metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Octa­butyl­bis­­(μ2-2-chloro-5-nitro­benzoato)bis­­(2-chloro-5-nitro­benzoato)di-μ3-oxido-tetra­tin(IV)

aDepartment of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 23 November 2010; accepted 25 November 2010; online 30 November 2010)

The title complex, [Sn4(C4H9)8(C7H3ClNO4)4O2], is a cluster formed by a crystallographic inversion center around the central Sn2O2 ring. Both of the two independent Sn atoms are five-coordinated, with distorted trigonal–bipyramidal SnC2O3 geometries. One Sn atom is coordinated by two butyl groups, one O atom of the benzoate anion and two bridging O atoms, whereas the other Sn atom is coordinated by two butyl groups, two O atoms of the benzoate anions and a bridging O atom. The O atoms of the bridging benzoate anion are disordered over two sites with an occupancy ratio of 0.862 (12):0.138 (12). One of the butyl groups coordinated to the Sn2O2 ring is disordered over two sites with an occupancy ratio of 0.780 (8):0.220 (8), whereas both of the two butyl groups coordinated to the other Sn atom are disordered over two sites with occupancy ratios of 0.788 (5):0.212 (5) and 0.827 (10):0.173 (10). All the butyl groups are equatorial with respect to the SnO3 trigonal plane. In the crystal, complex mol­ecules are stacked down [010] with weak inter­molecular C—H⋯π inter­actions stabilizing the crystal structure.

Related literature

For general background to and applications of the title complex, see: Li et al. (2006)[Li, F.-H., Yin, H.-D., Gao, Z.-J. & Wang, D.-Q. (2006). Acta Cryst. E62, m788-m790.]; Win et al. (2008a[Win, Y. F., Teoh, S. G., Ha, S. T., Kia, R. & Fun, H.-K. (2008a). Acta Cryst. E64, m1572-m1573.],b[Win, Y. F., Teoh, S. G., Lim, E. K., Ng, S. L. & Fun, H. K. (2008b). J. Chem. Cryst. 38, 345-350.], 2010[Win, Y.-F., Choong, C.-S., Teoh, S.-G., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, m1406-m1407.]). For closely related structures, see: Li et al. (2006[Li, F.-H., Yin, H.-D., Gao, Z.-J. & Wang, D.-Q. (2006). Acta Cryst. E62, m788-m790.]); Win et al. (2008a[Win, Y. F., Teoh, S. G., Ha, S. T., Kia, R. & Fun, H.-K. (2008a). Acta Cryst. E64, m1572-m1573.],b[Win, Y. F., Teoh, S. G., Lim, E. K., Ng, S. L. & Fun, H. K. (2008b). J. Chem. Cryst. 38, 345-350.]; 2010[Win, Y.-F., Choong, C.-S., Teoh, S.-G., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, m1406-m1407.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn4(C4H9)8(C7H3ClNO4)4O2]

  • Mr = 882.94

  • Triclinic, [P \overline 1]

  • a = 13.2278 (14) Å

  • b = 13.2554 (14) Å

  • c = 13.3279 (13) Å

  • α = 61.523 (2)°

  • β = 87.345 (2)°

  • γ = 63.252 (2)°

  • V = 1791.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.59 mm−1

  • T = 100 K

  • 0.27 × 0.17 × 0.09 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.673, Tmax = 0.867

  • 21637 measured reflections

  • 7668 independent reflections

  • 6167 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.04

  • 7668 reflections

  • 466 parameters

  • 221 restraints

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C16–C21 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13ACg1i 0.97 2.92 3.800 (14) 151
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

There are many well-documented organodistannoxane dimer complexes with the core geometry consisting of a centrosymmetric planar Sn2O2 group (Win et al., 2008a,b,2010). The Sn2O2 group is bonded to the exo- and endocyclic tin(IV) atom moiety via the bridging oxygen atoms resulting the oxygen atoms are tri-coordinated (Li et al., 2006). In this study, the crystal structure of the title complex is similar to the reported organodistannoxane dimer complexes. The only exception is 2-chloro-5-nitrobenzoic acid is utilized in the synthesis to obtain the title complex.

The asymmetric unit of the title complex (Fig. 1) resides on a crystallographic inversion center and comprises of one-half molecule, with the other half of the molecule is generated by symmetry code -x+1, -y, -z+1. Both Sn atoms are five-coordinated in distorted trigonal bipiramidal geometries but the coordination environment is different. The Sn1 atom is coordinated by two butyl groups in equatorial position, an O atom of the monodentate benzoate anion, an O atom of the bridging benzoate anion and a bridging O atom whereas the Sn2 atom is coordinated by two butyl groups in equatorial position, an O atom of the bridging benzoate anion and two bridging O atoms. Atoms O7 and O8 of the bridging benzoate anion are disordered over two sites with occupancy ratio of 0.862 (12):0.138 (12). The two butyl groups (C8-C11 and C12-C15) bonded to the Sn1 atom are disordered over two sites with occupancy ratios of 0.780 (8):0.220 (8) and 0.827 (10):0.173 (10), respectively. At Sn2O2 ring, one of the butyl group (C23-C26) is disordered over two sites with occupancy ratio of 0.788 (5):0.212 (5). The dihedral angle between the two crystallographically independepent phenyl rings being 25.02 (18)°.

There is no significant intermolecular hydrogen bond observed and the complex are stacked down the [010] axis (Fig. 2). The crystal structure is stabilized by weak intermolecular C13—H13A···Cg1 interactions (Table 1) involving the C16-C21 phenyl ring.

Related literature top

For general background to and applications of the title complex, see: Li et al. (2006); Win et al. (2008a,b, 2010). For closely related structures, see: Li et al. (2007); Win et al. (2008a,b; 2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title complex was obtained by heating under reflux a 1:1 molar mixture of dibutyltin(IV) oxide (0.25 g, 1 mmol) and 2-chloro-5-nitrobenzoic acid (0.21 g, 1 mmol) in ethanol (50 ml) for 4 h. Clear solution was isolated by filtration and kept in a bottle. After a few days, colourless single crystals (0.27 g, 61.3 % yield) were collected. M.p. 429.2–431.4 K. Analysis found for C60H84N4O18Cl4Sn4: C, 40.89; H, 4.99; N, 3.11 %. Calculated found for C60H84N4O18Cl4Sn4: C, 40.81; H, 4.80; N, 3.17 %.

Refinement top

All H atoms were placed in their calculated positions, with C—H = 0.93 – 0.97 Å, and refined using a riding model with Uiso = 1.2 or 1.5 Ueq(C). Atoms O7 and O8 were disordered over two sites with a refined occupancy ratio of 0.862 (12):0.138 (12). The butyl groups (C8-C11, C12-C15 and C23-C26) were disordered over two sites with refined occupancy ratios of 0.780 (8):0.220 (8), 0.827 (10):0.173 (10) and 0.788 (5):0.212 (5), respectively. All minor disordered components were refined isotropically. Similarity, simulation and rigid restraints were applied to the disordered components. The C—C distances involving the minor disordered butyl groups were restrained to 1.50 (1) Å. The Sn1—C12X and Sn2—C23X distances were restrained to 2.10 (1) Å. The highest residual electron density peak and the deepest hole were located at 1.02 and 0.71 Å, respectively, from atom Sn1.

Structure description top

There are many well-documented organodistannoxane dimer complexes with the core geometry consisting of a centrosymmetric planar Sn2O2 group (Win et al., 2008a,b,2010). The Sn2O2 group is bonded to the exo- and endocyclic tin(IV) atom moiety via the bridging oxygen atoms resulting the oxygen atoms are tri-coordinated (Li et al., 2006). In this study, the crystal structure of the title complex is similar to the reported organodistannoxane dimer complexes. The only exception is 2-chloro-5-nitrobenzoic acid is utilized in the synthesis to obtain the title complex.

The asymmetric unit of the title complex (Fig. 1) resides on a crystallographic inversion center and comprises of one-half molecule, with the other half of the molecule is generated by symmetry code -x+1, -y, -z+1. Both Sn atoms are five-coordinated in distorted trigonal bipiramidal geometries but the coordination environment is different. The Sn1 atom is coordinated by two butyl groups in equatorial position, an O atom of the monodentate benzoate anion, an O atom of the bridging benzoate anion and a bridging O atom whereas the Sn2 atom is coordinated by two butyl groups in equatorial position, an O atom of the bridging benzoate anion and two bridging O atoms. Atoms O7 and O8 of the bridging benzoate anion are disordered over two sites with occupancy ratio of 0.862 (12):0.138 (12). The two butyl groups (C8-C11 and C12-C15) bonded to the Sn1 atom are disordered over two sites with occupancy ratios of 0.780 (8):0.220 (8) and 0.827 (10):0.173 (10), respectively. At Sn2O2 ring, one of the butyl group (C23-C26) is disordered over two sites with occupancy ratio of 0.788 (5):0.212 (5). The dihedral angle between the two crystallographically independepent phenyl rings being 25.02 (18)°.

There is no significant intermolecular hydrogen bond observed and the complex are stacked down the [010] axis (Fig. 2). The crystal structure is stabilized by weak intermolecular C13—H13A···Cg1 interactions (Table 1) involving the C16-C21 phenyl ring.

For general background to and applications of the title complex, see: Li et al. (2006); Win et al. (2008a,b, 2010). For closely related structures, see: Li et al. (2007); Win et al. (2008a,b; 2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-numbering scheme. The suffix A corresponds to symmetry code [-x, -y+1, -z] and minor disordered components are labelled as suffixes X and Y. All H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal structure of the title complex, viewed along the b axis, showing the title complex being stacked down the b axis. H atoms have been omitted for clarity.
Octabutylbis(µ2-2-chloro-5-nitrobenzoato)bis(2-chloro-5-nitrobenzoato)di- µ3-oxido-tetratin(IV) top
Crystal data top
[Sn4(C4H9)8(C7H3ClNO4)4O2]Z = 2
Mr = 882.94F(000) = 884
Triclinic, P1Dx = 1.637 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 13.2278 (14) ÅCell parameters from 8142 reflections
b = 13.2554 (14) Åθ = 3.0–29.9°
c = 13.3279 (13) ŵ = 1.59 mm1
α = 61.523 (2)°T = 100 K
β = 87.345 (2)°Plate, colourless
γ = 63.252 (2)°0.27 × 0.17 × 0.09 mm
V = 1791.7 (3) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7668 independent reflections
Radiation source: fine-focus sealed tube6167 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1516
Tmin = 0.673, Tmax = 0.867k = 1616
21637 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0196P)2 + 2.5482P]
where P = (Fo2 + 2Fc2)/3
7668 reflections(Δ/σ)max = 0.001
466 parametersΔρmax = 0.97 e Å3
221 restraintsΔρmin = 0.88 e Å3
Crystal data top
[Sn4(C4H9)8(C7H3ClNO4)4O2]γ = 63.252 (2)°
Mr = 882.94V = 1791.7 (3) Å3
Triclinic, P1Z = 2
a = 13.2278 (14) ÅMo Kα radiation
b = 13.2554 (14) ŵ = 1.59 mm1
c = 13.3279 (13) ÅT = 100 K
α = 61.523 (2)°0.27 × 0.17 × 0.09 mm
β = 87.345 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7668 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6167 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.867Rint = 0.041
21637 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031221 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.04Δρmax = 0.97 e Å3
7668 reflectionsΔρmin = 0.88 e Å3
466 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.56558 (2)0.15969 (2)0.249637 (19)0.02618 (7)
Sn20.380257 (19)0.13444 (2)0.475501 (18)0.02152 (7)
Cl11.02684 (11)0.10588 (11)0.27696 (10)0.0521 (3)
Cl20.08388 (10)0.50609 (10)0.10191 (9)0.0484 (3)
O10.7938 (3)0.4845 (3)0.3840 (3)0.0674 (10)
O20.9722 (4)0.6211 (3)0.4016 (3)0.0700 (11)
O30.6949 (2)0.0451 (2)0.3168 (2)0.0304 (5)
O40.7651 (3)0.0447 (3)0.1638 (2)0.0439 (7)
O50.1796 (3)0.9708 (3)0.0553 (3)0.0538 (8)
O60.3583 (3)0.8132 (3)0.1108 (3)0.0505 (8)
O70.2895 (3)0.3404 (3)0.3116 (3)0.0337 (11)0.862 (12)
O80.4278 (4)0.3625 (3)0.2169 (4)0.0461 (16)0.862 (12)
O7X0.319 (2)0.355 (2)0.3350 (18)0.024 (5)*0.138 (12)
O8X0.3919 (18)0.3494 (17)0.1808 (15)0.021 (5)*0.138 (12)
O90.5135 (2)0.0726 (2)0.39818 (18)0.0228 (5)
N10.8976 (4)0.5134 (3)0.3783 (3)0.0478 (9)
N20.2552 (4)0.8570 (3)0.0834 (3)0.0394 (8)
C10.8404 (4)0.2853 (4)0.3168 (3)0.0341 (8)
H1A0.76370.26740.31320.041*
C20.9292 (4)0.4106 (4)0.3482 (3)0.0350 (9)
C31.0435 (4)0.4424 (4)0.3558 (3)0.0427 (10)
H3A1.10060.52680.37610.051*
C41.0722 (4)0.3467 (4)0.3326 (3)0.0418 (10)
H4A1.14940.36650.33810.050*
C50.9857 (4)0.2208 (4)0.3009 (3)0.0362 (9)
C60.8683 (3)0.1871 (4)0.2908 (3)0.0311 (8)
C70.7723 (3)0.0512 (4)0.2519 (3)0.0307 (8)
C80.4617 (6)0.2056 (7)0.1038 (4)0.0455 (15)0.780 (8)
H8A0.38240.26610.09800.055*0.780 (8)
H8B0.48600.25180.03450.055*0.780 (8)
C90.4623 (7)0.0949 (6)0.1016 (6)0.065 (2)0.780 (8)
H9A0.43820.04770.17060.078*0.780 (8)
H9B0.54090.03470.10520.078*0.780 (8)
C100.3820 (7)0.1382 (8)0.0081 (6)0.073 (2)0.780 (8)
H10A0.40630.18540.07680.088*0.780 (8)
H10B0.39220.06020.00650.088*0.780 (8)
C110.2557 (8)0.2235 (9)0.0202 (6)0.077 (3)0.780 (8)
H11A0.21230.24580.09020.116*0.780 (8)
H11B0.24400.30240.02420.116*0.780 (8)
H11C0.22990.17690.04620.116*0.780 (8)
C8X0.5005 (15)0.138 (2)0.1177 (17)0.034 (4)*0.220 (8)
H8XA0.52700.17650.04710.041*0.220 (8)
H8XB0.53370.04520.14540.041*0.220 (8)
C9X0.3722 (15)0.200 (2)0.088 (2)0.065 (5)*0.220 (8)
H9XA0.34000.29420.05510.078*0.220 (8)
H9XB0.34580.16760.16050.078*0.220 (8)
C10X0.323 (2)0.179 (4)0.005 (3)0.076 (7)*0.220 (8)
H10C0.35710.20110.06300.091*0.220 (8)
H10D0.34740.08590.04260.091*0.220 (8)
C11X0.194 (2)0.253 (4)0.037 (3)0.097 (8)*0.220 (8)
H11D0.17320.23080.08890.145*0.220 (8)
H11E0.16740.34600.07830.145*0.220 (8)
H11F0.15760.23100.02840.145*0.220 (8)
C120.6759 (16)0.2280 (18)0.2698 (10)0.0438 (16)0.827 (10)
H12A0.65080.26190.32200.053*0.827 (10)
H12B0.75410.15480.30540.053*0.827 (10)
C130.6765 (10)0.3368 (12)0.1525 (10)0.0616 (19)0.827 (10)
H13A0.72650.29570.11230.074*0.827 (10)
H13B0.59870.39220.10440.074*0.827 (10)
C140.7162 (7)0.4228 (7)0.1618 (8)0.077 (2)0.827 (10)
H14A0.79080.36710.21580.092*0.827 (10)
H14B0.72700.47650.08590.092*0.827 (10)
C150.6339 (7)0.5109 (7)0.2022 (6)0.072 (2)0.827 (10)
H15A0.66390.56360.20510.108*0.827 (10)
H15B0.62520.45860.27870.108*0.827 (10)
H15C0.56000.56720.14880.108*0.827 (10)
C12X0.675 (9)0.231 (11)0.260 (6)0.062 (7)*0.173 (10)
H12C0.65880.25670.31840.074*0.173 (10)
H12D0.75510.16110.28500.074*0.173 (10)
C13X0.661 (5)0.347 (7)0.144 (5)0.070 (6)*0.173 (10)
H13C0.66180.32710.08320.084*0.173 (10)
H13D0.58620.42240.12720.084*0.173 (10)
C14X0.754 (4)0.384 (4)0.142 (3)0.076 (6)*0.173 (10)
H14C0.82450.32130.13470.091*0.173 (10)
H14D0.73000.47000.07470.091*0.173 (10)
C15X0.779 (4)0.385 (5)0.250 (3)0.097 (8)*0.173 (10)
H15D0.84440.39900.24860.145*0.173 (10)
H15E0.79660.30180.31810.145*0.173 (10)
H15F0.71270.45390.25320.145*0.173 (10)
C160.2873 (3)0.6362 (3)0.1496 (3)0.0286 (8)
H16A0.36240.60270.18620.034*
C170.2146 (4)0.7687 (4)0.0871 (3)0.0319 (8)
C180.1025 (4)0.8243 (4)0.0280 (3)0.0373 (9)
H18A0.05480.91500.01390.045*
C190.0640 (4)0.7415 (4)0.0330 (3)0.0373 (9)
H19A0.01010.77600.00700.045*
C200.1365 (4)0.6060 (3)0.0981 (3)0.0324 (8)
C210.2478 (3)0.5513 (3)0.1580 (3)0.0253 (7)
C220.3273 (3)0.4057 (3)0.2329 (3)0.0267 (7)
C230.2412 (4)0.1154 (6)0.4272 (5)0.0322 (12)0.788 (5)
H23A0.24410.03610.49070.039*0.788 (5)
H23B0.16850.18940.41700.039*0.788 (5)
C240.2430 (5)0.1096 (5)0.3162 (4)0.0374 (12)0.788 (5)
H24A0.31970.04380.32210.045*0.788 (5)
H24B0.22910.19380.25090.045*0.788 (5)
C250.1543 (5)0.0773 (5)0.2904 (5)0.0466 (14)0.788 (5)
H25A0.16830.06280.22510.056*0.788 (5)
H25B0.16390.00350.35780.056*0.788 (5)
C260.0325 (6)0.1842 (7)0.2620 (6)0.0638 (19)0.788 (5)
H26A0.02030.15950.24640.096*0.788 (5)
H26B0.02200.26400.19430.096*0.788 (5)
H26C0.01770.19760.32700.096*0.788 (5)
C23X0.2346 (19)0.155 (3)0.3955 (18)0.045 (6)*0.212 (5)
H23C0.17420.24550.36420.054*0.212 (5)
H23D0.25420.14390.32910.054*0.212 (5)
C24X0.1815 (18)0.070 (2)0.4615 (16)0.052 (5)*0.212 (5)
H24C0.14690.09240.51870.063*0.212 (5)
H24D0.24270.02100.50390.063*0.212 (5)
C25X0.0908 (19)0.081 (2)0.3867 (17)0.059 (5)*0.212 (5)
H25C0.03620.17340.33450.071*0.212 (5)
H25D0.12780.04380.33910.071*0.212 (5)
C26X0.026 (3)0.013 (4)0.456 (3)0.097 (10)*0.212 (5)
H26D0.03060.02380.40410.145*0.212 (5)
H26E0.07890.07850.50690.145*0.212 (5)
H26F0.01260.05130.50210.145*0.212 (5)
C270.4218 (4)0.2140 (4)0.5623 (3)0.0337 (8)
H27A0.35190.29140.55070.040*
H27B0.44610.15020.64540.040*
C280.5164 (4)0.2521 (4)0.5239 (3)0.0358 (9)
H28A0.58220.18040.52160.043*
H28B0.48690.32840.44550.043*
C290.5561 (4)0.2830 (5)0.6057 (4)0.0501 (11)
H29A0.48900.35070.61140.060*
H29B0.58900.20490.68290.060*
C300.6441 (5)0.3286 (6)0.5683 (5)0.0690 (16)
H30A0.66260.34960.62220.104*
H30B0.61290.40520.49140.104*
H30C0.71310.26000.56740.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02598 (14)0.01702 (12)0.02233 (11)0.00603 (10)0.00790 (9)0.00531 (9)
Sn20.01735 (12)0.01475 (11)0.02208 (11)0.00367 (9)0.00397 (8)0.00608 (9)
Cl10.0452 (7)0.0433 (6)0.0618 (7)0.0249 (5)0.0171 (5)0.0200 (5)
Cl20.0470 (6)0.0276 (5)0.0531 (6)0.0130 (5)0.0125 (5)0.0114 (4)
O10.059 (3)0.046 (2)0.096 (3)0.0268 (19)0.006 (2)0.033 (2)
O20.089 (3)0.0323 (18)0.083 (2)0.0214 (19)0.030 (2)0.0339 (18)
O30.0316 (14)0.0201 (12)0.0299 (12)0.0086 (11)0.0138 (11)0.0105 (10)
O40.0492 (19)0.0256 (14)0.0357 (14)0.0124 (13)0.0218 (13)0.0077 (12)
O50.073 (2)0.0277 (16)0.0622 (19)0.0247 (17)0.0286 (18)0.0247 (15)
O60.060 (2)0.0399 (18)0.0489 (17)0.0293 (17)0.0091 (16)0.0157 (14)
O70.0254 (18)0.0201 (16)0.0292 (16)0.0034 (14)0.0057 (14)0.0015 (13)
O80.031 (2)0.0191 (16)0.058 (2)0.0043 (15)0.0182 (19)0.0062 (15)
O90.0209 (12)0.0162 (11)0.0206 (10)0.0050 (10)0.0066 (9)0.0060 (9)
N10.059 (3)0.0302 (19)0.049 (2)0.0149 (19)0.0126 (19)0.0232 (17)
N20.054 (2)0.0283 (18)0.0324 (16)0.0211 (18)0.0166 (16)0.0131 (14)
C10.037 (2)0.0272 (19)0.0284 (17)0.0098 (17)0.0084 (16)0.0135 (15)
C20.039 (2)0.0267 (19)0.0314 (18)0.0096 (18)0.0121 (17)0.0160 (16)
C30.047 (3)0.027 (2)0.0331 (19)0.0051 (19)0.0111 (18)0.0123 (17)
C40.035 (2)0.037 (2)0.036 (2)0.0111 (19)0.0154 (18)0.0134 (18)
C50.035 (2)0.030 (2)0.0330 (18)0.0126 (18)0.0162 (17)0.0132 (16)
C60.038 (2)0.0242 (18)0.0228 (16)0.0112 (17)0.0133 (15)0.0101 (14)
C70.032 (2)0.0252 (18)0.0298 (17)0.0116 (16)0.0127 (15)0.0131 (15)
C80.039 (3)0.045 (4)0.029 (2)0.011 (3)0.002 (2)0.011 (3)
C90.072 (4)0.045 (3)0.057 (3)0.015 (3)0.011 (3)0.023 (3)
C100.078 (6)0.072 (5)0.063 (4)0.022 (4)0.008 (4)0.041 (4)
C110.080 (6)0.087 (6)0.049 (4)0.051 (5)0.015 (4)0.011 (4)
C120.055 (3)0.046 (3)0.052 (4)0.038 (3)0.028 (3)0.030 (3)
C130.092 (5)0.054 (4)0.062 (4)0.050 (4)0.053 (4)0.035 (3)
C140.054 (4)0.048 (4)0.104 (5)0.028 (3)0.024 (4)0.020 (4)
C150.106 (6)0.052 (4)0.062 (4)0.045 (4)0.019 (4)0.025 (3)
C160.0274 (19)0.0237 (18)0.0250 (16)0.0073 (15)0.0105 (14)0.0109 (14)
C170.046 (2)0.0230 (18)0.0264 (16)0.0170 (18)0.0154 (16)0.0126 (15)
C180.040 (2)0.0186 (18)0.0293 (18)0.0042 (17)0.0025 (16)0.0042 (15)
C190.033 (2)0.0222 (18)0.0326 (18)0.0020 (17)0.0042 (16)0.0067 (16)
C200.038 (2)0.0209 (18)0.0273 (17)0.0082 (16)0.0013 (16)0.0095 (15)
C210.0245 (18)0.0170 (16)0.0227 (15)0.0032 (14)0.0071 (13)0.0087 (13)
C220.0243 (19)0.0186 (16)0.0302 (17)0.0070 (15)0.0021 (14)0.0106 (14)
C230.016 (2)0.034 (3)0.034 (3)0.009 (2)0.0011 (19)0.011 (2)
C240.038 (3)0.036 (3)0.037 (2)0.018 (2)0.002 (2)0.017 (2)
C250.048 (3)0.040 (3)0.049 (3)0.018 (3)0.001 (3)0.023 (3)
C260.049 (4)0.062 (4)0.079 (4)0.018 (3)0.004 (3)0.042 (4)
C270.043 (2)0.0291 (19)0.0353 (19)0.0196 (18)0.0137 (17)0.0191 (16)
C280.034 (2)0.033 (2)0.045 (2)0.0165 (18)0.0125 (17)0.0234 (18)
C290.058 (3)0.054 (3)0.056 (3)0.033 (3)0.014 (2)0.035 (2)
C300.065 (4)0.073 (4)0.093 (4)0.045 (3)0.011 (3)0.049 (3)
Geometric parameters (Å, º) top
Sn1—O92.034 (2)C13—H13A0.9700
Sn1—C12X2.096 (10)C13—H13B0.9700
Sn1—C82.098 (5)C14—C151.497 (10)
Sn1—C122.116 (5)C14—H14A0.9700
Sn1—O32.177 (2)C14—H14B0.9700
Sn1—C8X2.180 (19)C15—H15A0.9600
Sn1—O8X2.289 (19)C15—H15B0.9600
Sn1—O82.299 (3)C15—H15C0.9600
Sn2—O92.044 (2)C12X—C13X1.513 (9)
Sn2—C23X2.088 (10)C12X—H12C0.9700
Sn2—C272.121 (3)C12X—H12D0.9700
Sn2—C232.131 (4)C13X—C14X1.504 (9)
Sn2—O9i2.164 (2)C13X—H13C0.9700
Sn2—O72.296 (3)C13X—H13D0.9700
Sn2—O7X2.35 (2)C14X—C15X1.498 (9)
Cl1—C51.728 (4)C14X—H14C0.9700
Cl2—C201.733 (4)C14X—H14D0.9700
O1—N11.257 (5)C15X—H15D0.9600
O2—N11.202 (5)C15X—H15E0.9600
O3—C71.309 (4)C15X—H15F0.9600
O4—C71.217 (4)C16—C171.364 (5)
O5—N21.246 (5)C16—C211.398 (5)
O6—N21.208 (5)C16—H16A0.9300
O7—C221.255 (5)C17—C181.391 (6)
O8—C221.243 (5)C18—C191.378 (6)
O7X—C221.22 (2)C18—H18A0.9300
O8X—C221.279 (19)C19—C201.393 (5)
O9—Sn2i2.164 (2)C19—H19A0.9300
N1—C21.474 (5)C20—C211.389 (5)
N2—C171.472 (5)C21—C221.503 (5)
C1—C21.393 (5)C23—C241.517 (7)
C1—C61.394 (5)C23—H23A0.9700
C1—H1A0.9300C23—H23B0.9700
C2—C31.369 (6)C24—C251.519 (7)
C3—C41.376 (6)C24—H24A0.9700
C3—H3A0.9300C24—H24B0.9700
C4—C51.388 (6)C25—C261.495 (8)
C4—H4A0.9300C25—H25A0.9700
C5—C61.402 (6)C25—H25B0.9700
C6—C71.496 (5)C26—H26A0.9600
C8—C91.478 (8)C26—H26B0.9600
C8—H8A0.9700C26—H26C0.9600
C8—H8B0.9700C23X—C24X1.502 (9)
C9—C101.546 (8)C23X—H23C0.9700
C9—H9A0.9700C23X—H23D0.9700
C9—H9B0.9700C24X—C25X1.505 (9)
C10—C111.500 (11)C24X—H24C0.9700
C10—H10A0.9700C24X—H24D0.9700
C10—H10B0.9700C25X—C26X1.493 (9)
C11—H11A0.9600C25X—H25C0.9700
C11—H11B0.9600C25X—H25D0.9700
C11—H11C0.9600C26X—C26Xii1.31 (5)
C8X—C9X1.487 (9)C26X—H26D0.9601
C8X—H8XA0.9700C26X—H26E0.9600
C8X—H8XB0.9700C26X—H26F0.9600
C9X—C10X1.512 (9)C27—C281.532 (5)
C9X—H9XA0.9700C27—H27A0.9700
C9X—H9XB0.9700C27—H27B0.9700
C10X—C11X1.499 (9)C28—C291.518 (5)
C10X—H10C0.9700C28—H28A0.9700
C10X—H10D0.9700C28—H28B0.9700
C11X—H11D0.9600C29—C301.504 (7)
C11X—H11E0.9600C29—H29A0.9700
C11X—H11F0.9600C29—H29B0.9700
C12—C131.543 (7)C30—H30A0.9600
C12—H12A0.9700C30—H30B0.9600
C12—H12B0.9700C30—H30C0.9600
C13—C141.507 (9)
O9—Sn1—C12X117 (2)C14—C13—H13B108.4
O9—Sn1—C8110.57 (17)C12—C13—H13B108.4
C12X—Sn1—C8130.4 (18)H13A—C13—H13B107.5
O9—Sn1—C12113.6 (3)C15—C14—C13113.9 (7)
C12X—Sn1—C123 (3)C15—C14—H14A108.8
C8—Sn1—C12133.3 (4)C13—C14—H14A108.8
O9—Sn1—O380.20 (9)C15—C14—H14B108.8
C12X—Sn1—O399 (4)C13—C14—H14B108.8
C8—Sn1—O3103.1 (2)H14A—C14—H14B107.7
C12—Sn1—O398.5 (6)C14—C15—H15A109.5
O9—Sn1—C8X107.7 (5)C14—C15—H15B109.5
C12X—Sn1—C8X135 (2)H15A—C15—H15B109.5
C8—Sn1—C8X19.6 (5)C14—C15—H15C109.5
C12—Sn1—C8X138.4 (6)H15A—C15—H15C109.5
O3—Sn1—C8X83.5 (6)H15B—C15—H15C109.5
O9—Sn1—O8X90.3 (4)C13X—C12X—Sn1112 (3)
C12X—Sn1—O8X99 (4)C13X—C12X—H12C109.2
C8—Sn1—O8X66.0 (6)Sn1—C12X—H12C109.2
C12—Sn1—O8X99.1 (8)C13X—C12X—H12D109.2
O3—Sn1—O8X162.1 (6)Sn1—C12X—H12D109.2
C8X—Sn1—O8X85.0 (8)H12C—C12X—H12D107.9
O9—Sn1—O889.69 (10)C14X—C13X—C12X113 (2)
C12X—Sn1—O881 (4)C14X—C13X—H13C108.9
C8—Sn1—O885.2 (3)C12X—C13X—H13C108.9
C12—Sn1—O880.7 (6)C14X—C13X—H13D108.9
O3—Sn1—O8168.65 (13)C12X—C13X—H13D108.9
C8X—Sn1—O8104.7 (6)H13C—C13X—H13D107.7
O8X—Sn1—O820.4 (5)C15X—C14X—C13X113 (2)
O9—Sn2—C23X107.8 (9)C15X—C14X—H14C109.0
O9—Sn2—C27108.23 (13)C13X—C14X—H14C109.0
C23X—Sn2—C27139.5 (10)C15X—C14X—H14D109.0
O9—Sn2—C23109.92 (18)C13X—C14X—H14D109.0
C23X—Sn2—C2312.5 (6)H14C—C14X—H14D107.8
C27—Sn2—C23141.4 (2)C14X—C15X—H15D109.5
O9—Sn2—O9i76.18 (9)C14X—C15X—H15E109.5
C23X—Sn2—O9i106.8 (7)H15D—C15X—H15E109.5
C27—Sn2—O9i99.21 (12)C14X—C15X—H15F109.5
C23—Sn2—O9i95.09 (18)H15D—C15X—H15F109.5
O9—Sn2—O791.26 (10)H15E—C15X—H15F109.5
C23X—Sn2—O772.3 (6)C17—C16—C21119.5 (3)
C27—Sn2—O789.01 (18)C17—C16—H16A120.3
C23—Sn2—O784.7 (2)C21—C16—H16A120.3
O9i—Sn2—O7166.62 (11)C16—C17—C18122.7 (3)
O9—Sn2—O7X91.2 (5)C16—C17—N2119.0 (4)
C23X—Sn2—O7X87.7 (9)C18—C17—N2118.3 (3)
C27—Sn2—O7X73.7 (6)C19—C18—C17118.3 (3)
C23—Sn2—O7X99.9 (7)C19—C18—H18A120.9
O9i—Sn2—O7X163.1 (6)C17—C18—H18A120.9
O7—Sn2—O7X16.1 (5)C18—C19—C20119.7 (4)
C7—O3—Sn1109.3 (2)C18—C19—H19A120.2
C22—O7—Sn2132.3 (3)C20—C19—H19A120.2
C22—O8—Sn1133.2 (3)C21—C20—C19121.7 (3)
C22—O7X—Sn2130.3 (15)C21—C20—Cl2120.4 (3)
C22—O8X—Sn1131.3 (12)C19—C20—Cl2117.9 (3)
Sn1—O9—Sn2135.82 (11)C20—C21—C16118.2 (3)
Sn1—O9—Sn2i120.19 (11)C20—C21—C22123.4 (3)
Sn2—O9—Sn2i103.82 (9)C16—C21—C22118.3 (3)
O2—N1—O1123.7 (4)O7X—C22—O8115.2 (11)
O2—N1—C2119.0 (4)O8—C22—O7125.7 (3)
O1—N1—C2117.2 (4)O7X—C22—O8X128.2 (13)
O6—N2—O5125.0 (4)O7—C22—O8X116.0 (9)
O6—N2—C17118.0 (3)O7X—C22—C21115.8 (10)
O5—N2—C17116.9 (4)O8—C22—C21116.7 (3)
C2—C1—C6118.9 (4)O7—C22—C21117.3 (3)
C2—C1—H1A120.6O8X—C22—C21115.9 (8)
C6—C1—H1A120.6C24—C23—Sn2114.0 (4)
C3—C2—C1123.0 (4)C24—C23—H23A108.7
C3—C2—N1119.3 (4)Sn2—C23—H23A108.7
C1—C2—N1117.8 (4)C24—C23—H23B108.7
C2—C3—C4118.6 (4)Sn2—C23—H23B108.7
C2—C3—H3A120.7H23A—C23—H23B107.6
C4—C3—H3A120.7C23—C24—C25114.2 (4)
C3—C4—C5120.0 (4)C23—C24—H24A108.7
C3—C4—H4A120.0C25—C24—H24A108.7
C5—C4—H4A120.0C23—C24—H24B108.7
C4—C5—C6121.7 (4)C25—C24—H24B108.7
C4—C5—Cl1118.0 (3)H24A—C24—H24B107.6
C6—C5—Cl1120.3 (3)C26—C25—C24112.4 (5)
C1—C6—C5117.9 (4)C26—C25—H25A109.1
C1—C6—C7118.7 (4)C24—C25—H25A109.1
C5—C6—C7123.3 (3)C26—C25—H25B109.1
O4—C7—O3123.3 (4)C24—C25—H25B109.1
O4—C7—C6122.0 (3)H25A—C25—H25B107.9
O3—C7—C6114.7 (3)C25—C26—H26A109.5
C9—C8—Sn1117.2 (4)C25—C26—H26B109.5
C9—C8—H8A108.0H26A—C26—H26B109.5
Sn1—C8—H8A108.0C25—C26—H26C109.5
C9—C8—H8B108.0H26A—C26—H26C109.5
Sn1—C8—H8B108.0H26B—C26—H26C109.5
H8A—C8—H8B107.3C24X—C23X—Sn2121.6 (12)
C8—C9—C10113.5 (5)C24X—C23X—H23C106.9
C8—C9—H9A108.9Sn2—C23X—H23C106.9
C10—C9—H9A108.9C24X—C23X—H23D106.9
C8—C9—H9B108.9Sn2—C23X—H23D106.9
C10—C9—H9B108.9H23C—C23X—H23D106.7
H9A—C9—H9B107.7C23X—C24X—C25X114.7 (13)
C11—C10—C9114.8 (7)C23X—C24X—H24C108.6
C11—C10—H10A108.6C25X—C24X—H24C108.6
C9—C10—H10A108.6C23X—C24X—H24D108.6
C11—C10—H10B108.6C25X—C24X—H24D108.6
C9—C10—H10B108.6H24C—C24X—H24D107.6
H10A—C10—H10B107.5C26X—C25X—C24X113.1 (17)
C10—C11—H11A109.5C26X—C25X—H25C108.9
C10—C11—H11B109.5C24X—C25X—H25C108.9
H11A—C11—H11B109.5C26X—C25X—H25D108.9
C10—C11—H11C109.5C24X—C25X—H25D108.9
H11A—C11—H11C109.5H25C—C25X—H25D107.8
H11B—C11—H11C109.5C26Xii—C26X—C25X149 (4)
C9X—C8X—Sn1114.2 (13)C26Xii—C26X—H26D94.5
C9X—C8X—H8XA108.7C25X—C26X—H26D109.4
Sn1—C8X—H8XA108.7C26Xii—C26X—H26E79.5
C9X—C8X—H8XB108.7C25X—C26X—H26E109.6
Sn1—C8X—H8XB108.7H26D—C26X—H26E109.5
H8XA—C8X—H8XB107.6C25X—C26X—H26F109.4
C8X—C9X—C10X116.5 (17)H26D—C26X—H26F109.5
C8X—C9X—H9XA108.2H26E—C26X—H26F109.5
C10X—C9X—H9XA108.2C28—C27—Sn2116.0 (3)
C8X—C9X—H9XB108.2C28—C27—H27A108.3
C10X—C9X—H9XB108.2Sn2—C27—H27A108.3
H9XA—C9X—H9XB107.3C28—C27—H27B108.3
C11X—C10X—C9X118 (2)Sn2—C27—H27B108.3
C11X—C10X—H10C107.9H27A—C27—H27B107.4
C9X—C10X—H10C107.9C29—C28—C27111.9 (3)
C11X—C10X—H10D107.9C29—C28—H28A109.2
C9X—C10X—H10D107.9C27—C28—H28A109.2
H10C—C10X—H10D107.2C29—C28—H28B109.2
C10X—C11X—H11D109.5C27—C28—H28B109.2
C10X—C11X—H11E109.5H28A—C28—H28B107.9
H11D—C11X—H11E109.5C30—C29—C28114.2 (4)
C10X—C11X—H11F109.5C30—C29—H29A108.7
H11D—C11X—H11F109.5C28—C29—H29A108.7
H11E—C11X—H11F109.5C30—C29—H29B108.7
C13—C12—Sn1112.5 (6)C28—C29—H29B108.7
C13—C12—H12A109.1H29A—C29—H29B107.6
Sn1—C12—H12A109.1C29—C30—H30A109.5
C13—C12—H12B109.1C29—C30—H30B109.5
Sn1—C12—H12B109.1H30A—C30—H30B109.5
H12A—C12—H12B107.8C29—C30—H30C109.5
C14—C13—C12115.4 (8)H30A—C30—H30C109.5
C14—C13—H13A108.4H30B—C30—H30C109.5
C12—C13—H13A108.4
O9—Sn1—O3—C7173.6 (2)O9—Sn1—C8X—C9X60.4 (17)
C12X—Sn1—O3—C758 (2)C12X—Sn1—C8X—C9X126 (5)
C8—Sn1—O3—C777.4 (3)C8—Sn1—C8X—C9X41.3 (15)
C12—Sn1—O3—C760.9 (4)C12—Sn1—C8X—C9X126.5 (17)
C8X—Sn1—O3—C777.1 (5)O3—Sn1—C8X—C9X138.0 (17)
O8X—Sn1—O3—C7127.5 (15)O8X—Sn1—C8X—C9X28.3 (17)
O8—Sn1—O3—C7146.3 (8)O8—Sn1—C8X—C9X34.0 (17)
O9—Sn2—O7—C2228.3 (5)Sn1—C8X—C9X—C10X175 (2)
C23X—Sn2—O7—C22136.7 (11)C8X—C9X—C10X—C11X173 (3)
C27—Sn2—O7—C2279.9 (5)O9—Sn1—C12—C13157.9 (10)
C23—Sn2—O7—C22138.2 (6)C8—Sn1—C12—C132.0 (18)
O9i—Sn2—O7—C2248.3 (11)O3—Sn1—C12—C13119.1 (12)
O7X—Sn2—O7—C2262 (2)C8X—Sn1—C12—C1329 (2)
O9—Sn1—O8—C2236.9 (6)O8X—Sn1—C12—C1363.5 (13)
C12X—Sn1—O8—C22154 (2)O8—Sn1—C12—C1372.4 (12)
C8—Sn1—O8—C2273.7 (6)Sn1—C12—C13—C14159.1 (10)
C12—Sn1—O8—C22151.0 (7)C12—C13—C14—C1568.8 (13)
O3—Sn1—O8—C2263.8 (12)O9—Sn1—C12X—C13X151 (6)
C8X—Sn1—O8—C2271.3 (8)C8—Sn1—C12X—C13X10 (11)
O8X—Sn1—O8—C2254.9 (13)O3—Sn1—C12X—C13X126 (8)
O9—Sn2—O7X—C2229 (2)C8X—Sn1—C12X—C13X36 (11)
C23X—Sn2—O7X—C2279 (2)O8X—Sn1—C12X—C13X56 (8)
C27—Sn2—O7X—C22138 (2)O8—Sn1—C12X—C13X66 (8)
C23—Sn2—O7X—C2281 (2)Sn1—C12X—C13X—C14X169 (5)
O9i—Sn2—O7X—C2271 (3)C12X—C13X—C14X—C15X45 (8)
O7—Sn2—O7X—C2261 (2)C21—C16—C17—C181.8 (5)
O9—Sn1—O8X—C2237.7 (19)C21—C16—C17—N2177.2 (3)
C12X—Sn1—O8X—C2279 (3)O6—N2—C17—C1617.6 (5)
C8—Sn1—O8X—C22150 (2)O5—N2—C17—C16160.4 (3)
C12—Sn1—O8X—C2276.3 (19)O6—N2—C17—C18163.4 (3)
O3—Sn1—O8X—C2295 (3)O5—N2—C17—C1818.7 (5)
C8X—Sn1—O8X—C22145 (2)C16—C17—C18—C190.0 (6)
O8—Sn1—O8X—C2250.5 (15)N2—C17—C18—C19179.0 (3)
C12X—Sn1—O9—Sn288 (4)C17—C18—C19—C201.2 (6)
C8—Sn1—O9—Sn276.8 (3)C18—C19—C20—C210.5 (6)
C12—Sn1—O9—Sn287.8 (7)C18—C19—C20—Cl2179.8 (3)
O3—Sn1—O9—Sn2177.14 (18)C19—C20—C21—C161.3 (5)
C8X—Sn1—O9—Sn297.3 (6)Cl2—C20—C21—C16178.3 (3)
O8X—Sn1—O9—Sn212.4 (6)C19—C20—C21—C22177.6 (4)
O8—Sn1—O9—Sn28.0 (2)Cl2—C20—C21—C222.8 (5)
C12X—Sn1—O9—Sn2i87 (4)C17—C16—C21—C202.4 (5)
C8—Sn1—O9—Sn2i108.9 (2)C17—C16—C21—C22176.6 (3)
C12—Sn1—O9—Sn2i86.6 (7)Sn2—O7X—C22—O857 (2)
O3—Sn1—O9—Sn2i8.54 (11)Sn2—O7X—C22—O761.2 (19)
C8X—Sn1—O9—Sn2i88.4 (6)Sn2—O7X—C22—O8X15 (3)
O8X—Sn1—O9—Sn2i173.3 (6)Sn2—O7X—C22—C21161.8 (13)
O8—Sn1—O9—Sn2i166.29 (19)Sn1—O8—C22—O7X63.8 (12)
C23X—Sn2—O9—Sn181.5 (7)Sn1—O8—C22—O730.4 (7)
C27—Sn2—O9—Sn179.64 (19)Sn1—O8—C22—O8X56.8 (13)
C23—Sn2—O9—Sn194.6 (2)Sn1—O8—C22—C21155.4 (4)
O9i—Sn2—O9—Sn1174.9 (2)Sn2—O7—C22—O7X67 (2)
O7—Sn2—O9—Sn19.7 (2)Sn2—O7—C22—O811.7 (7)
O7X—Sn2—O9—Sn16.4 (7)Sn2—O7—C22—O8X54.4 (10)
C23X—Sn2—O9—Sn2i103.5 (7)Sn2—O7—C22—C21162.5 (3)
C27—Sn2—O9—Sn2i95.31 (13)Sn1—O8X—C22—O7X27 (2)
C23—Sn2—O9—Sn2i90.46 (19)Sn1—O8X—C22—O854.7 (14)
O9i—Sn2—O9—Sn2i0.0Sn1—O8X—C22—O761 (2)
O7—Sn2—O9—Sn2i175.32 (17)Sn1—O8X—C22—C21155.6 (12)
O7X—Sn2—O9—Sn2i168.6 (6)C20—C21—C22—O7X88.0 (15)
C6—C1—C2—C30.5 (6)C16—C21—C22—O7X91.0 (14)
C6—C1—C2—N1178.4 (3)C20—C21—C22—O8131.5 (5)
O2—N1—C2—C34.7 (6)C16—C21—C22—O849.6 (5)
O1—N1—C2—C3171.6 (4)C20—C21—C22—O753.8 (6)
O2—N1—C2—C1177.4 (4)C16—C21—C22—O7125.2 (4)
O1—N1—C2—C16.4 (5)C20—C21—C22—O8X89.3 (13)
C1—C2—C3—C40.8 (6)C16—C21—C22—O8X91.7 (13)
N1—C2—C3—C4177.1 (3)O9—Sn2—C23—C2421.1 (5)
C2—C3—C4—C50.8 (6)C23X—Sn2—C23—C2461 (5)
C3—C4—C5—C60.4 (6)C27—Sn2—C23—C24150.1 (3)
C3—C4—C5—Cl1178.1 (3)O9i—Sn2—C23—C2498.2 (4)
C2—C1—C6—C51.7 (5)O7—Sn2—C23—C2468.4 (4)
C2—C1—C6—C7177.3 (3)O7X—Sn2—C23—C2473.9 (7)
C4—C5—C6—C11.7 (5)Sn2—C23—C24—C25172.0 (4)
Cl1—C5—C6—C1176.8 (3)C23—C24—C25—C2667.0 (7)
C4—C5—C6—C7177.2 (3)O9—Sn2—C23X—C24X115 (2)
Cl1—C5—C6—C74.3 (5)C27—Sn2—C23X—C24X93 (2)
Sn1—O3—C7—O44.5 (4)C23—Sn2—C23X—C24X13 (3)
Sn1—O3—C7—C6178.4 (2)O9i—Sn2—C23X—C24X34 (3)
C1—C6—C7—O4128.9 (4)O7—Sn2—C23X—C24X160 (3)
C5—C6—C7—O450.0 (5)O7X—Sn2—C23X—C24X155 (3)
C1—C6—C7—O348.2 (5)Sn2—C23X—C24X—C25X169.8 (19)
C5—C6—C7—O3132.9 (4)C23X—C24X—C25X—C26X170 (3)
O9—Sn1—C8—C961.4 (6)C24X—C25X—C26X—C26Xii42 (10)
C12X—Sn1—C8—C9137 (5)O9—Sn2—C27—C2818.4 (3)
C12—Sn1—C8—C9138.2 (10)C23X—Sn2—C27—C28133.4 (9)
O3—Sn1—C8—C922.8 (6)C23—Sn2—C27—C28152.9 (3)
C8X—Sn1—C8—C923.6 (16)O9i—Sn2—C27—C2896.7 (3)
O8X—Sn1—C8—C9142.2 (8)O7—Sn2—C27—C2872.6 (3)
O8—Sn1—C8—C9149.3 (5)O7X—Sn2—C27—C2867.5 (6)
Sn1—C8—C9—C10179.2 (6)Sn2—C27—C28—C29169.1 (3)
C8—C9—C10—C1163.2 (10)C27—C28—C29—C30176.7 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cg1iii0.972.923.800 (14)151
Symmetry code: (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Sn4(C4H9)8(C7H3ClNO4)4O2]
Mr882.94
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)13.2278 (14), 13.2554 (14), 13.3279 (13)
α, β, γ (°)61.523 (2), 87.345 (2), 63.252 (2)
V3)1791.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.59
Crystal size (mm)0.27 × 0.17 × 0.09
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.673, 0.867
No. of measured, independent and
observed [I > 2σ(I)] reflections
21637, 7668, 6167
Rint0.041
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.04
No. of reflections7668
No. of parameters466
No. of restraints221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.88

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cg1i0.972.923.800 (14)151
Symmetry code: (i) x+1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors would like to thank Universiti Tunku Abdul Rahman (UTAR) for the UTAR Research Fund (Vote No. 6200/Y02) and Universiti Sains Malaysia (USM) for financial support as well as technical assistance and facilities. HKF and JHG also thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, F.-H., Yin, H.-D., Gao, Z.-J. & Wang, D.-Q. (2006). Acta Cryst. E62, m788–m790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWin, Y.-F., Choong, C.-S., Teoh, S.-G., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, m1406–m1407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWin, Y. F., Teoh, S. G., Ha, S. T., Kia, R. & Fun, H.-K. (2008a). Acta Cryst. E64, m1572–m1573.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWin, Y. F., Teoh, S. G., Lim, E. K., Ng, S. L. & Fun, H. K. (2008b). J. Chem. Cryst. 38, 345–350.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds