. 1). The NiII center is six-coordinated, in a distorted octahedral geometry, by two N atoms from one 2,2'-bipyridine ligand, three carboxylate O atoms from two different disulfanediyldibenzoate ligands and one O atom from a coordinated water molecule Two disulfanediyldibenzoate dianions bridge two NiII ions about a center of inversion with its two carboxylate groups in bidentate chelating and monodentate modes, respectively, generating the title binuclear compound. The Ni···Ni distance bridged by two 2, 2'-disulfanediyldibenzoate is 10.061 (3) Å. Adjacent molecules are linked through both O5—H5A···O2 and O5—H5B···O4(x + 1, y, z) hydrogen bonds and lead to the formation of a one-dimensional hydrogen-bonded chain running along the a axis (Fig. 2).

For complexes of 2,2'-disulfanediyldibenzoic acid, see: Feng et al. (2009); Humphrey et al. (2004); Li et al. (2007); Murugavel et al. (2001); Zhou et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 35% probability level. Hydrogen atoms and are omitted for clarity.
[Figure 2] Fig. 2. View of the one-dimensional hydrogen-bonded chain of the title compound running along the a axis.
Bis(µ-2,2'-disulfanediyldibenzoato)bis[aqua(2,2'-bipyridine)nickel(II)] top
Crystal data top
[Ni2(C14H8O4S2)2(C10H8N2)2(H2O)2]F(000) = 1104
Mr = 1074.47Dx = 1.542 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7893 reflections
a = 13.498 (4) Åθ = 2.3–27.5°
b = 16.769 (5) ŵ = 1.06 mm1
c = 10.238 (3) ÅT = 296 K
β = 93.196 (4)°Block, green
V = 2313.7 (12) Å30.35 × 0.33 × 0.28 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
5302 independent reflections
Radiation source: fine-focus sealed tube4428 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1717
Tmin = 0.708, Tmax = 0.756k = 2120
19861 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0369P)2 + 0.5543P]
where P = (Fo2 + 2Fc2)/3
5302 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.34 e Å3
3 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Ni2(C14H8O4S2)2(C10H8N2)2(H2O)2]V = 2313.7 (12) Å3
Mr = 1074.47Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.498 (4) ŵ = 1.06 mm1
b = 16.769 (5) ÅT = 296 K
c = 10.238 (3) Å0.35 × 0.33 × 0.28 mm
β = 93.196 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5302 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4428 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.756Rint = 0.034
19861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0293 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.34 e Å3
5302 reflectionsΔρmin = 0.26 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.847531 (15)0.055670 (13)0.87112 (2)0.035
C10.71145 (13)0.16433 (10)0.72485 (16)0.0372 (4)
C20.61332 (13)0.15067 (10)0.75883 (16)0.0361 (4)
C30.54059 (16)0.20699 (12)0.7226 (2)0.0516 (5)
H30.47530.19860.74400.062*
C40.56481 (19)0.27532 (13)0.6549 (2)0.0630 (6)
H40.51570.31240.63170.076*
C50.66066 (19)0.28886 (13)0.6217 (2)0.0635 (6)
H50.67630.33470.57600.076*
C60.73315 (17)0.23407 (12)0.65659 (19)0.0514 (5)
H60.79800.24350.63440.062*
C70.79432 (13)0.10570 (11)0.75377 (16)0.0375 (4)
C80.26979 (12)0.00106 (10)0.79602 (16)0.0364 (4)
C90.37029 (12)0.01665 (10)0.77860 (15)0.0352 (3)
C100.41443 (15)0.01522 (13)0.67009 (18)0.0493 (5)
H100.48080.00440.65760.059*
C110.36100 (17)0.06275 (15)0.5808 (2)0.0609 (6)
H110.39190.08360.50940.073*
C120.26263 (17)0.07935 (15)0.5966 (2)0.0631 (6)
H120.22680.11080.53590.076*
C130.21750 (15)0.04884 (13)0.70385 (19)0.0509 (5)
H130.15110.06030.71490.061*
C140.21825 (12)0.02608 (10)0.91345 (16)0.0345 (3)
O10.76966 (9)0.04232 (7)0.81054 (13)0.0430 (3)
O20.87892 (10)0.12087 (10)0.71985 (16)0.0652 (4)
O30.26151 (9)0.07316 (7)0.99322 (11)0.0361 (3)
O40.13146 (8)0.00058 (8)0.93571 (12)0.0437 (3)
S10.58588 (3)0.06272 (3)0.85144 (4)0.03707 (9)
S20.44006 (3)0.07593 (3)0.89692 (4)0.03871 (10)
C150.71731 (16)0.10390 (13)0.6351 (2)0.0548 (5)
H150.70390.04970.62550.066*
C160.66890 (17)0.15698 (15)0.5504 (2)0.0650 (6)
H160.62460.13890.48410.078*
C170.68751 (18)0.23695 (15)0.5661 (2)0.0652 (6)
H170.65600.27390.51030.078*
C180.75337 (18)0.26211 (13)0.6655 (2)0.0577 (5)
H180.76560.31620.67820.069*
C190.80122 (14)0.20630 (11)0.74626 (18)0.0430 (4)
C200.87518 (14)0.22631 (11)0.85377 (18)0.0441 (4)
C210.90507 (19)0.30399 (14)0.8850 (2)0.0629 (6)
H210.87830.34710.83800.075*
C220.9751 (2)0.31585 (16)0.9869 (3)0.0739 (7)
H220.99510.36731.00990.089*
C231.01454 (18)0.25211 (16)1.0536 (2)0.0671 (6)
H231.06210.25931.12190.081*
C240.98269 (15)0.17672 (14)1.0180 (2)0.0564 (5)
H241.01010.13321.06310.068*
N10.78256 (11)0.12735 (9)0.73016 (14)0.0413 (3)
N20.91367 (11)0.16354 (9)0.92081 (15)0.0432 (3)
O50.96680 (9)0.01730 (9)0.77302 (14)0.0491 (3)
H5A1.0177 (12)0.0183 (13)0.824 (2)0.074*
H5B0.9511 (17)0.0306 (7)0.754 (2)0.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0260.0390.0400.0010.0030.007
C10.0405 (9)0.0373 (9)0.0332 (8)0.0051 (7)0.0024 (7)0.0006 (7)
C20.0394 (9)0.0346 (9)0.0338 (8)0.0004 (7)0.0025 (7)0.0028 (6)
C30.0476 (11)0.0493 (11)0.0572 (11)0.0082 (9)0.0033 (9)0.0062 (9)
C40.0699 (15)0.0470 (12)0.0703 (14)0.0087 (11)0.0129 (12)0.0120 (10)
C50.0832 (17)0.0434 (12)0.0624 (13)0.0081 (11)0.0098 (12)0.0160 (10)
C60.0570 (12)0.0489 (11)0.0476 (10)0.0123 (10)0.0028 (9)0.0067 (9)
C70.0341 (9)0.0441 (10)0.0340 (8)0.0070 (7)0.0008 (7)0.0009 (7)
C80.0318 (8)0.0419 (9)0.0356 (8)0.0026 (7)0.0020 (7)0.0001 (7)
C90.0343 (8)0.0380 (9)0.0333 (8)0.0011 (7)0.0009 (6)0.0010 (7)
C100.0398 (10)0.0672 (13)0.0416 (9)0.0035 (9)0.0100 (8)0.0056 (9)
C110.0549 (13)0.0874 (17)0.0411 (10)0.0048 (11)0.0106 (9)0.0210 (10)
C120.0552 (13)0.0885 (17)0.0455 (11)0.0112 (12)0.0017 (10)0.0251 (11)
C130.0362 (10)0.0692 (14)0.0474 (10)0.0067 (9)0.0025 (8)0.0131 (9)
C140.0282 (8)0.0361 (8)0.0392 (8)0.0051 (7)0.0015 (7)0.0012 (7)
O10.0318 (6)0.0405 (7)0.0576 (7)0.0019 (5)0.0097 (6)0.0059 (6)
O20.0349 (7)0.0753 (11)0.0862 (11)0.0066 (7)0.0110 (7)0.0292 (9)
O30.0303 (6)0.0369 (6)0.0414 (6)0.0006 (5)0.0051 (5)0.0039 (5)
O40.0268 (6)0.0562 (8)0.0483 (7)0.0033 (5)0.0052 (5)0.0090 (6)
S10.0287 (2)0.0389 (2)0.0437 (2)0.00063 (17)0.00326 (17)0.00318 (18)
S20.0290 (2)0.0452 (2)0.0422 (2)0.00065 (18)0.00338 (17)0.00589 (18)
C150.0550 (12)0.0520 (12)0.0560 (12)0.0005 (10)0.0092 (9)0.0086 (9)
C160.0598 (14)0.0721 (16)0.0610 (13)0.0092 (12)0.0150 (11)0.0087 (11)
C170.0726 (16)0.0638 (15)0.0585 (13)0.0257 (12)0.0014 (11)0.0158 (11)
C180.0692 (14)0.0450 (11)0.0594 (12)0.0142 (10)0.0079 (10)0.0108 (9)
C190.0429 (10)0.0420 (10)0.0453 (9)0.0038 (8)0.0128 (8)0.0075 (8)
C200.0432 (10)0.0435 (10)0.0470 (10)0.0060 (8)0.0150 (8)0.0060 (8)
C210.0758 (16)0.0470 (12)0.0670 (14)0.0151 (11)0.0128 (12)0.0067 (10)
C220.0807 (18)0.0650 (16)0.0771 (16)0.0348 (14)0.0130 (14)0.0062 (13)
C230.0585 (14)0.0775 (17)0.0652 (14)0.0287 (13)0.0014 (11)0.0046 (12)
C240.0410 (11)0.0672 (14)0.0604 (12)0.0145 (10)0.0024 (9)0.0069 (10)
N10.0360 (8)0.0433 (8)0.0444 (8)0.0004 (7)0.0023 (6)0.0083 (7)
N20.0338 (8)0.0477 (9)0.0487 (8)0.0080 (7)0.0068 (6)0.0061 (7)
O50.0286 (7)0.0674 (9)0.0516 (8)0.0012 (6)0.0054 (5)0.0055 (7)
Geometric parameters (Å, º) top
Ni1—O12.0290 (13)C12—H120.9300
Ni1—N12.0385 (15)C13—H130.9300
Ni1—O52.0481 (14)C14—O31.256 (2)
Ni1—N22.0682 (16)C14—O41.279 (2)
Ni1—O3i2.0999 (13)C14—Ni1i2.4734 (18)
Ni1—O4i2.1869 (13)O3—Ni1i2.0999 (13)
Ni1—C14i2.4733 (18)O4—Ni1i2.1870 (13)
C1—C61.402 (3)S1—S22.0596 (8)
C1—C21.407 (2)C15—N11.335 (2)
C1—C71.506 (2)C15—C161.381 (3)
C2—C31.398 (2)C15—H150.9300
C2—S11.8029 (18)C16—C171.372 (3)
C3—C41.387 (3)C16—H160.9300
C3—H30.9300C17—C181.379 (3)
C4—C51.375 (3)C17—H170.9300
C4—H40.9300C18—C191.385 (3)
C5—C61.375 (3)C18—H180.9300
C5—H50.9300C19—N11.356 (2)
C6—H60.9300C19—C201.483 (3)
C7—O21.238 (2)C20—N21.345 (2)
C7—O11.265 (2)C20—C211.395 (3)
C8—C131.399 (2)C21—C221.383 (3)
C8—C91.410 (2)C21—H210.9300
C8—C141.493 (2)C22—C231.361 (4)
C9—C101.396 (2)C22—H220.9300
C9—S21.7932 (17)C23—C241.378 (3)
C10—C111.385 (3)C23—H230.9300
C10—H100.9300C24—N21.343 (2)
C11—C121.375 (3)C24—H240.9300
C11—H110.9300O5—H5A0.841 (9)
C12—C131.383 (3)O5—H5B0.850 (9)
O1—Ni1—N193.79 (6)C11—C12—H12120.3
O1—Ni1—O590.21 (6)C13—C12—H12120.3
N1—Ni1—O599.03 (6)C12—C13—C8121.29 (19)
O1—Ni1—N2173.06 (6)C12—C13—H13119.4
N1—Ni1—N279.70 (6)C8—C13—H13119.4
O5—Ni1—N293.16 (6)O3—C14—O4119.43 (15)
O1—Ni1—O3i86.85 (5)O3—C14—C8119.62 (15)
N1—Ni1—O3i95.52 (6)O4—C14—C8120.92 (15)
O5—Ni1—O3i165.32 (5)O3—C14—Ni1i58.08 (9)
N2—Ni1—O3i91.37 (5)O4—C14—Ni1i62.00 (9)
O1—Ni1—O4i88.47 (5)C8—C14—Ni1i170.27 (12)
N1—Ni1—O4i156.68 (6)C7—O1—Ni1132.52 (12)
O5—Ni1—O4i104.18 (5)C14—O3—Ni1i91.41 (10)
N2—Ni1—O4i96.58 (6)C14—O4—Ni1i86.90 (10)
O3i—Ni1—O4i61.39 (5)C2—S1—S2104.94 (6)
O1—Ni1—C14i84.52 (5)C9—S2—S1105.08 (6)
N1—Ni1—C14i126.01 (6)N1—C15—C16122.5 (2)
O5—Ni1—C14i134.86 (6)N1—C15—H15118.7
N2—Ni1—C14i97.33 (6)C16—C15—H15118.7
O3i—Ni1—C14i30.51 (5)C17—C16—C15118.6 (2)
O4i—Ni1—C14i31.10 (5)C17—C16—H16120.7
C6—C1—C2119.01 (17)C15—C16—H16120.7
C6—C1—C7117.97 (17)C16—C17—C18119.46 (19)
C2—C1—C7122.97 (15)C16—C17—H17120.3
C3—C2—C1118.77 (17)C18—C17—H17120.3
C3—C2—S1122.05 (15)C17—C18—C19119.6 (2)
C1—C2—S1119.15 (13)C17—C18—H18120.2
C4—C3—C2120.6 (2)C19—C18—H18120.2
C4—C3—H3119.7N1—C19—C18120.67 (19)
C2—C3—H3119.7N1—C19—C20115.09 (16)
C5—C4—C3120.7 (2)C18—C19—C20124.23 (19)
C5—C4—H4119.6N2—C20—C21121.00 (19)
C3—C4—H4119.6N2—C20—C19115.26 (16)
C4—C5—C6119.4 (2)C21—C20—C19123.75 (19)
C4—C5—H5120.3C22—C21—C20118.9 (2)
C6—C5—H5120.3C22—C21—H21120.5
C5—C6—C1121.4 (2)C20—C21—H21120.5
C5—C6—H6119.3C23—C22—C21119.8 (2)
C1—C6—H6119.3C23—C22—H22120.1
O2—C7—O1124.88 (17)C21—C22—H22120.1
O2—C7—C1119.81 (17)C22—C23—C24118.7 (2)
O1—C7—C1115.29 (15)C22—C23—H23120.7
C13—C8—C9119.23 (16)C24—C23—H23120.7
C13—C8—C14118.52 (16)N2—C24—C23122.7 (2)
C9—C8—C14122.18 (15)N2—C24—H24118.6
C10—C9—C8118.46 (16)C23—C24—H24118.6
C10—C9—S2121.23 (14)C15—N1—C19119.12 (16)
C8—C9—S2120.27 (13)C15—N1—Ni1125.65 (14)
C11—C10—C9121.06 (18)C19—N1—Ni1114.83 (12)
C11—C10—H10119.5C24—N2—C20118.79 (18)
C9—C10—H10119.5C24—N2—Ni1126.75 (14)
C12—C11—C10120.63 (19)C20—N2—Ni1114.19 (12)
C12—C11—H11119.7Ni1—O5—H5A108.9 (17)
C10—C11—H11119.7Ni1—O5—H5B102.6 (18)
C11—C12—C13119.32 (19)H5A—O5—H5B110.3 (14)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O20.85 (1)1.82 (1)2.646 (2)162 (2)
O5—H5A···O4ii0.84 (1)1.89 (1)2.7187 (18)169 (2)
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni2(C14H8O4S2)2(C10H8N2)2(H2O)2]
Mr1074.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.498 (4), 16.769 (5), 10.238 (3)
β (°) 93.196 (4)
V3)2313.7 (12)
Z2
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.35 × 0.33 × 0.28
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.708, 0.756
No. of measured, independent and
observed [I > 2σ(I)] reflections
19861, 5302, 4428
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.06
No. of reflections5302
No. of parameters307
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.26

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O20.850 (9)1.824 (11)2.646 (2)162 (2)
O5—H5A···O4i0.841 (9)1.888 (11)2.7187 (18)169 (2)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by the Foundation of the Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, R., Jiang, F. L., Chen, L., Yan, C. F., Wu, M. Y. & Hong, M. C. (2009). Chem. Commun. pp. 5296–5298.  Web of Science CSD CrossRef Google Scholar
First citationHumphrey, S. M., Mole, R. A., Rawson, J. M. & Wood, P. T. (2004). Dalton Trans. pp. 1670–1678.  Web of Science CSD CrossRef PubMed Google Scholar
First citationLi, X.-H., Jia, S.-C. & Jalbout, A. F. (2007). Z. Kristallogr. New Cryst. Struct. 222, 117–118.  CAS Google Scholar
First citationMurugavel, R., Baheti, K. & Anantharaman, G. (2001). Inorg. Chem. 40, 6870–6878.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, L.-M., Zhang, Q. & Hu, M. (2009). Acta Cryst. E65, m1221–m1222.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds