metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido{2-[(di­methyl­amino)­methyl]phenyl-κ2C1,N}(1-methyl-1H-imidazole-κN3)palladium(II)

aDepartment of Chemistry, University of South Alabama, Mobile, AL 36688-0002, USA
*Correspondence e-mail: rsykora@jaguar1.usouthal.edu

(Received 12 November 2010; accepted 15 November 2010; online 24 November 2010)

In the title compound, [Pd(C9H12N)Cl(C4H6N2)], which was synthesized from the reaction of 1-methyl­imidazole with dimeric dichloridobis[2-(dimethyl­amino)­benz­yl]palla­dium(II), the ring-deprotonated N,N-dimethyl­benzyl­amine ligand acts in a C,N-bidentate fashion. The dihedral angle between the ring of the 1-methyl­imidazole ligand and the palladacycle plane is 57.88 (16)°. The two N atoms from the N,N-dimethyl­benzyl­amine and 1-methyl­imidazole ligands are trans coordinated to the PdII atom.

Related literature

For an overview of the application of palladacycles in organic synthesis, see: DuPont & Flores (2009[DuPont, J. & Flores, F. R. (2009). Handbook of Green Chemistry, edited by P. T. Anastas & R. H. Crabtree, Vol. 1, pp. 319-342. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.]); Bedford et al. (2003[Bedford, R. B., Hazelwood, S. L., Limmert, M. E., Albisson, D. A., Draper, S. M., Scully, P. N., Coles, S. J. & Hursthouse, M. B. (2003). Chem. Eur. J. 9, 3216-3227.]); Fors & Buchwald (2010[Fors, B. P. & Buchwald, S. L. (2010). J. Am. Chem. Soc. 132, 15914-15917.]). For detoxification of phospho­rothio­nate pesticides, see: Lu et al. (2010[Lu, Z.-L., Wang, X.-R. & Liu, B.-B. (2010). J. Organomet. Chem. 695, 2191-2200.]). For studies converting the dimeric precursor (Cope & Friedrich, 1968[Cope, A. C. & Friedrich, E. C. (1968). J. Am. Chem. Soc. 90, 909-913.]) of the title compound into monomeric square-planar palladacycles, see: Mentes & Büyükgüngör (2004[Mentes, A. & Büyükgüngör, O. (2004). Acta Cryst. E60, m601-m602.]); Mentes et al. (2004[Mentes, A., Kemmitt, R. D. W., Fawcett, J. & Russell, D. R. (2004). J. Mol. Struct. 693, 241-246.]); Deeming et al. (1978[Deeming, A. J., Rothwell, I. P., Hursthouse, M. B. & New, L. (1978). J. Chem. Soc. Dalton Trans. pp. 1490-1496.]); Bose & Saha (1987[Bose, A. & Saha, C. R. (1987). Chem. Ind. (London), pp. 199-201.]). For crystal structures of neutral pyridine-palladacycles, see: Lu et al. (2005[Lu, Z.-L., Neverov, A. A. & Brown, R. S. (2005). Org. Biomol. Chem. 3, 3379-3387.]); Fun et al. (2006[Fun, H.-K., Chantrapromma, S., Lu, Z.-L., Neverov, A. A. & Brown, R. S. (2006). Acta Cryst. E62, m3225-m3227.]). For an approach to the study of the relative binding affinities of unidentate ligands for organopalladium(II) species, see: Hoffman et al. (2009[Hoffman, N. W., Stenson, A. C., Sykora, R. E., Traylor, R. K., Wicker, B. F., Reilly, S., Dixon, D. A., Marshall, A. G., Kwan, M.-L. & Schroder, P. (2009). Abstracts, Central Regional Meeting, American Chemical Society, Cleveland, OH, United States, May 20-23, CRM-213.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C9H12N)Cl(C4H6N2)]

  • Mr = 358.15

  • Orthorhombic, P n a 21

  • a = 25.5485 (15) Å

  • b = 10.0057 (6) Å

  • c = 5.6733 (4) Å

  • V = 1450.27 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 290 K

  • 0.43 × 0.15 × 0.09 mm

Data collection
  • Oxford Diffraction Xcalibur E diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.788, Tmax = 1.00

  • 6592 measured reflections

  • 2373 independent reflections

  • 2057 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.044

  • S = 0.96

  • 2373 reflections

  • 167 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 852 Friedel pairs

  • Flack parameter: −0.04 (3)

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Palladacycles are an important class of catalysts for organic reactions (DuPont & Flores, 2009; Bedford et al., 2003; Fors & Buchwald, 2010), including methanolysis of phosphorothionate pesticides (Lu et al., 2005; Lu et al., 2010). One of the most commonly used, and now commercially available, palladacyclic dimers, di-µ-chlorobis[2-(dimethylamino)benzyl-κ2C1,N]palladium(II), or [(κ2-dmba)PdCl]2 for short, was first prepared by Cope & Friedrich (1968), with its structure solved by Mentes, Kemmitt, et al. (2004). Many compounds of the general formula (κ2-dmba)Pd(L)Cl are easily prepared by treating this dimer with two molar equivalents of neutral unidentate ligand, L. The great majority of these products contain pnictogen ligands, primarily phosphines; crystal structures have been published for L = PPh3 (Mentes, Kemmitt, et al., 2004) and SbPh3 (Mentes & Büyükgüngör, 2004). Combining four molar equivalents of these triphenylpnictogens with the dimer affords dechelation of the dmba moiety and formation of the square-planar trans-(EPh3)2Pd(2-dmba-κC1)Cl. Relatively few examples of (κ2-dmba)Pd(N-ligand)Cl have been reported, and those are almost exclusively in the pyridine family (Deeming et al., 1978; Bose & Saha, 1987), with crystal structures reported for the pyridine (Lu et al., 2005) and 4-dimethylaminopyridine (Fun et al., 2006) complexes.

Our interest in studying relative binding affinities of soft metal centers for ligands of moderate and weak donor power using 19F and 31P NMR spectroscopy (Hoffman et al., 2009) to monitor ligand-substitution equilibria led us to prepare the title complex (I), whose structure is shown in Figure 1. Suitable single crystals were grown from vapor diffusion of heptane into a solution of the 1-methylimidazole complex at room temperature. All four Pd-ligand bond lengths were similar to those reported for other (κ2-dmba)Pd(L)Cl structures, especially those for the two pyridine-family complexes (Lu et al., 2005; Fun et al., 2006). The angle between the imidazole ring and the palladacycle plane (Pd1–N2–C1–C2–C7) in I is 57.88 (16)°, on par with the 49.2° angle between the pyridine and palladacycle rings in (κ2-dmba)Pd(py)Cl (Lu et al., 2005). However, both these angles are quite smaller than the comparable dihedral angles in (κ2-dmba)Pd(dmap)Cl (dmap = 4-(dimethylamino)pyridine) (Fun et al., 2006) for which three crystallographically independent molecules yielded values of 76.80 (14)°, 81.85 (14)°, and 83.74 (14)°.

Related literature top

For an overview of the application of palladacycles in organic synthesis, see: DuPont & Flores (2009); Bedford et al. (2003); Fors & Buchwald (2010). For detoxification of phosphorothionate pesticides, see: Lu et al. (2010). For studies converting the dimeric precursor (Cope & Friedrich, 1968) of the title compound into monomeric square-planar palladacycles, see: Mentes & Büyükgüngör (2004); Mentes et al. (2004); Deeming et al. (1978); Bose & Saha (1987). For crystal structures of neutral pyridine-palladacycles, see: Lu et al. (2005); Fun et al. (2006). For an approach to the study of the relative binding affinities of unidentate ligands for organopalladium(II) species, see: Hoffman et al. (2009).

Experimental top

To a solution of 0.100 mmol [(κ2-C9H12N)PdCl]2 (Sigma-Aldrich) in 2.0 ml e thanol-free reagent chloroform (Fisher) in a 10-ml glass vial was added with stirring 0.200 mmol neat 1-methylimidazole (Sigma-Aldrich). The resulting pale-yellow solution was subjected to vapor diffusion with 30 ml heptane (Fisher reagent) at room temperature for 3 days. The small amount of liquid remaining was removed by disposable glass pipet from the resulting off-white needles, and the crystals were washed twice with 5.0 ml of hexanes (Fisher reagent). All reagents and solvents were used as received. The desired needles were removed from the vial and air-dried overnight in the dark (94% yield).

Refinement top

Hydrogen atoms were placed in calculated positions and allowed to ride during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å for the ring H atoms, Uiso(H) = 1.2Ueq(C) and C—H distances of 0.97 Å for the methylene H atoms, and Uiso(H) = 1.5Ueq(C) and C—H distances of 0.96 Å for the methyl H atoms.

Structure description top

Palladacycles are an important class of catalysts for organic reactions (DuPont & Flores, 2009; Bedford et al., 2003; Fors & Buchwald, 2010), including methanolysis of phosphorothionate pesticides (Lu et al., 2005; Lu et al., 2010). One of the most commonly used, and now commercially available, palladacyclic dimers, di-µ-chlorobis[2-(dimethylamino)benzyl-κ2C1,N]palladium(II), or [(κ2-dmba)PdCl]2 for short, was first prepared by Cope & Friedrich (1968), with its structure solved by Mentes, Kemmitt, et al. (2004). Many compounds of the general formula (κ2-dmba)Pd(L)Cl are easily prepared by treating this dimer with two molar equivalents of neutral unidentate ligand, L. The great majority of these products contain pnictogen ligands, primarily phosphines; crystal structures have been published for L = PPh3 (Mentes, Kemmitt, et al., 2004) and SbPh3 (Mentes & Büyükgüngör, 2004). Combining four molar equivalents of these triphenylpnictogens with the dimer affords dechelation of the dmba moiety and formation of the square-planar trans-(EPh3)2Pd(2-dmba-κC1)Cl. Relatively few examples of (κ2-dmba)Pd(N-ligand)Cl have been reported, and those are almost exclusively in the pyridine family (Deeming et al., 1978; Bose & Saha, 1987), with crystal structures reported for the pyridine (Lu et al., 2005) and 4-dimethylaminopyridine (Fun et al., 2006) complexes.

Our interest in studying relative binding affinities of soft metal centers for ligands of moderate and weak donor power using 19F and 31P NMR spectroscopy (Hoffman et al., 2009) to monitor ligand-substitution equilibria led us to prepare the title complex (I), whose structure is shown in Figure 1. Suitable single crystals were grown from vapor diffusion of heptane into a solution of the 1-methylimidazole complex at room temperature. All four Pd-ligand bond lengths were similar to those reported for other (κ2-dmba)Pd(L)Cl structures, especially those for the two pyridine-family complexes (Lu et al., 2005; Fun et al., 2006). The angle between the imidazole ring and the palladacycle plane (Pd1–N2–C1–C2–C7) in I is 57.88 (16)°, on par with the 49.2° angle between the pyridine and palladacycle rings in (κ2-dmba)Pd(py)Cl (Lu et al., 2005). However, both these angles are quite smaller than the comparable dihedral angles in (κ2-dmba)Pd(dmap)Cl (dmap = 4-(dimethylamino)pyridine) (Fun et al., 2006) for which three crystallographically independent molecules yielded values of 76.80 (14)°, 81.85 (14)°, and 83.74 (14)°.

For an overview of the application of palladacycles in organic synthesis, see: DuPont & Flores (2009); Bedford et al. (2003); Fors & Buchwald (2010). For detoxification of phosphorothionate pesticides, see: Lu et al. (2010). For studies converting the dimeric precursor (Cope & Friedrich, 1968) of the title compound into monomeric square-planar palladacycles, see: Mentes & Büyükgüngör (2004); Mentes et al. (2004); Deeming et al. (1978); Bose & Saha (1987). For crystal structures of neutral pyridine-palladacycles, see: Lu et al. (2005); Fun et al. (2006). For an approach to the study of the relative binding affinities of unidentate ligands for organopalladium(II) species, see: Hoffman et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A thermal ellipsoid plot (50%) of I showing the labeling scheme.
Chlorido{2-[(dimethylamino)methyl]phenyl-κ2C1,N}(1- methyl-1H-imidazole-κN3]palladium(II) top
Crystal data top
[Pd(C9H12N)Cl(C4H6N2)]F(000) = 720
Mr = 358.15Dx = 1.640 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3299 reflections
a = 25.5485 (15) Åθ = 3.1–25.6°
b = 10.0057 (6) ŵ = 1.45 mm1
c = 5.6733 (4) ÅT = 290 K
V = 1450.27 (16) Å3Prism, colorless
Z = 40.43 × 0.15 × 0.09 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2373 independent reflections
Radiation source: fine-focus sealed tube2057 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 16.0514 pixels mm-1θmax = 25.7°, θmin = 3.1°
ω scansh = 3131
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1210
Tmin = 0.788, Tmax = 1.00l = 66
6592 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0205P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.044(Δ/σ)max = 0.003
S = 0.96Δρmax = 0.31 e Å3
2373 reflectionsΔρmin = 0.38 e Å3
167 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0038 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 852 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.04 (3)
Crystal data top
[Pd(C9H12N)Cl(C4H6N2)]V = 1450.27 (16) Å3
Mr = 358.15Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 25.5485 (15) ŵ = 1.45 mm1
b = 10.0057 (6) ÅT = 290 K
c = 5.6733 (4) Å0.43 × 0.15 × 0.09 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2373 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2057 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 1.00Rint = 0.028
6592 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.044Δρmax = 0.31 e Å3
S = 0.96Δρmin = 0.38 e Å3
2373 reflectionsAbsolute structure: Flack (1983), 852 Friedel pairs
167 parametersAbsolute structure parameter: 0.04 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.644535 (8)0.91814 (2)0.75150 (8)0.02903 (8)
Cl10.67437 (4)0.69431 (8)0.66642 (19)0.0466 (3)
C10.65047 (13)1.1994 (4)0.6894 (7)0.0385 (12)
C20.62563 (13)1.1054 (3)0.8301 (6)0.0331 (9)
C30.59495 (14)1.1503 (4)1.0170 (7)0.0378 (9)
H30.57811.08851.11310.045*
C40.58921 (15)1.2846 (4)1.0615 (8)0.0494 (11)
H40.56941.31311.18940.059*
C50.61300 (17)1.3768 (4)0.9156 (9)0.0560 (13)
H50.60841.46770.94320.067*
C60.64348 (13)1.3354 (3)0.7301 (14)0.0507 (11)
H60.65941.39790.63220.061*
C70.68436 (15)1.1482 (4)0.4924 (7)0.0424 (10)
H7A0.71401.20750.46900.051*
H7B0.66441.14460.34700.051*
C80.71890 (16)0.9419 (4)0.3383 (7)0.0460 (10)
H8A0.74600.99220.26150.069*
H8B0.68920.93460.23540.069*
H8C0.73170.85410.37540.069*
C90.74967 (12)1.0235 (3)0.7096 (7)0.0422 (11)
H9A0.77731.06670.62360.063*
H9B0.76100.93640.75850.063*
H9C0.74101.07600.84580.063*
C100.53338 (14)0.8549 (4)0.9384 (8)0.0464 (10)
H100.51620.91020.83170.056*
C110.51014 (15)0.7778 (4)1.1018 (7)0.0475 (11)
H110.47440.77071.12950.057*
C120.59415 (13)0.7524 (3)1.1267 (7)0.0397 (9)
H120.62680.72331.17740.048*
C130.54318 (17)0.6178 (4)1.4131 (8)0.0577 (12)
H13A0.57500.56781.43060.087*
H13B0.51480.55771.38050.087*
H13C0.53610.66581.55610.087*
N10.58669 (10)0.8386 (3)0.9548 (6)0.0344 (7)
N20.70326 (11)1.0106 (3)0.5575 (5)0.0312 (7)
N30.54872 (11)0.7121 (3)1.2190 (7)0.0388 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02726 (11)0.02814 (13)0.03167 (13)0.00098 (10)0.0002 (2)0.0043 (2)
Cl10.0495 (5)0.0321 (5)0.0582 (7)0.0077 (4)0.0119 (5)0.0049 (4)
C10.0352 (19)0.034 (2)0.047 (4)0.0014 (15)0.0090 (17)0.0041 (17)
C20.0269 (16)0.032 (2)0.041 (3)0.0007 (15)0.0080 (15)0.0031 (16)
C30.034 (2)0.037 (2)0.043 (3)0.0004 (17)0.0025 (18)0.0003 (19)
C40.046 (2)0.044 (3)0.058 (3)0.009 (2)0.004 (2)0.011 (2)
C50.048 (2)0.033 (2)0.087 (4)0.0030 (19)0.018 (3)0.009 (2)
C60.0475 (19)0.033 (2)0.071 (3)0.0001 (16)0.008 (3)0.006 (3)
C70.044 (2)0.042 (2)0.041 (3)0.0068 (18)0.006 (2)0.020 (2)
C80.051 (2)0.053 (2)0.034 (2)0.0084 (18)0.0101 (18)0.0017 (18)
C90.0295 (16)0.060 (2)0.037 (3)0.0068 (15)0.002 (2)0.006 (2)
C100.034 (2)0.053 (3)0.052 (3)0.0031 (18)0.000 (2)0.006 (2)
C110.031 (2)0.056 (3)0.055 (3)0.0065 (19)0.006 (2)0.002 (2)
C120.036 (2)0.032 (2)0.051 (2)0.0019 (17)0.0034 (18)0.000 (2)
C130.062 (3)0.054 (3)0.057 (3)0.007 (2)0.018 (2)0.013 (2)
N10.0316 (16)0.0307 (17)0.0410 (19)0.0003 (13)0.0020 (14)0.0018 (15)
N20.0309 (15)0.0324 (17)0.0302 (18)0.0020 (13)0.0020 (13)0.0029 (14)
N30.0405 (15)0.0363 (15)0.039 (2)0.0060 (11)0.0153 (18)0.0031 (18)
Geometric parameters (Å, º) top
Pd1—C21.985 (3)C8—H8A0.9600
Pd1—N12.037 (3)C8—H8B0.9600
Pd1—N22.078 (3)C8—H8C0.9600
Pd1—Cl12.4145 (9)C9—N21.472 (4)
C1—C21.388 (5)C9—H9A0.9600
C1—C61.391 (5)C9—H9B0.9600
C1—C71.504 (5)C9—H9C0.9600
C2—C31.393 (5)C10—C111.345 (5)
C3—C41.375 (5)C10—N11.375 (4)
C3—H30.9300C10—H100.9300
C4—C51.381 (6)C11—N31.358 (5)
C4—H40.9300C11—H110.9300
C5—C61.373 (8)C12—N11.316 (4)
C5—H50.9300C12—N31.335 (4)
C6—H60.9300C12—H120.9300
C7—N21.505 (4)C13—N31.457 (5)
C7—H7A0.9700C13—H13A0.9600
C7—H7B0.9700C13—H13B0.9600
C8—N21.476 (4)C13—H13C0.9600
C2—Pd1—N193.72 (13)H8B—C8—H8C109.5
C2—Pd1—N282.79 (13)N2—C9—H9A109.5
N1—Pd1—N2176.23 (11)N2—C9—H9B109.5
C2—Pd1—Cl1175.52 (10)H9A—C9—H9B109.5
N1—Pd1—Cl188.84 (8)N2—C9—H9C109.5
N2—Pd1—Cl194.54 (8)H9A—C9—H9C109.5
C2—C1—C6120.6 (4)H9B—C9—H9C109.5
C2—C1—C7117.4 (3)C11—C10—N1108.8 (4)
C6—C1—C7122.0 (4)C11—C10—H10125.6
C1—C2—C3118.4 (3)N1—C10—H10125.6
C1—C2—Pd1113.5 (3)C10—C11—N3107.1 (3)
C3—C2—Pd1127.8 (3)C10—C11—H11126.4
C4—C3—C2121.0 (4)N3—C11—H11126.4
C4—C3—H3119.5N1—C12—N3111.2 (3)
C2—C3—H3119.5N1—C12—H12124.4
C3—C4—C5119.7 (4)N3—C12—H12124.4
C3—C4—H4120.1N3—C13—H13A109.5
C5—C4—H4120.1N3—C13—H13B109.5
C6—C5—C4120.5 (4)H13A—C13—H13B109.5
C6—C5—H5119.8N3—C13—H13C109.5
C4—C5—H5119.8H13A—C13—H13C109.5
C5—C6—C1119.7 (5)H13B—C13—H13C109.5
C5—C6—H6120.1C12—N1—C10105.8 (3)
C1—C6—H6120.1C12—N1—Pd1124.8 (2)
C1—C7—N2108.3 (3)C10—N1—Pd1129.3 (3)
C1—C7—H7A110.0C9—N2—C8108.5 (3)
N2—C7—H7A110.0C9—N2—C7108.8 (3)
C1—C7—H7B110.0C8—N2—C7107.8 (3)
N2—C7—H7B110.0C9—N2—Pd1108.1 (2)
H7A—C7—H7B108.4C8—N2—Pd1115.7 (2)
N2—C8—H8A109.5C7—N2—Pd1107.8 (2)
N2—C8—H8B109.5C12—N3—C11107.0 (3)
H8A—C8—H8B109.5C12—N3—C13125.2 (3)
N2—C8—H8C109.5C11—N3—C13127.8 (3)
H8A—C8—H8C109.5

Experimental details

Crystal data
Chemical formula[Pd(C9H12N)Cl(C4H6N2)]
Mr358.15
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)290
a, b, c (Å)25.5485 (15), 10.0057 (6), 5.6733 (4)
V3)1450.27 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.43 × 0.15 × 0.09
Data collection
DiffractometerOxford Diffraction Xcalibur E
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.788, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
6592, 2373, 2057
Rint0.028
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.044, 0.96
No. of reflections2373
No. of parameters167
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.38
Absolute structureFlack (1983), 852 Friedel pairs
Absolute structure parameter0.04 (3)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

 

Acknowledgements

The authors gratefully acknowledge the National Science Foundation (NSF-CAREER grant to RES, CHE-0846680), the Department of Chemistry at USA, and the University Committee for Undergraduate Research at USA for their generous support.

References

First citationBedford, R. B., Hazelwood, S. L., Limmert, M. E., Albisson, D. A., Draper, S. M., Scully, P. N., Coles, S. J. & Hursthouse, M. B. (2003). Chem. Eur. J. 9, 3216–3227.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBose, A. & Saha, C. R. (1987). Chem. Ind. (London), pp. 199–201.  Google Scholar
First citationCope, A. C. & Friedrich, E. C. (1968). J. Am. Chem. Soc. 90, 909–913.  CrossRef CAS Web of Science Google Scholar
First citationDeeming, A. J., Rothwell, I. P., Hursthouse, M. B. & New, L. (1978). J. Chem. Soc. Dalton Trans. pp. 1490–1496.  CSD CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuPont, J. & Flores, F. R. (2009). Handbook of Green Chemistry, edited by P. T. Anastas & R. H. Crabtree, Vol. 1, pp. 319–342. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFors, B. P. & Buchwald, S. L. (2010). J. Am. Chem. Soc. 132, 15914–15917.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFun, H.-K., Chantrapromma, S., Lu, Z.-L., Neverov, A. A. & Brown, R. S. (2006). Acta Cryst. E62, m3225–m3227.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHoffman, N. W., Stenson, A. C., Sykora, R. E., Traylor, R. K., Wicker, B. F., Reilly, S., Dixon, D. A., Marshall, A. G., Kwan, M.-L. & Schroder, P. (2009). Abstracts, Central Regional Meeting, American Chemical Society, Cleveland, OH, United States, May 20–23, CRM-213.  Google Scholar
First citationLu, Z.-L., Neverov, A. A. & Brown, R. S. (2005). Org. Biomol. Chem. 3, 3379–3387.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLu, Z.-L., Wang, X.-R. & Liu, B.-B. (2010). J. Organomet. Chem. 695, 2191–2200.  Web of Science CSD CrossRef CAS Google Scholar
First citationMentes, A. & Büyükgüngör, O. (2004). Acta Cryst. E60, m601–m602.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMentes, A., Kemmitt, R. D. W., Fawcett, J. & Russell, D. R. (2004). J. Mol. Struct. 693, 241–246.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds