organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­phenyl (p-tolyl­amido)­phosphate

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDepartment of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 20 November 2010; accepted 25 November 2010; online 30 November 2010)

The P atom in the title compound, C19H18NO3P, exhibits a distorted tetra­hedral configuration while the N atom shows a planar coordination. In the crystal, inter­molecular N—H⋯O hydrogen bonds form centrosymmetric dimers.

Related literature

The reaction of compounds having phospho­rus-halide bonds with primary and secondary amines results in formation of phospho­rus-nitro­gen compounds, see: Chivers et al. (2003[Chivers, T., Krahn, M., Schatte, G. & Parvez, M. (2003). Inorg. Chem. 42, 3994-4005.]). For amido­phospho­ric acid esters (APEs), see: Gholivand et al. (2007[Gholivand, K., Pourayoubi, M. & Shariatinia, Z. (2007). Polyhedron, 26, 837-844.]); Ghadimi et al. (2007[Ghadimi, S., Valmoozi, A. A. E. & Pourayoubi, M. (2007). Acta Cryst. E63, o3260.]). For applications of APEs, see: Bao et al. (1993[Bao, J., Wulff, W. D. & Rheingold, A. L. (1993). J. Am. Chem. Soc. 115, 3814-3815.]); Ghadimi et al. (2008[Ghadimi, S., Ebrahimi Valmoozi, A. A., Pourayoubi, M. & Samani, K. A. (2008). J. Enz. Inhibit. Med. Chem. 23, 556-561.]); Nguyen & Kim (2008[Nguyen, C. & Kim, J. (2008). Polym. Degrad. Stabil. 93, 1037-1043.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18NO3P

  • Mr = 339.31

  • Triclinic, [P \overline 1]

  • a = 9.7406 (10) Å

  • b = 9.9653 (10) Å

  • c = 11.1788 (12) Å

  • α = 96.337 (2)°

  • β = 109.303 (2)°

  • γ = 117.827 (2)°

  • V = 858.93 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 120 K

  • 0.24 × 0.21 × 0.11 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.989

  • 8165 measured reflections

  • 3744 independent reflections

  • 3232 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.099

  • S = 1.01

  • 3744 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.79 2.07 2.840 (3) 167
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The reaction of compounds having phosphorus-halide bonds with primary and secondary amines results in formation of phosphorus-nitrogen compounds (Chivers et al., 2003). Amidophosphoric acid esters (APEs), a family of these compounds, contain an (O)(O)P(O)(N) or (O)P(O)(N)(N) skeleton which may be obtained from some initial phosphorus substances such as (RO)P(O)Cl2 and (NR1R2)(RO)P(O)Cl (Gholivand et al., 2007; Ghadimi et al., 2007). APEs have attracted attention because of the flame retardancy for their bisphosphorus derivatives (Nguyen & Kim, 2008), chiral catalyst preparation (Bao et al., 1993) and biological properties (Ghadimi et al., 2008).

Here, we report on the synthesis and single-crystal X-ray determination of title APE compound (Fig. 1); single crystals were obtained from CHCl3/n-C7H16 at r. t.

The phosphorus atom has a distorted tetrahedral configuration with the bond angles in the range of 94.65 (7)° [O(2)–P(1)–O(3)] to 117.14 (8)° [O(1)–P(1)–O(2)]. In crystal lattice, the H-bonded centrosymmetric dimer is formed via an intermolecular PO···HN hydrogen bond (N···O = 2.840 (3) Å). A fragment of unit cell packing showing the hydrogen bond is presented in Fig. 2.

Related literature top

The reaction of compounds having phosphorus-halide bonds with primary and secondary amines results in formation of phosphorus-nitrogen compounds, see: Chivers et al. (2003). For amidophosphoric acid esters (APEs), see: Gholivand et al. (2007); Ghadimi et al. (2007). For applications of APEs, see: Bao et al. (1993); Ghadimi et al. (2008); Nguyen & Kim (2008).

Experimental top

To a solution of (C6H5O)2P(O)Cl in chloroform, a solution of p-toluidine and triethylamine (1:1:1 mole ratio) in chloroform was added at 273 K. After 4 h stirring, the solvent was removed and product was washed with distilled water and recrystallized from chloroform/n-heptane at room temperature. IR (KBr, cm-1): 3170.6 (NH), 3057.7, 2939.8, 2866.6, 2713.5, 2618.1, 2385.3, 1952.3, 1884.4, 1786.4, 1729.0, 1597.2, 1490.3, 1393.0, 1279.7, 1229.7, 1175.6, 1069.5, 974.8, 891.6, 819.2, 762.4, 681.6. Raman (cm-1): 3066.5, 3018.3, 2933.4, 1616.1, 1589.1, 1382.7, 1288.2, 1253.5, 1216.9, 1191.8, 1170.6, 1068.4, 1027.9, 1006.6, 941.1, 904.5, 837.0, 781.0, 759.8, 730.9, 636.4, 615.2, 590.1, 368.3, 333.6. 31P{1H} NMR (202.45 MHz, DMSO-d6, 300.0 K, H3PO4 external): -6.36 p.p.m. (s). 1H NMR (500.13 MHz, DMSO-d6, 300.0 K, TMS): 2.21 (s, 3H, CH3), 7.09 (s, 4H, Ar—H), 7.19–7.23 (m, 6H, Ar—H), 7.37–7.40 (m, 4H, Ar—H), 8.70 p.p.m. (d, 2J(P,H) = 10.6 Hz, 1H, NH). 13C NMR (125.75 MHz, DMSO-d6, 300.0 K, TMS): 20.16 (s, 1 C, CH3), 117.86 (d, 3J(P,C) = 7.7 Hz, 2 C, Cortho), 120.05 (d, 3J(P,C) = 4.8 Hz, 4 C, Cortho), 125.14 (s), 129.60 (s), 129.87 (s), 130.44 (s), 137.09 (s), 150.11 p.p.m. (d, 2J(P,C) = 6.3 Hz, 2 C, Cipso).

Refinement top

The hydrogen atom of NH group was found in difference Fourier synthesis. The H(C) atom positions were calculated. The H(N) atom was refined in isotropic approximation in riding model, the H(C) atoms were refined in isotropic approximation in riding model with the Uiso(H) parameters equal to 1.2 Ueq(Xi) or 1.5 Ueq(Cii), where U(Xi) are the equivalent thermal parameters of the NH and CH atoms and U(Cii) are the ones of the CH3 carbon atoms to which the corresponding H atoms are bonded.

Structure description top

The reaction of compounds having phosphorus-halide bonds with primary and secondary amines results in formation of phosphorus-nitrogen compounds (Chivers et al., 2003). Amidophosphoric acid esters (APEs), a family of these compounds, contain an (O)(O)P(O)(N) or (O)P(O)(N)(N) skeleton which may be obtained from some initial phosphorus substances such as (RO)P(O)Cl2 and (NR1R2)(RO)P(O)Cl (Gholivand et al., 2007; Ghadimi et al., 2007). APEs have attracted attention because of the flame retardancy for their bisphosphorus derivatives (Nguyen & Kim, 2008), chiral catalyst preparation (Bao et al., 1993) and biological properties (Ghadimi et al., 2008).

Here, we report on the synthesis and single-crystal X-ray determination of title APE compound (Fig. 1); single crystals were obtained from CHCl3/n-C7H16 at r. t.

The phosphorus atom has a distorted tetrahedral configuration with the bond angles in the range of 94.65 (7)° [O(2)–P(1)–O(3)] to 117.14 (8)° [O(1)–P(1)–O(2)]. In crystal lattice, the H-bonded centrosymmetric dimer is formed via an intermolecular PO···HN hydrogen bond (N···O = 2.840 (3) Å). A fragment of unit cell packing showing the hydrogen bond is presented in Fig. 2.

The reaction of compounds having phosphorus-halide bonds with primary and secondary amines results in formation of phosphorus-nitrogen compounds, see: Chivers et al. (2003). For amidophosphoric acid esters (APEs), see: Gholivand et al. (2007); Ghadimi et al. (2007). For applications of APEs, see: Bao et al. (1993); Ghadimi et al. (2008); Nguyen & Kim (2008).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view with the atom labeling scheme, displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the formation of dimer through N–H···O interaction. H bonds are shown as dashed lines.
Diphenyl (p-tolylamido)phosphate top
Crystal data top
C19H18NO3PZ = 2
Mr = 339.31F(000) = 356
Triclinic, P1Dx = 1.312 Mg m3
a = 9.7406 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9653 (10) ÅCell parameters from 948 reflections
c = 11.1788 (12) Åθ = 3–29°
α = 96.337 (2)°µ = 0.18 mm1
β = 109.303 (2)°T = 120 K
γ = 117.827 (2)°Prism, colorless
V = 858.93 (15) Å30.24 × 0.21 × 0.11 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3744 independent reflections
Radiation source: fine-focus sealed tube3232 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.980, Tmax = 0.989k = 1212
8165 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.099H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.010P)2 + 1.4P]
where P = (Fo2 + 2Fc2)/3
3744 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C19H18NO3Pγ = 117.827 (2)°
Mr = 339.31V = 858.93 (15) Å3
Triclinic, P1Z = 2
a = 9.7406 (10) ÅMo Kα radiation
b = 9.9653 (10) ŵ = 0.18 mm1
c = 11.1788 (12) ÅT = 120 K
α = 96.337 (2)°0.24 × 0.21 × 0.11 mm
β = 109.303 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3744 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3232 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.989Rint = 0.020
8165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.01Δρmax = 0.31 e Å3
3744 reflectionsΔρmin = 0.57 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.30226 (6)0.32453 (5)0.30029 (5)0.01976 (12)
O10.26650 (17)0.38136 (15)0.40642 (13)0.0232 (3)
O20.16664 (16)0.14657 (15)0.20459 (12)0.0212 (3)
O30.28250 (16)0.40203 (15)0.18341 (13)0.0216 (3)
N10.4912 (2)0.34721 (19)0.36132 (15)0.0214 (3)
H10.55350.41250.43240.026*
C10.1005 (2)0.0096 (2)0.24317 (19)0.0203 (4)
C20.0075 (2)0.1338 (2)0.1388 (2)0.0235 (4)
H2A0.03130.13450.04920.028*
C30.0801 (3)0.2761 (2)0.1673 (2)0.0296 (4)
H3A0.15340.37500.09680.036*
C40.0461 (3)0.2743 (3)0.2985 (2)0.0319 (5)
H4A0.09610.37190.31790.038*
C50.0611 (3)0.1297 (3)0.4011 (2)0.0325 (5)
H5A0.08370.12890.49070.039*
C60.1362 (3)0.0147 (2)0.3750 (2)0.0276 (4)
H6A0.20970.11370.44540.033*
C70.3697 (2)0.5708 (2)0.22208 (19)0.0227 (4)
C80.2885 (3)0.6432 (2)0.2520 (2)0.0300 (4)
H8A0.17720.58120.24870.036*
C90.3736 (3)0.8088 (3)0.2869 (2)0.0347 (5)
H9A0.32040.86120.30810.042*
C100.5357 (3)0.8980 (2)0.2909 (2)0.0335 (5)
H10A0.59291.01120.31430.040*
C110.6148 (3)0.8228 (3)0.2610 (2)0.0327 (5)
H11A0.72630.88450.26460.039*
C120.5309 (3)0.6567 (2)0.2257 (2)0.0272 (4)
H12A0.58380.60390.20460.033*
C130.5718 (2)0.3089 (2)0.29081 (18)0.0204 (4)
C140.7373 (2)0.3403 (2)0.36440 (19)0.0216 (4)
H14A0.79170.38540.45900.026*
C150.8219 (2)0.3056 (2)0.2994 (2)0.0238 (4)
H15A0.93420.32810.35040.029*
C160.7450 (2)0.2383 (2)0.1608 (2)0.0255 (4)
C170.5803 (3)0.2073 (3)0.0896 (2)0.0294 (4)
H17A0.52510.16080.00490.035*
C180.4949 (3)0.2425 (3)0.1528 (2)0.0275 (4)
H18A0.38320.22120.10150.033*
C190.8337 (3)0.1978 (3)0.0886 (2)0.0363 (5)
H19A0.75710.14850.00740.054*
H19B0.86140.12280.12270.054*
H19C0.94010.29570.10350.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0190 (2)0.0172 (2)0.0197 (2)0.00924 (19)0.00640 (18)0.00282 (18)
O10.0218 (6)0.0218 (7)0.0239 (7)0.0107 (6)0.0102 (5)0.0030 (5)
O20.0227 (6)0.0166 (6)0.0198 (6)0.0095 (5)0.0069 (5)0.0035 (5)
O30.0215 (6)0.0166 (6)0.0225 (6)0.0093 (5)0.0070 (5)0.0038 (5)
N10.0191 (7)0.0228 (8)0.0174 (7)0.0118 (7)0.0039 (6)0.0000 (6)
C10.0181 (8)0.0185 (8)0.0253 (9)0.0105 (7)0.0094 (7)0.0068 (7)
C20.0224 (9)0.0226 (9)0.0250 (9)0.0123 (8)0.0101 (8)0.0051 (8)
C30.0259 (10)0.0201 (9)0.0355 (11)0.0099 (8)0.0108 (9)0.0035 (8)
C40.0300 (11)0.0246 (10)0.0435 (12)0.0140 (9)0.0178 (10)0.0162 (9)
C50.0370 (12)0.0332 (11)0.0314 (11)0.0197 (10)0.0166 (9)0.0159 (9)
C60.0310 (10)0.0241 (10)0.0236 (10)0.0140 (9)0.0090 (8)0.0057 (8)
C70.0240 (9)0.0174 (9)0.0229 (9)0.0105 (8)0.0071 (7)0.0060 (7)
C80.0246 (10)0.0244 (10)0.0399 (12)0.0135 (8)0.0129 (9)0.0090 (9)
C90.0365 (12)0.0258 (10)0.0448 (13)0.0208 (10)0.0152 (10)0.0100 (9)
C100.0350 (11)0.0187 (9)0.0351 (11)0.0108 (9)0.0079 (9)0.0092 (8)
C110.0270 (10)0.0268 (10)0.0369 (12)0.0093 (9)0.0128 (9)0.0132 (9)
C120.0264 (10)0.0252 (10)0.0300 (10)0.0136 (8)0.0122 (8)0.0098 (8)
C130.0198 (9)0.0176 (8)0.0229 (9)0.0105 (7)0.0082 (7)0.0048 (7)
C140.0193 (9)0.0165 (8)0.0215 (9)0.0077 (7)0.0044 (7)0.0038 (7)
C150.0166 (8)0.0198 (9)0.0300 (10)0.0086 (7)0.0068 (8)0.0067 (8)
C160.0221 (9)0.0235 (9)0.0303 (10)0.0126 (8)0.0112 (8)0.0054 (8)
C170.0286 (10)0.0363 (11)0.0223 (10)0.0200 (9)0.0082 (8)0.0033 (8)
C180.0228 (9)0.0351 (11)0.0240 (10)0.0188 (9)0.0061 (8)0.0037 (8)
C190.0263 (10)0.0434 (13)0.0379 (12)0.0191 (10)0.0148 (9)0.0040 (10)
Geometric parameters (Å, º) top
P1—O11.4691 (14)C8—H8A0.9500
P1—O21.5793 (13)C9—C101.385 (3)
P1—O31.5926 (14)C9—H9A0.9500
P1—N11.6279 (16)C10—C111.386 (3)
O2—C11.399 (2)C10—H10A0.9500
O3—C71.414 (2)C11—C121.394 (3)
N1—C131.417 (2)C11—H11A0.9500
N1—H10.7881C12—H12A0.9500
C1—C61.387 (3)C13—C181.388 (3)
C1—C21.388 (3)C13—C141.403 (3)
C2—C31.387 (3)C14—C151.391 (3)
C2—H2A0.9500C14—H14A0.9500
C3—C41.390 (3)C15—C161.395 (3)
C3—H3A0.9500C15—H15A0.9500
C4—C51.386 (3)C16—C171.393 (3)
C4—H4A0.9500C16—C191.509 (3)
C5—C61.393 (3)C17—C181.387 (3)
C5—H5A0.9500C17—H17A0.9500
C6—H6A0.9500C18—H18A0.9500
C7—C81.383 (3)C19—H19A0.9800
C7—C121.377 (3)C19—H19B0.9800
C8—C91.389 (3)C19—H19C0.9800
O1—P1—O2117.14 (8)C10—C9—H9A119.8
O1—P1—O3114.32 (8)C8—C9—H9A119.8
O2—P1—O394.65 (7)C11—C10—C9120.22 (19)
O1—P1—N1111.29 (8)C11—C10—H10A119.9
O2—P1—N1107.89 (8)C9—C10—H10A119.9
O3—P1—N1110.35 (8)C10—C11—C12120.1 (2)
C1—O2—P1126.66 (12)C10—C11—H11A119.9
C7—O3—P1116.80 (11)C12—C11—H11A119.9
C13—N1—P1127.92 (13)C7—C12—C11118.45 (19)
C13—N1—H1115.8C7—C12—H12A120.8
P1—N1—H1112.7C11—C12—H12A120.8
C6—C1—C2121.82 (18)C18—C13—C14118.81 (17)
C6—C1—O2123.22 (16)C18—C13—N1123.00 (16)
C2—C1—O2114.95 (16)C14—C13—N1118.18 (16)
C3—C2—C1119.12 (18)C15—C14—C13120.21 (17)
C3—C2—H2A120.4C15—C14—H14A119.9
C1—C2—H2A120.4C13—C14—H14A119.9
C4—C3—C2120.23 (19)C14—C15—C16121.26 (17)
C4—C3—H3A119.9C14—C15—H15A119.4
C2—C3—H3A119.9C16—C15—H15A119.4
C3—C4—C5119.69 (19)C17—C16—C15117.64 (18)
C3—C4—H4A120.2C17—C16—C19120.30 (19)
C5—C4—H4A120.2C15—C16—C19122.06 (18)
C6—C5—C4121.1 (2)C18—C17—C16121.78 (19)
C6—C5—H5A119.5C18—C17—H17A119.1
C4—C5—H5A119.5C16—C17—H17A119.1
C1—C6—C5118.05 (19)C17—C18—C13120.29 (18)
C1—C6—H6A121.0C17—C18—H18A119.9
C5—C6—H6A121.0C13—C18—H18A119.9
C8—C7—C12122.44 (18)C16—C19—H19A109.5
C8—C7—O3118.89 (17)C16—C19—H19B109.5
C12—C7—O3118.65 (17)H19A—C19—H19B109.5
C7—C8—C9118.42 (19)C16—C19—H19C109.5
C7—C8—H8A120.8H19A—C19—H19C109.5
C9—C8—H8A120.8H19B—C19—H19C109.5
C10—C9—C8120.3 (2)
O1—P1—O2—C150.89 (16)C12—C7—C8—C90.0 (3)
O3—P1—O2—C1171.29 (14)O3—C7—C8—C9178.54 (18)
N1—P1—O2—C175.58 (15)C7—C8—C9—C100.2 (3)
O1—P1—O3—C750.54 (15)C8—C9—C10—C110.4 (3)
O2—P1—O3—C7173.16 (13)C9—C10—C11—C120.5 (3)
N1—P1—O3—C775.81 (14)C8—C7—C12—C110.0 (3)
O1—P1—N1—C13179.07 (15)O3—C7—C12—C11178.59 (17)
O2—P1—N1—C1351.11 (18)C10—C11—C12—C70.3 (3)
O3—P1—N1—C1351.04 (18)P1—N1—C13—C180.3 (3)
P1—O2—C1—C65.8 (3)P1—N1—C13—C14179.39 (14)
P1—O2—C1—C2175.33 (13)C18—C13—C14—C150.1 (3)
C6—C1—C2—C30.8 (3)N1—C13—C14—C15179.59 (17)
O2—C1—C2—C3179.63 (17)C13—C14—C15—C160.4 (3)
C1—C2—C3—C40.6 (3)C14—C15—C16—C170.1 (3)
C2—C3—C4—C50.1 (3)C14—C15—C16—C19179.19 (19)
C3—C4—C5—C60.2 (3)C15—C16—C17—C180.4 (3)
C2—C1—C6—C50.4 (3)C19—C16—C17—C18179.8 (2)
O2—C1—C6—C5179.22 (18)C16—C17—C18—C130.7 (3)
C4—C5—C6—C10.0 (3)C14—C13—C18—C170.4 (3)
P1—O3—C7—C886.63 (19)N1—C13—C18—C17179.86 (19)
P1—O3—C7—C1294.78 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.792.072.840 (3)167
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H18NO3P
Mr339.31
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.7406 (10), 9.9653 (10), 11.1788 (12)
α, β, γ (°)96.337 (2), 109.303 (2), 117.827 (2)
V3)858.93 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.24 × 0.21 × 0.11
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
8165, 3744, 3232
Rint0.020
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.099, 1.01
No. of reflections3744
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.57

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.792.072.840 (3)167
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationBao, J., Wulff, W. D. & Rheingold, A. L. (1993). J. Am. Chem. Soc. 115, 3814–3815.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChivers, T., Krahn, M., Schatte, G. & Parvez, M. (2003). Inorg. Chem. 42, 3994–4005.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGhadimi, S., Valmoozi, A. A. E. & Pourayoubi, M. (2007). Acta Cryst. E63, o3260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhadimi, S., Ebrahimi Valmoozi, A. A., Pourayoubi, M. & Samani, K. A. (2008). J. Enz. Inhibit. Med. Chem. 23, 556–561.  Web of Science CrossRef CAS Google Scholar
First citationGholivand, K., Pourayoubi, M. & Shariatinia, Z. (2007). Polyhedron, 26, 837–844.  Web of Science CSD CrossRef CAS Google Scholar
First citationNguyen, C. & Kim, J. (2008). Polym. Degrad. Stabil. 93, 1037–1043.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds