organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Bis(methyl­sulfan­yl)-1,4,5,8-tetra­thia­fulvalene

aKey Laboratory of Organism Functional Factors of the Changbai Mountain, Yanbian University, Ministry of Education, Yanji 133002, People's Republic of China
*Correspondence e-mail: zqcong@ybu.edu.cn

(Received 19 November 2010; accepted 22 November 2010; online 27 November 2010)

In the title compound, C8H8S6, the five-membered rings form a dihedral angle of 25.06 (9)°. In the absence of short inter­molecular contacts, the mol­ecules are packed by van der Waals forces in the crystal.

Related literature

For applications of tetra­thia­fulvalenes, see: Wudl et al. (1972[Wudl, F., Wobshall, D. & Hufnagel, E. J. (1972). J. Am. Chem. Soc. 94, 670-672.]); Jørgensen et al. (1994[Jørgensen, T., Hansen, T. K. & Becher, J. (1994). Chem. Soc. Rev. 23, 41-45.]). For details of the synthesis, see: Fourmingué et al. (1993[Fourmingué, M., Krebs, F. C. & Larsen, J. (1993). Synthesis, 5, 509-512.]). For a related structure, see: Hou et al. (2010[Hou, R.-B., Li, B., Yin, B.-Z. & Wu, L.-X. (2010). Acta Cryst. E66, o1044.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8S6

  • Mr = 296.50

  • Monoclinic, C 2/c

  • a = 19.368 (11) Å

  • b = 7.703 (4) Å

  • c = 17.150 (8) Å

  • β = 108.59 (2)°

  • V = 2425 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 291 K

  • 0.12 × 0.10 × 0.09 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.881, Tmax = 0.909

  • 11301 measured reflections

  • 2773 independent reflections

  • 2480 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.083

  • S = 1.03

  • 2773 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.66 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tetrathiafulvalenes (TTFs) have attracted much interest due to their electron-donating ability, which have been used for the synthesis of new organic metals and superconductors (Wudl et al. 1972) and recently for supramolecular architectures (Jørgensen et al. 1994.). In this paper, we report the crystal structue of the title compound.

The title compound, as shown in Fig. 1, crystallizes in monoclinic system with the space group C2/c. All bond lengths and angles of the title compound are normal and comparable with those reported for the related structure (Hou et al., 2010). In the crystal, the molecules are packed by van der Waal's forces.

Related literature top

For applications of tetrathiafulvalenes, see: Wudl et al. (1972); Jørgensen et al. (1994). For details of the synthesis, see: Fourmingué et al. (1993). For a related structure, see: Hou et al. (2010)

Experimental top

The title compound was prepared according to literature (Fourmingué et al., 1993) and single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of dichloromethane and petroleum (60–90 °C) at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions with C—H = 0.93 or 0.96 Å and were included in the refinement in the riding model with Uiso(H) = 1.2 or 1.5 Ueq(C).

Structure description top

Tetrathiafulvalenes (TTFs) have attracted much interest due to their electron-donating ability, which have been used for the synthesis of new organic metals and superconductors (Wudl et al. 1972) and recently for supramolecular architectures (Jørgensen et al. 1994.). In this paper, we report the crystal structue of the title compound.

The title compound, as shown in Fig. 1, crystallizes in monoclinic system with the space group C2/c. All bond lengths and angles of the title compound are normal and comparable with those reported for the related structure (Hou et al., 2010). In the crystal, the molecules are packed by van der Waal's forces.

For applications of tetrathiafulvalenes, see: Wudl et al. (1972); Jørgensen et al. (1994). For details of the synthesis, see: Fourmingué et al. (1993). For a related structure, see: Hou et al. (2010)

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric of title compound, with the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.
2-(2H-1,3-dithiol-2-ylidene)-4,5-bis(methylsulfanyl)-2H-1,3-dithiole top
Crystal data top
C8H8S6F(000) = 1216
Mr = 296.50Dx = 1.624 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9674 reflections
a = 19.368 (11) Åθ = 3.3–27.6°
b = 7.703 (4) ŵ = 1.09 mm1
c = 17.150 (8) ÅT = 291 K
β = 108.59 (2)°Block, yellow
V = 2425 (2) Å30.12 × 0.10 × 0.09 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2773 independent reflections
Radiation source: fine-focus sealed tube2480 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2525
Tmin = 0.881, Tmax = 0.909k = 109
11301 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.043P)2 + 2.0438P]
where P = (Fo2 + 2Fc2)/3
2773 reflections(Δ/σ)max = 0.006
129 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C8H8S6V = 2425 (2) Å3
Mr = 296.50Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.368 (11) ŵ = 1.09 mm1
b = 7.703 (4) ÅT = 291 K
c = 17.150 (8) Å0.12 × 0.10 × 0.09 mm
β = 108.59 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2773 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2480 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.909Rint = 0.025
11301 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.03Δρmax = 0.58 e Å3
2773 reflectionsΔρmin = 0.66 e Å3
129 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.02208 (11)0.7309 (3)1.15260 (11)0.0490 (5)
H10.00040.79111.18490.059*
C20.06543 (12)0.5980 (3)1.18273 (11)0.0494 (5)
H20.07440.56151.23680.059*
C30.07086 (9)0.6402 (2)1.03633 (10)0.0331 (3)
C40.09038 (9)0.6398 (2)0.96816 (10)0.0348 (3)
C50.12943 (10)0.7609 (2)0.84888 (10)0.0375 (4)
C60.17548 (9)0.6286 (2)0.87949 (10)0.0381 (4)
C70.18062 (13)1.0834 (3)0.83038 (14)0.0552 (5)
H7A0.15381.12480.86510.083*
H7B0.18501.17470.79410.083*
H7C0.22831.04720.86380.083*
C80.30945 (12)0.4634 (3)0.92717 (15)0.0608 (6)
H8A0.32090.53840.97430.091*
H8B0.35310.43850.91410.091*
H8C0.28900.35710.93910.091*
S10.00813 (3)0.79005 (6)1.05124 (3)0.04253 (13)
S20.10518 (3)0.49359 (6)1.11799 (3)0.04402 (13)
S30.05498 (2)0.78415 (6)0.88578 (3)0.04151 (13)
S40.15503 (3)0.49566 (6)0.95261 (3)0.04458 (14)
S50.13348 (3)0.90281 (7)0.77079 (3)0.05321 (15)
S60.24524 (3)0.56800 (10)0.84168 (4)0.06234 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0601 (12)0.0557 (12)0.0353 (9)0.0035 (9)0.0211 (8)0.0054 (8)
C20.0591 (11)0.0599 (13)0.0293 (9)0.0019 (10)0.0142 (8)0.0037 (8)
C30.0323 (7)0.0330 (8)0.0354 (8)0.0023 (6)0.0127 (6)0.0048 (6)
C40.0353 (8)0.0347 (9)0.0377 (8)0.0030 (6)0.0160 (7)0.0063 (6)
C50.0468 (9)0.0376 (9)0.0311 (8)0.0072 (7)0.0166 (7)0.0002 (6)
C60.0405 (8)0.0442 (10)0.0343 (8)0.0055 (7)0.0185 (7)0.0019 (7)
C70.0602 (12)0.0458 (12)0.0593 (13)0.0100 (10)0.0187 (10)0.0034 (9)
C80.0425 (11)0.0773 (16)0.0651 (14)0.0057 (10)0.0206 (10)0.0037 (12)
S10.0492 (3)0.0424 (3)0.0420 (2)0.01172 (19)0.0229 (2)0.00695 (18)
S20.0462 (3)0.0476 (3)0.0400 (2)0.01051 (19)0.0161 (2)0.01361 (18)
S30.0447 (2)0.0423 (3)0.0404 (2)0.00839 (19)0.01765 (19)0.01208 (18)
S40.0482 (3)0.0449 (3)0.0505 (3)0.0142 (2)0.0295 (2)0.01503 (19)
S50.0789 (4)0.0510 (3)0.0320 (2)0.0161 (3)0.0210 (2)0.00457 (19)
S60.0543 (3)0.0919 (5)0.0539 (3)0.0106 (3)0.0356 (3)0.0085 (3)
Geometric parameters (Å, º) top
C1—C21.321 (3)C5—S31.759 (2)
C1—S11.733 (2)C6—S61.7386 (19)
C1—H10.9300C6—S41.7591 (18)
C2—S21.737 (2)C7—S51.794 (2)
C2—H20.9300C7—H7A0.9600
C3—C41.339 (2)C7—H7B0.9600
C3—S11.7525 (18)C7—H7C0.9600
C3—S21.7565 (17)C8—S61.784 (2)
C4—S31.7565 (18)C8—H8A0.9600
C4—S41.7562 (18)C8—H8B0.9600
C5—C61.346 (3)C8—H8C0.9600
C5—S51.7498 (18)
C2—C1—S1118.21 (15)S5—C7—H7A109.5
C2—C1—H1120.9S5—C7—H7B109.5
S1—C1—H1120.9H7A—C7—H7B109.5
C1—C2—S2117.70 (15)S5—C7—H7C109.5
C1—C2—H2121.1H7A—C7—H7C109.5
S2—C2—H2121.1H7B—C7—H7C109.5
C4—C3—S1122.09 (13)S6—C8—H8A109.5
C4—C3—S2123.66 (14)S6—C8—H8B109.5
S1—C3—S2114.26 (9)H8A—C8—H8B109.5
C3—C4—S3123.67 (14)S6—C8—H8C109.5
C3—C4—S4123.23 (13)H8A—C8—H8C109.5
S3—C4—S4113.10 (10)H8B—C8—H8C109.5
C6—C5—S5125.86 (14)C1—S1—C394.57 (9)
C6—C5—S3117.01 (13)C2—S2—C394.58 (10)
S5—C5—S3116.99 (11)C4—S3—C594.04 (8)
C5—C6—S6123.71 (14)C4—S4—C694.24 (9)
C5—C6—S4116.55 (14)C5—S5—C7100.79 (10)
S6—C6—S4119.21 (11)C6—S6—C8103.63 (10)

Experimental details

Crystal data
Chemical formulaC8H8S6
Mr296.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)19.368 (11), 7.703 (4), 17.150 (8)
β (°) 108.59 (2)
V3)2425 (2)
Z8
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.12 × 0.10 × 0.09
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.881, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
11301, 2773, 2480
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.03
No. of reflections2773
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.66

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Programme of Higher Education (grant No. 2006184001) and the Open Project of the State Key Laboratory of Supra­molecular Structure and Materials, Jilin University.

References

First citationFourmingué, M., Krebs, F. C. & Larsen, J. (1993). Synthesis, 5, 509–512.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHou, R.-B., Li, B., Yin, B.-Z. & Wu, L.-X. (2010). Acta Cryst. E66, o1044.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJørgensen, T., Hansen, T. K. & Becher, J. (1994). Chem. Soc. Rev. 23, 41–45.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWudl, F., Wobshall, D. & Hufnagel, E. J. (1972). J. Am. Chem. Soc. 94, 670–672.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds