organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­pyridinium 1-phenyl­cyclo­propane-1-carboxyl­ate

aInstitute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833, and bDepartment of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
*Correspondence e-mail: he_guangwen@ices.a-star.edu.sg, reginald_tan@ices.a-star.edu.sg

(Received 22 November 2010; accepted 24 November 2010; online 27 November 2010)

In the title salt, C5H7N2+·C10H9O2, 2-amino­pyridine and 1-phenyl­cyclo­propane-1-carb­oxy­lic acid crystallize together, forming a 2-amino­pyridinium–carboxyl­ate supra­molecular heterosynthon involving two N—H⋯O hydrogen bonds, which in turn dimerizes to form a four-component supra­molecular unit also sustained by N—H⋯O hydrogen bonding. A C—H⋯π inter­action between a pyridine C—H group and the centroid of the phenyl ring of the anion further stabilizes the four-component supra­molecular unit. The overall crystal packing also features C—H⋯O inter­actions.

Related literature

For structural studies of 2-amino­pyridine, see: Chao et al. (1975[Chao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922-2924.]). For recent mol­ecular co-crystals and salts of 2-amino­pyridine, see: Sivaramkumar et al. (2010[Sivaramkumar, M. S., Velmurugan, R., Sekar, M., Ramesh, P. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o1821.]); Chitra et al. (2008[Chitra, R., Roussel, P., Capet, F., Murli, C. & Choudhury, R. R. (2008). J. Mol. Struct. 891, 103-109.]); Quah et al. (2008[Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o2230.]); Xie (2007[Xie, Z.-Y. (2007). Acta Cryst. E63, o2192-o2193.]); Li et al. (2006[Li, S.-L., Ma, J.-F. & Ping, G.-J. (2006). Acta Cryst. E62, o1173-o1175.], 2007[Li, J., Li, H. & Sui, L. (2007). Acta Cryst. E63, o4370.]); Yang & Qu (2006[Yang, D.-J. & Qu, S.-H. (2006). Acta Cryst. E62, o5127-o5129.]); Bis & Zaworotko (2005[Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169-1179.]). For the use of 2-amino­pyridine in the synthesis of pharmaceuticals, see: O'Neil (2006[O'Neil, M. J. (2006). The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 14th ed. Merck: Whitehouse Station.]). For our previous work on screening for molecular co-crystals and salts, see: He et al. (2009[He, G., Chow, P. S. & Tan, R. B. H. (2009). Cryst. Growth Des. 9, 4529-4532.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N2+·C10H9O2

  • Mr = 256.30

  • Triclinic, [P \overline 1]

  • a = 8.6147 (17) Å

  • b = 9.0555 (18) Å

  • c = 9.2346 (18) Å

  • α = 75.56 (3)°

  • β = 87.72 (3)°

  • γ = 72.79 (3)°

  • V = 666.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 110 K

  • 0.33 × 0.33 × 0.22 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.972, Tmax = 0.981

  • 9557 measured reflections

  • 3271 independent reflections

  • 3103 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.145

  • S = 1.12

  • 3271 reflections

  • 184 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.983 (19) 1.64 (2) 2.6255 (15) 176.2 (17)
N2—H6⋯O2i 0.913 (18) 1.938 (18) 2.8230 (16) 162.6 (16)
N2—H9⋯O2 0.949 (19) 1.844 (19) 2.7903 (15) 175.2 (16)
C11—H11⋯O1ii 0.95 2.53 3.479 (2) 178
C12—H12⋯O1iii 0.95 2.47 3.3212 (18) 149
C2—H2⋯Cg1i 0.95 2.62 3.5464 (15) 166
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2-Aminopyridine is one of the three positional isomers of aminopyridine and is widely used as an intermediate in the synthesis of pharmaceuticals (O'Neil, 2006). We have chosen 2-aminopyridine and 1-phenylcyclopropane-1-carboxylic acid for cocrystallization experiment as an extension work to our previous study on screening for molecular cocrystals and salts (He et al., 2009).

The crystal structure of the title salt contains each one molecule of 2-aminopyridine and 1-phenylcyclopropane-1-carboxylic acid in the asymmetric unit (Fig. 2). Bis and Zaworotko revealed four types of two-point recognition possibilities in molecular complexes formed between 2-aminopyridine and carboxylic acids (Bis & Zaworotko, 2005). They have distinguished the type IIV (Fig 1) synthons depending on whether the interacting complementary functional groups are the same or different. Type I involves formation of the carboxylic acid homosynthon; type II involves formation of the 2-aminopyridine homosynthon; type III and IV involve formation of 2-aminopyridine-carboxylic acid and 2-aminopyridinium-carboxylate supramolecular heterosynthons, respectively.

The title salt features type IV heterosynthon, where the 2-aminopyridinium ion forms a heterosynthon with the carboxylate group of the 1-phenylcyclopropane-1-carboxylate via two N–H···O (N···O = 2.6255 (15) and 2.7903 (15) Å) hydrogen bonds. Two such heterosynthons related by an inversion center dimerizes to form a four-component supramolecular unit sustained by N–H···O (N···O = 2.8230 (16) Å) hydrogen bonding (Fig. 3). The four-component supramolecular unit is further stabilized by a C–H···π interaction involving the 2-C–H of the pyridine ring and centroid of the phenyl ring of the carboxylate: C···Cg1 (1 - x,1 - y,1 - z) = 3.5464 (15) Å, where Cg1 denotes the centroid of the ring C10–C15 of 1-phenylcyclopropane-1-carboxylate (Fig. 4). Two prominent C–H···O interactions that involve the 11-C—H and 12-C—H of the phenyl ring of the 1-phenylcyclopropane-1-carboxylate and O1 of the same molecule at (-x + 1, -y + 1, -z + 2) and (x + 1, y, z), respectively, stabilize the overall crystal structure.

Related literature top

For structural studies of 2-aminopyridine, see: Chao et al. (1975). For recent molecular co-crystals and salts of 2-aminopyridine, see: Sivaramkumar et al. (2010); Chitra et al. (2008); Quah et al. (2008); Xie (2007); Li et al. (2007); Yang & Qu (2006); Li et al. (2006); Bis & Zaworotko (2005). For the use of 2-aminopyridine in the synthesis of pharmaceuticals, see: O'Neil (2006). For our previous work, see: He et al. (2009).

Experimental top

0.1883 g (2 mmol) of 2-aminopyridine (Acros Organic, 99+%)) and 0.3246 g (2 mmol) of 1-phenylcyclopropane-1-carboxylic acid (Sigma, 97%) and were dissolved into 3 ml of ethyl acetate (Fisher Scientific, HPLC). Solution was then filtered through a 0.22µm PTFE filter. Filtered solution was finally sealed with Parafilm? and small holes were made to allow solvent to slowly evaporate. The block-shaped crystal (0.33 × 0.33 × 0.22 mm) suitable for single-crystal X-ray diffraction was collected after one day.

Refinement top

H atoms bonded to N and O atoms were located in a difference map and allowed to ride on their parent atoms in the refinement cycles. Other H atoms were positioned geometrically and refined using a riding model.

Structure description top

2-Aminopyridine is one of the three positional isomers of aminopyridine and is widely used as an intermediate in the synthesis of pharmaceuticals (O'Neil, 2006). We have chosen 2-aminopyridine and 1-phenylcyclopropane-1-carboxylic acid for cocrystallization experiment as an extension work to our previous study on screening for molecular cocrystals and salts (He et al., 2009).

The crystal structure of the title salt contains each one molecule of 2-aminopyridine and 1-phenylcyclopropane-1-carboxylic acid in the asymmetric unit (Fig. 2). Bis and Zaworotko revealed four types of two-point recognition possibilities in molecular complexes formed between 2-aminopyridine and carboxylic acids (Bis & Zaworotko, 2005). They have distinguished the type IIV (Fig 1) synthons depending on whether the interacting complementary functional groups are the same or different. Type I involves formation of the carboxylic acid homosynthon; type II involves formation of the 2-aminopyridine homosynthon; type III and IV involve formation of 2-aminopyridine-carboxylic acid and 2-aminopyridinium-carboxylate supramolecular heterosynthons, respectively.

The title salt features type IV heterosynthon, where the 2-aminopyridinium ion forms a heterosynthon with the carboxylate group of the 1-phenylcyclopropane-1-carboxylate via two N–H···O (N···O = 2.6255 (15) and 2.7903 (15) Å) hydrogen bonds. Two such heterosynthons related by an inversion center dimerizes to form a four-component supramolecular unit sustained by N–H···O (N···O = 2.8230 (16) Å) hydrogen bonding (Fig. 3). The four-component supramolecular unit is further stabilized by a C–H···π interaction involving the 2-C–H of the pyridine ring and centroid of the phenyl ring of the carboxylate: C···Cg1 (1 - x,1 - y,1 - z) = 3.5464 (15) Å, where Cg1 denotes the centroid of the ring C10–C15 of 1-phenylcyclopropane-1-carboxylate (Fig. 4). Two prominent C–H···O interactions that involve the 11-C—H and 12-C—H of the phenyl ring of the 1-phenylcyclopropane-1-carboxylate and O1 of the same molecule at (-x + 1, -y + 1, -z + 2) and (x + 1, y, z), respectively, stabilize the overall crystal structure.

For structural studies of 2-aminopyridine, see: Chao et al. (1975). For recent molecular co-crystals and salts of 2-aminopyridine, see: Sivaramkumar et al. (2010); Chitra et al. (2008); Quah et al. (2008); Xie (2007); Li et al. (2007); Yang & Qu (2006); Li et al. (2006); Bis & Zaworotko (2005). For the use of 2-aminopyridine in the synthesis of pharmaceuticals, see: O'Neil (2006). For our previous work, see: He et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structures of 2-aminopyridinium ion and 1-phenylcyclopropane-1-carboxylate, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Supramolecular synthons: I. a carboxylic acid homosynthon; II. 2-aminopyridine homosynthon; III. 2-aminopyridine-carboxylic acid heterosynthon; IV. 2-aminopyridine-carboxylate heterosynthon.
[Figure 3] Fig. 3. A four-component supramolecular unit that features heterosynthon IV and a C–H···π interaction in the crystal structure of the title salt.
[Figure 4] Fig. 4. Part of the crystal structure of the title salt, showing the arrangement of the four-component supramolecular units which are stabilized by C–H···O interactions.
2-Aminopyridinium 1-phenylcyclopropane-1-carboxylate top
Crystal data top
C5H7N2+·C10H9O2Z = 2
Mr = 256.30F(000) = 272
Triclinic, P1Dx = 1.278 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6147 (17) ÅCell parameters from 1840 reflections
b = 9.0555 (18) Åθ = 2.3–30.9°
c = 9.2346 (18) ŵ = 0.09 mm1
α = 75.56 (3)°T = 110 K
β = 87.72 (3)°Block, colorless
γ = 72.79 (3)°0.33 × 0.33 × 0.22 mm
V = 666.0 (2) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3271 independent reflections
Radiation source: fine-focus sealed tube3103 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1111
Tmin = 0.972, Tmax = 0.981k = 1111
9557 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0812P)2 + 0.1565P]
where P = (Fo2 + 2Fc2)/3
3271 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C5H7N2+·C10H9O2γ = 72.79 (3)°
Mr = 256.30V = 666.0 (2) Å3
Triclinic, P1Z = 2
a = 8.6147 (17) ÅMo Kα radiation
b = 9.0555 (18) ŵ = 0.09 mm1
c = 9.2346 (18) ÅT = 110 K
α = 75.56 (3)°0.33 × 0.33 × 0.22 mm
β = 87.72 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3271 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3103 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.981Rint = 0.017
9557 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.31 e Å3
3271 reflectionsΔρmin = 0.24 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24208 (10)0.61579 (11)0.84154 (10)0.0282 (2)
N10.14380 (12)0.42572 (12)0.71820 (11)0.0242 (2)
O20.43518 (12)0.64375 (12)0.67744 (10)0.0338 (2)
N20.35609 (13)0.42026 (15)0.55735 (13)0.0309 (3)
C10.22273 (14)0.37913 (14)0.60017 (13)0.0238 (2)
C60.41282 (13)0.76759 (14)0.87938 (13)0.0234 (2)
C30.02113 (16)0.25068 (15)0.57653 (14)0.0290 (3)
H30.02310.19180.52630.035*
C90.36026 (13)0.66849 (14)0.79228 (13)0.0235 (2)
C110.71088 (14)0.73844 (14)0.88508 (13)0.0246 (2)
H110.72590.64080.95890.029*
C100.55559 (14)0.82560 (14)0.82490 (12)0.0230 (2)
C120.84456 (14)0.79240 (15)0.83861 (13)0.0268 (3)
H120.94990.73180.88060.032*
C20.15868 (15)0.28868 (14)0.52668 (13)0.0257 (3)
H20.21140.25480.44320.031*
C50.00793 (15)0.38539 (15)0.76921 (13)0.0269 (3)
H50.04310.41900.85340.032*
C140.67030 (17)1.02220 (15)0.66824 (15)0.0319 (3)
H140.65601.11900.59340.038*
C150.53697 (15)0.96742 (15)0.71553 (14)0.0292 (3)
H150.43201.02770.67250.035*
C40.05647 (16)0.29794 (16)0.70228 (14)0.0304 (3)
H40.15090.26940.73900.036*
C70.39043 (16)0.72252 (17)1.04712 (14)0.0321 (3)
H7A0.34740.63101.08780.038*
H7B0.47120.73401.11350.038*
C130.82364 (15)0.93486 (15)0.73082 (14)0.0288 (3)
H130.91450.97250.69990.035*
C80.27730 (15)0.87131 (17)0.95326 (15)0.0332 (3)
H8A0.28830.97460.96170.040*
H8B0.16450.87160.93590.040*
H60.407 (2)0.393 (2)0.475 (2)0.038 (4)*
H90.389 (2)0.492 (2)0.600 (2)0.041 (5)*
H10.185 (2)0.496 (2)0.762 (2)0.044 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0256 (4)0.0351 (5)0.0315 (5)0.0151 (3)0.0083 (3)0.0157 (4)
N10.0263 (5)0.0268 (5)0.0226 (5)0.0103 (4)0.0047 (4)0.0094 (4)
O20.0381 (5)0.0433 (5)0.0329 (5)0.0232 (4)0.0150 (4)0.0210 (4)
N20.0292 (5)0.0413 (6)0.0326 (6)0.0188 (5)0.0110 (4)0.0193 (5)
C10.0240 (5)0.0242 (5)0.0238 (5)0.0080 (4)0.0027 (4)0.0063 (4)
C60.0212 (5)0.0272 (6)0.0249 (5)0.0082 (4)0.0047 (4)0.0113 (4)
C30.0351 (6)0.0295 (6)0.0286 (6)0.0172 (5)0.0054 (5)0.0097 (5)
C90.0213 (5)0.0257 (5)0.0256 (5)0.0078 (4)0.0033 (4)0.0093 (4)
C110.0257 (6)0.0256 (5)0.0247 (5)0.0100 (4)0.0033 (4)0.0078 (4)
C100.0238 (5)0.0249 (5)0.0244 (5)0.0094 (4)0.0043 (4)0.0113 (4)
C120.0242 (5)0.0316 (6)0.0292 (6)0.0113 (4)0.0030 (4)0.0123 (5)
C20.0302 (6)0.0265 (6)0.0234 (5)0.0111 (4)0.0047 (4)0.0092 (4)
C50.0292 (6)0.0286 (6)0.0245 (5)0.0105 (5)0.0073 (4)0.0082 (4)
C140.0403 (7)0.0248 (6)0.0318 (6)0.0137 (5)0.0059 (5)0.0051 (5)
C150.0287 (6)0.0260 (6)0.0321 (6)0.0074 (5)0.0009 (5)0.0065 (5)
C40.0323 (6)0.0324 (6)0.0314 (6)0.0169 (5)0.0089 (5)0.0090 (5)
C70.0325 (6)0.0468 (8)0.0260 (6)0.0199 (6)0.0090 (5)0.0167 (5)
C130.0326 (6)0.0318 (6)0.0308 (6)0.0182 (5)0.0092 (5)0.0144 (5)
C80.0276 (6)0.0372 (7)0.0429 (7)0.0110 (5)0.0115 (5)0.0242 (6)
Geometric parameters (Å, º) top
O1—C91.2702 (14)C11—H110.9500
N1—C11.3524 (15)C10—C151.3927 (17)
N1—C51.3597 (15)C12—C131.3870 (18)
N1—H10.983 (19)C12—H120.9500
O2—C91.2530 (15)C2—H20.9500
N2—C11.3261 (15)C5—C41.3595 (18)
N2—H60.913 (18)C5—H50.9500
N2—H90.949 (19)C14—C131.385 (2)
C1—C21.4178 (17)C14—C151.3947 (17)
C6—C101.4977 (15)C14—H140.9500
C6—C91.5122 (16)C15—H150.9500
C6—C71.5201 (17)C4—H40.9500
C6—C81.5224 (17)C7—C81.491 (2)
C3—C21.3614 (16)C7—H7A0.9900
C3—C41.4125 (18)C7—H7B0.9900
C3—H30.9500C13—H130.9500
C11—C101.3918 (17)C8—H8A0.9900
C11—C121.3922 (16)C8—H8B0.9900
C1—N1—C5121.81 (10)C3—C2—C1119.58 (11)
C1—N1—H1117.1 (11)C3—C2—H2120.2
C5—N1—H1121.0 (11)C1—C2—H2120.2
C1—N2—H6118.9 (11)C4—C5—N1121.41 (11)
C1—N2—H9120.8 (11)C4—C5—H5119.3
H6—N2—H9119.5 (15)N1—C5—H5119.3
N2—C1—N1118.89 (11)C13—C14—C15119.75 (12)
N2—C1—C2122.65 (11)C13—C14—H14120.1
N1—C1—C2118.46 (11)C15—C14—H14120.1
C10—C6—C9117.44 (9)C10—C15—C14120.94 (12)
C10—C6—C7118.19 (10)C10—C15—H15119.5
C9—C6—C7115.04 (10)C14—C15—H15119.5
C10—C6—C8118.76 (10)C5—C4—C3118.07 (11)
C9—C6—C8115.60 (10)C5—C4—H4121.0
C7—C6—C858.71 (9)C3—C4—H4121.0
C2—C3—C4120.64 (11)C8—C7—C660.72 (9)
C2—C3—H3119.7C8—C7—H7A117.7
C4—C3—H3119.7C6—C7—H7A117.7
O2—C9—O1124.47 (11)C8—C7—H7B117.7
O2—C9—C6118.39 (10)C6—C7—H7B117.7
O1—C9—C6117.13 (10)H7A—C7—H7B114.8
C10—C11—C12120.92 (11)C14—C13—C12120.03 (11)
C10—C11—H11119.5C14—C13—H13120.0
C12—C11—H11119.5C12—C13—H13120.0
C11—C10—C15118.48 (11)C7—C8—C660.57 (8)
C11—C10—C6120.06 (10)C7—C8—H8A117.7
C15—C10—C6121.46 (11)C6—C8—H8A117.7
C13—C12—C11119.87 (11)C7—C8—H8B117.7
C13—C12—H12120.1C6—C8—H8B117.7
C11—C12—H12120.1H8A—C8—H8B114.8
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.983 (19)1.64 (2)2.6255 (15)176.2 (17)
N2—H6···O2i0.913 (18)1.938 (18)2.8230 (16)162.6 (16)
N2—H9···O20.949 (19)1.844 (19)2.7903 (15)175.2 (16)
C11—H11···O1ii0.952.533.479 (2)178
C12—H12···O1iii0.952.473.3212 (18)149
C2—H2···Cg1i0.952.623.5464 (15)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC5H7N2+·C10H9O2
Mr256.30
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)8.6147 (17), 9.0555 (18), 9.2346 (18)
α, β, γ (°)75.56 (3), 87.72 (3), 72.79 (3)
V3)666.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.33 × 0.33 × 0.22
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.972, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
9557, 3271, 3103
Rint0.017
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.145, 1.12
No. of reflections3271
No. of parameters184
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.983 (19)1.64 (2)2.6255 (15)176.2 (17)
N2—H6···O2i0.913 (18)1.938 (18)2.8230 (16)162.6 (16)
N2—H9···O20.949 (19)1.844 (19)2.7903 (15)175.2 (16)
C11—H11···O1ii0.952.533.479 (2)178.3
C12—H12···O1iii0.952.473.3212 (18)148.5
C2—H2···Cg1i0.952.623.5464 (15)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x+1, y, z.
 

Acknowledgements

This work was supported by the Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research), Singapore.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169–1179.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922–2924.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationChitra, R., Roussel, P., Capet, F., Murli, C. & Choudhury, R. R. (2008). J. Mol. Struct. 891, 103-109.  Web of Science CSD CrossRef CAS Google Scholar
First citationHe, G., Chow, P. S. & Tan, R. B. H. (2009). Cryst. Growth Des. 9, 4529–4532.  Web of Science CrossRef CAS Google Scholar
First citationLi, J., Li, H. & Sui, L. (2007). Acta Cryst. E63, o4370.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, S.-L., Ma, J.-F. & Ping, G.-J. (2006). Acta Cryst. E62, o1173-o1175.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationO'Neil, M. J. (2006). The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 14th ed. Merck: Whitehouse Station.  Google Scholar
First citationQuah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o2230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivaramkumar, M. S., Velmurugan, R., Sekar, M., Ramesh, P. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o1821.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Z.-Y. (2007). Acta Cryst. E63, o2192–o2193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-J. & Qu, S.-H. (2006). Acta Cryst. E62, o5127–o5129.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds