organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[4,5-Bis(butyl­sulfan­yl)-1,3-di­thiol-2-yl­­idene]-5-methyl-5H-1,3-di­thiolo[4,5-c]pyrrole-4-carbaldehyde

aKey Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji 133002, People's Republic of China
*Correspondence e-mail: zqcong@ybu.edu.cn

(Received 22 November 2010; accepted 24 November 2010; online 30 November 2010)

In the title compound, C18H23NOS6, the dithiol­opyrrole ring is almost planar [r.m.s. deviation = 0.044 (3) Å] and makes a dihedral angle of 25.11 (7)° with the dithiole ring. In the crystal, pairs of neighboring mol­ecules are connected by weak inter­molecular C—H⋯O inter­actions. These dimers are further linked into a chain along [110] by C—H⋯O inter­actions.

Related literature

For background to tetra­thia­fulvalenes, see: Jeppesen et al. (1999[Jeppesen, J. O., Takimiya, K., Jensen, F. & Becher, J. (1999). Org. Lett. 1, 1291-1294.]); Hansel et al. (2004[Hansel, J. A., Becher, J., Jeppesen, J. O., Levilain, E., Nielsen, M. B., Petersen, B. M., Petersen, J. C. & Sahin, Y. (2004). J. Mater. Chem. 14, 179-184.]). For the synthesis, see: An et al. (2009[An, C. X., Hou, R. B., Qiu, H., Zhao, J., Yin, B. Z. & Su, Z. M. (2009). Chin. J. Appl. Chem. 26, 795-800.]). For a related structure, see: Leng et al. (2009[Leng, F.-S., Li, B., Yin, B.-Z. & Wu, L.-X. (2009). Acta Cryst. E65, o3092.])

[Scheme 1]

Experimental

Crystal data
  • C18H23NOS6

  • Mr = 461.73

  • Triclinic, [P \overline 1]

  • a = 7.4227 (15) Å

  • b = 8.8356 (18) Å

  • c = 17.811 (4) Å

  • α = 93.44 (3)°

  • β = 99.37 (3)°

  • γ = 105.31 (3)°

  • V = 1105.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 291 K

  • 0.12 × 0.11 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.929, Tmax = 0.940

  • 10707 measured reflections

  • 4956 independent reflections

  • 3298 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.176

  • S = 1.06

  • 4956 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O1i 0.97 2.79 3.444 (5) 125
C4—H4A⋯O1i 0.97 2.71 3.368 (5) 126
C18—H18⋯O1ii 0.93 2.58 3.412 (5) 150
Symmetry codes: (i) x+1, y+1, z; (ii) -x, -y-1, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The tetrathiafulvalenes (TTFs) have become an interesting theme of organic synthesis (Jeppesen et al., 1999). This is due to the high electrical conductivity and super conductor properties of these highly sophisticated compounds. Becher has recently synthesized a series novel donor-π-acceptor dyads based on the monopyrrolo-TTF (MPTTF), which exhibit good third-order non-linear optical properties (Hansel et al. 2004). In this paper, we report the crystal structure of the title compound, which is a key precursor of the dyads.

The title compound, as shown in Fig. 1, all bond lengths and angles are normal and comparable with those reported for the related structure (Leng et al., 2009). In the title compound, the dithiolopyrrole ring and attached C16, C18 and O1 atoms are nearlly coplanar [mean deviation from the mean plane = 0.044 (3) Å. The dihedral angle between the dithiolopyrrole ring and dithiole ring is 25.11 (7) °. In the crystal, weak C—H···O hydrogen bonds (table 1) link the molecules into dimer firstly and the dimers are further linked to form one-dimensional chain along [a+b] direction.

Related literature top

For background to tetrathiafulvalenes, see: Jeppesen et al. (1999); Hansel et al. (2004). For the synthesis, see: An et al. (2009). For a related structure, see: Leng et al. (2009)

Experimental top

The title compound was prepared according to literature (An et al., 2009). Crystals suitable for single-crystal X-ray diffraction were grown by recrystallization from mixture of dichloromethane and petroleum (60–90 °C).

Refinement top

Carbon-bound H-atoms were placed in calculated positions with C—H = 0.93–0.97 A and were included in the refinement in the riding model with Uiso(H) = 1.2 or 1.5 Ueq(C).

Structure description top

The tetrathiafulvalenes (TTFs) have become an interesting theme of organic synthesis (Jeppesen et al., 1999). This is due to the high electrical conductivity and super conductor properties of these highly sophisticated compounds. Becher has recently synthesized a series novel donor-π-acceptor dyads based on the monopyrrolo-TTF (MPTTF), which exhibit good third-order non-linear optical properties (Hansel et al. 2004). In this paper, we report the crystal structure of the title compound, which is a key precursor of the dyads.

The title compound, as shown in Fig. 1, all bond lengths and angles are normal and comparable with those reported for the related structure (Leng et al., 2009). In the title compound, the dithiolopyrrole ring and attached C16, C18 and O1 atoms are nearlly coplanar [mean deviation from the mean plane = 0.044 (3) Å. The dihedral angle between the dithiolopyrrole ring and dithiole ring is 25.11 (7) °. In the crystal, weak C—H···O hydrogen bonds (table 1) link the molecules into dimer firstly and the dimers are further linked to form one-dimensional chain along [a+b] direction.

For background to tetrathiafulvalenes, see: Jeppesen et al. (1999); Hansel et al. (2004). For the synthesis, see: An et al. (2009). For a related structure, see: Leng et al. (2009)

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric of title compound, with the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.
2-[4,5-Bis(butylsulfanyl)-1,3-dithiol-2-ylidene]-5-methyl-5H- 1,3-dithiolo[4,5-c]pyrrole-4-carbaldehyde top
Crystal data top
C18H23NOS6Z = 2
Mr = 461.73F(000) = 484
Triclinic, P1Dx = 1.388 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4227 (15) ÅCell parameters from 7048 reflections
b = 8.8356 (18) Åθ = 3.2–27.4°
c = 17.811 (4) ŵ = 0.63 mm1
α = 93.44 (3)°T = 291 K
β = 99.37 (3)°Block, yellow
γ = 105.31 (3)°0.12 × 0.11 × 0.10 mm
V = 1105.1 (4) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4956 independent reflections
Radiation source: fine-focus sealed tube3298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.929, Tmax = 0.940k = 1111
10707 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.103P)2]
where P = (Fo2 + 2Fc2)/3
4956 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C18H23NOS6γ = 105.31 (3)°
Mr = 461.73V = 1105.1 (4) Å3
Triclinic, P1Z = 2
a = 7.4227 (15) ÅMo Kα radiation
b = 8.8356 (18) ŵ = 0.63 mm1
c = 17.811 (4) ÅT = 291 K
α = 93.44 (3)°0.12 × 0.11 × 0.10 mm
β = 99.37 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4956 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3298 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.940Rint = 0.035
10707 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.06Δρmax = 0.51 e Å3
4956 reflectionsΔρmin = 0.44 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.3588 (7)0.8577 (6)0.3605 (3)0.0992 (16)
H1A1.44030.85690.32390.149*
H1B1.43090.86650.41130.149*
H1C1.30670.94590.35540.149*
C21.2000 (6)0.7069 (5)0.3463 (2)0.0746 (11)
H2A1.25290.62060.35980.090*
H2B1.11200.71390.38020.090*
C31.0910 (6)0.6676 (5)0.2657 (2)0.0685 (10)
H3A1.00390.56280.26120.082*
H3B1.17980.66420.23170.082*
C40.9789 (5)0.7804 (5)0.2387 (2)0.0612 (9)
H4A0.92270.74940.18510.073*
H4B1.06560.88530.24290.073*
C51.0794 (8)0.1668 (7)0.4134 (3)0.1074 (17)
H5A1.06220.14600.35880.161*
H5B1.11500.08150.43700.161*
H5C1.17780.26340.43050.161*
C60.8994 (9)0.1813 (7)0.4347 (3)0.1053 (17)
H6A0.79740.08860.41200.126*
H6B0.91110.18490.48990.126*
C70.8498 (7)0.3235 (6)0.4094 (3)0.0837 (13)
H7A0.83720.31940.35420.100*
H7B0.95240.41610.43170.100*
C80.6652 (7)0.3397 (5)0.4319 (2)0.0735 (11)
H8A0.67340.33500.48660.088*
H8B0.56040.25210.40590.088*
C90.6295 (5)0.6022 (4)0.26157 (16)0.0458 (7)
C100.5642 (5)0.4948 (4)0.30804 (17)0.0483 (7)
C110.4100 (4)0.3654 (3)0.17027 (16)0.0445 (7)
C120.3512 (4)0.2543 (3)0.10934 (16)0.0438 (7)
C130.2413 (4)0.0068 (3)0.02430 (17)0.0440 (7)
C140.3053 (4)0.1071 (3)0.02319 (16)0.0439 (7)
C150.2900 (5)0.0300 (4)0.09493 (18)0.0525 (8)
H150.32070.07760.13810.063*
C160.1719 (6)0.2460 (5)0.1579 (2)0.0688 (10)
H16A0.03630.27880.17430.103*
H16B0.21540.33540.14400.103*
H16C0.23070.20220.19890.103*
C170.1886 (5)0.1548 (4)0.01838 (19)0.0510 (7)
C180.1247 (6)0.3038 (4)0.0080 (2)0.0639 (9)
H180.09600.39340.02670.077*
N10.2228 (4)0.1257 (3)0.09119 (15)0.0526 (7)
O10.1051 (5)0.3211 (3)0.07376 (16)0.0820 (9)
S10.79120 (13)0.78869 (10)0.29159 (5)0.0561 (3)
S20.61844 (16)0.52311 (12)0.40750 (5)0.0659 (3)
S30.38334 (14)0.32527 (10)0.26366 (5)0.0567 (3)
S40.52382 (14)0.56342 (9)0.16415 (4)0.0536 (2)
S50.37538 (13)0.30352 (9)0.01664 (4)0.0524 (2)
S60.24240 (13)0.05437 (9)0.11878 (4)0.0516 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.068 (3)0.109 (4)0.115 (4)0.023 (3)0.011 (3)0.006 (3)
C20.074 (3)0.087 (3)0.069 (3)0.035 (2)0.011 (2)0.010 (2)
C30.073 (3)0.068 (2)0.066 (2)0.018 (2)0.023 (2)0.0010 (19)
C40.061 (2)0.070 (2)0.0535 (19)0.0135 (18)0.0181 (17)0.0137 (17)
C50.099 (4)0.107 (4)0.122 (5)0.039 (3)0.027 (3)0.005 (3)
C60.125 (5)0.117 (4)0.099 (4)0.061 (4)0.046 (3)0.022 (3)
C70.103 (4)0.083 (3)0.072 (3)0.031 (3)0.027 (3)0.009 (2)
C80.094 (3)0.082 (3)0.050 (2)0.032 (2)0.012 (2)0.0188 (19)
C90.0491 (17)0.0483 (16)0.0380 (15)0.0111 (14)0.0081 (13)0.0007 (12)
C100.0561 (19)0.0532 (17)0.0366 (15)0.0176 (15)0.0089 (14)0.0004 (13)
C110.0497 (18)0.0417 (15)0.0383 (15)0.0053 (13)0.0094 (13)0.0053 (12)
C120.0484 (17)0.0414 (14)0.0378 (14)0.0038 (13)0.0107 (13)0.0066 (12)
C130.0437 (16)0.0421 (15)0.0410 (15)0.0058 (13)0.0039 (13)0.0028 (12)
C140.0460 (17)0.0414 (15)0.0388 (15)0.0052 (13)0.0042 (13)0.0038 (12)
C150.060 (2)0.0524 (18)0.0425 (16)0.0105 (16)0.0079 (15)0.0079 (14)
C160.072 (3)0.064 (2)0.061 (2)0.0154 (19)0.0018 (19)0.0205 (18)
C170.0520 (19)0.0439 (16)0.0504 (18)0.0074 (14)0.0010 (14)0.0021 (13)
C180.072 (2)0.0439 (17)0.069 (2)0.0075 (17)0.0110 (19)0.0014 (16)
N10.0560 (17)0.0517 (15)0.0452 (14)0.0140 (13)0.0012 (12)0.0056 (12)
O10.109 (2)0.0570 (15)0.0691 (18)0.0038 (15)0.0158 (17)0.0148 (13)
S10.0593 (5)0.0486 (4)0.0552 (5)0.0078 (4)0.0121 (4)0.0066 (4)
S20.0881 (7)0.0735 (6)0.0349 (4)0.0241 (5)0.0069 (4)0.0004 (4)
S30.0694 (6)0.0540 (5)0.0389 (4)0.0006 (4)0.0148 (4)0.0056 (3)
S40.0736 (6)0.0425 (4)0.0383 (4)0.0066 (4)0.0071 (4)0.0051 (3)
S50.0704 (6)0.0412 (4)0.0381 (4)0.0023 (4)0.0097 (4)0.0066 (3)
S60.0623 (5)0.0431 (4)0.0422 (4)0.0001 (4)0.0128 (4)0.0074 (3)
Geometric parameters (Å, º) top
C1—C21.504 (6)C9—C101.342 (5)
C1—H1A0.9600C9—S11.756 (3)
C1—H1B0.9600C9—S41.757 (3)
C1—H1C0.9600C10—S21.739 (3)
C2—C31.500 (5)C10—S31.767 (3)
C2—H2A0.9700C11—C121.350 (4)
C2—H2B0.9700C11—S41.749 (3)
C3—C41.510 (5)C11—S31.753 (3)
C3—H3A0.9700C12—S51.757 (3)
C3—H3B0.9700C12—S61.769 (3)
C4—S11.818 (3)C13—C141.391 (4)
C4—H4A0.9700C13—C171.399 (4)
C4—H4B0.9700C13—S61.734 (3)
C5—C61.482 (7)C14—C151.385 (4)
C5—H5A0.9600C14—S51.744 (3)
C5—H5B0.9600C15—N11.344 (4)
C5—H5C0.9600C15—H150.9300
C6—C71.475 (7)C16—N11.475 (4)
C6—H6A0.9700C16—H16A0.9600
C6—H6B0.9700C16—H16B0.9600
C7—C81.528 (6)C16—H16C0.9600
C7—H7A0.9700C17—N11.387 (4)
C7—H7B0.9700C17—C181.413 (5)
C8—S21.807 (4)C18—O11.217 (5)
C8—H8A0.9700C18—H180.9300
C8—H8B0.9700
C2—C1—H1A109.5C7—C8—H8B109.3
C2—C1—H1B109.5S2—C8—H8B109.3
H1A—C1—H1B109.5H8A—C8—H8B107.9
C2—C1—H1C109.5C10—C9—S1125.3 (2)
H1A—C1—H1C109.5C10—C9—S4117.4 (2)
H1B—C1—H1C109.5S1—C9—S4116.88 (18)
C3—C2—C1115.1 (4)C9—C10—S2125.1 (3)
C3—C2—H2A108.5C9—C10—S3116.0 (2)
C1—C2—H2A108.5S2—C10—S3118.30 (19)
C3—C2—H2B108.5C12—C11—S4123.3 (2)
C1—C2—H2B108.5C12—C11—S3123.5 (2)
H2A—C2—H2B107.5S4—C11—S3113.19 (16)
C2—C3—C4115.4 (3)C11—C12—S5121.2 (2)
C2—C3—H3A108.4C11—C12—S6121.7 (2)
C4—C3—H3A108.4S5—C12—S6117.09 (16)
C2—C3—H3B108.4C14—C13—C17108.2 (3)
C4—C3—H3B108.4C14—C13—S6118.5 (2)
H3A—C3—H3B107.5C17—C13—S6133.4 (3)
C3—C4—S1114.2 (3)C15—C14—C13107.6 (3)
C3—C4—H4A108.7C15—C14—S5135.4 (2)
S1—C4—H4A108.7C13—C14—S5117.0 (2)
C3—C4—H4B108.7N1—C15—C14107.9 (3)
S1—C4—H4B108.7N1—C15—H15126.0
H4A—C4—H4B107.6C14—C15—H15126.0
C6—C5—H5A109.5N1—C16—H16A109.5
C6—C5—H5B109.5N1—C16—H16B109.5
H5A—C5—H5B109.5H16A—C16—H16B109.5
C6—C5—H5C109.5N1—C16—H16C109.5
H5A—C5—H5C109.5H16A—C16—H16C109.5
H5B—C5—H5C109.5H16B—C16—H16C109.5
C7—C6—C5112.5 (5)N1—C17—C13105.7 (3)
C7—C6—H6A109.1N1—C17—C18126.9 (3)
C5—C6—H6A109.1C13—C17—C18127.3 (3)
C7—C6—H6B109.1O1—C18—C17123.6 (3)
C5—C6—H6B109.1O1—C18—H18118.2
H6A—C6—H6B107.8C17—C18—H18118.2
C6—C7—C8112.7 (4)C15—N1—C17110.6 (3)
C6—C7—H7A109.0C15—N1—C16124.0 (3)
C8—C7—H7A109.0C17—N1—C16125.0 (3)
C6—C7—H7B109.0C9—S1—C4101.26 (16)
C8—C7—H7B109.0C10—S2—C8102.69 (17)
H7A—C7—H7B107.8C11—S3—C1094.65 (15)
C7—C8—S2111.8 (3)C11—S4—C994.30 (15)
C7—C8—H8A109.3C14—S5—C1293.61 (14)
S2—C8—H8A109.3C13—S6—C1293.09 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O1i0.972.793.444 (5)125
C4—H4A···O1i0.972.713.368 (5)126
C18—H18···O1ii0.932.583.412 (5)150
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC18H23NOS6
Mr461.73
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.4227 (15), 8.8356 (18), 17.811 (4)
α, β, γ (°)93.44 (3), 99.37 (3), 105.31 (3)
V3)1105.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.12 × 0.11 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.929, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
10707, 4956, 3298
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.176, 1.06
No. of reflections4956
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.44

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O1i0.972.793.444 (5)125.0
C4—H4A···O1i0.972.713.368 (5)125.9
C18—H18···O1ii0.932.583.412 (5)149.6
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Programme of Higher Education (grant No. 2006184001) and the Open Project of the State Key Laboratory of Supra­molecular Structure and Materials, Jilin University.

References

First citationAn, C. X., Hou, R. B., Qiu, H., Zhao, J., Yin, B. Z. & Su, Z. M. (2009). Chin. J. Appl. Chem. 26, 795–800.  CAS Google Scholar
First citationHansel, J. A., Becher, J., Jeppesen, J. O., Levilain, E., Nielsen, M. B., Petersen, B. M., Petersen, J. C. & Sahin, Y. (2004). J. Mater. Chem. 14, 179–184.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJeppesen, J. O., Takimiya, K., Jensen, F. & Becher, J. (1999). Org. Lett. 1, 1291–1294.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeng, F.-S., Li, B., Yin, B.-Z. & Wu, L.-X. (2009). Acta Cryst. E65, o3092.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds