metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­aqua­(benzene-1,3-di­carboxyl­ato)(4,5-di­aza­fluoren-9-one)cadmium(II) penta­hydrate

aSchool of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, People's Republic of China, and Department of Chemistry, Baicheng Normal University, Baicheng 137000, People's Republic of China
*Correspondence e-mail: fangwei1026@126.com

(Received 11 September 2010; accepted 6 November 2010; online 13 November 2010)

In the title compound, [Cd(C8H4O4)(C11H6N2O)(H2O)3]·5H2O, the CdII atom is seven-coordinated by two N atoms from one bidentate phenanthroline-derived ligand and by five O atoms, two from one bidentate benzene-1,3-dicarboxyl­ate (1,3-BDC) ligand and three from water mol­ecules, in a distorted penta­gonal-bipyramidal geometry. Neighbouring units inter­act through ππ inter­actions [centroid–centroid distances = 3.380 (3) and 3.283 (4) Å]. Finally, three types of O—H⋯O hydrogen bonds exist between coordinated dissociative water mol­ecules and hybridization water mol­ecules and carboxyl­ate O atoms, resulting in a two-dimensional network parallel to (010).

Related literature

For applications of 1,10-phenanthroline and its derivatives in the construction of metal-organic complexes, see: Li et al. (2006[Li, C.-B., Fang, W., Gao, G.-G. & Liu, B. (2006). Acta Cryst. E62, m1312-m1314.], 2009[Li, X.-P., Fang, W., Mei, Z.-M., Jin, X.-J. & Qi, W.-L. (2009). Acta Cryst. E65, m1069-m1070.]); Olivier et al. (2008[Olivier, P., Celine, O., Thierry, R., Daniel, T. & Stephane, R. (2008). J. Organomet. Chem. 693, 2153-2158.]); Hong et al. (2009[Hong, M., Zhang, K., Li, Y.-Z. & Zhu, J. (2009). Polyhedron, 28, 445-452.]). For ππ stacking in related structures, see: Noveron et al. (2002[Noveron, J. C., Lah, M. S., Sesto, R. E. D., Arif, A. M., Miller, J. S. & Stang, P. J. (2002). J. Am. Chem. Soc. 124, 6613-6625.]). For the synthesis of 4,5-diaza­fluorene-9-one, see: Henderson et al. (1984[Henderson, L. J., Fronczek, F. J. & Cherry, W. R. (1984). J. Am. Chem. Soc. 106, 5876-5879.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H4O4)(C11H6N2O)(H2O)3]·5H2O

  • Mr = 602.83

  • Monoclinic, P 21 /n

  • a = 7.1218 (6) Å

  • b = 31.893 (3) Å

  • c = 11.0278 (9) Å

  • β = 106.579 (1)°

  • V = 2400.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 292 K

  • 0.54 × 0.23 × 0.18 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.762, Tmax = 0.839

  • 14040 measured reflections

  • 4721 independent reflections

  • 3839 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.119

  • S = 1.07

  • 4721 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—HW1A⋯O4i 0.84 1.82 2.660 (4) 177
OW1—HW1B⋯OW4ii 0.84 1.88 2.705 (5) 168
OW2—HW2A⋯O4iii 0.84 1.95 2.700 (5) 148
OW3—HW3B⋯OW8iv 0.84 2.11 2.945 (6) 174
OW3—HW3A⋯OW7 0.89 1.93 2.756 (5) 154
OW5—HW5A⋯OW7v 0.85 1.93 2.714 (6) 154
OW4—HW4B⋯O2 0.84 1.96 2.787 (5) 167
OW6—HW6A⋯O3vi 0.84 1.90 2.725 (5) 166
OW7—HW7B⋯OW6vii 0.84 1.91 2.715 (5) 159
OW8—HW8A⋯O3vi 0.84 1.92 2.717 (5) 158
OW8—HW8A⋯O4vi 0.84 2.52 3.230 (5) 143
OW8—HW8B⋯OW6vii 0.84 2.01 2.839 (6) 172
OW6—HW6B⋯OW3 0.83 2.37 3.079 (5) 144
OW6—HW6B⋯OW2 0.83 2.51 3.055 (6) 124
OW7—HW7A⋯O1 0.92 1.78 2.646 (5) 155
Symmetry codes: (i) x, y, z-1; (ii) x+1, y, z; (iii) x-1, y, z-1; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) x-1, y, z; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Over the past decade, coordination complexes in which rigid linear π-conjugated organic chains span transition metal centres have been proposed as models for molecular wires or for molecular (Olivier et al., 2008). Organocopper, copper cadmium and zinc complexes have been widely explored due to their rich structural chemistry (Hong et al., 2009). The chelating 1,10-phenanthroline (phen) and its derivatives are important ligands with numerous applications in the construction of metal-organic complexes(see, for example, Li et al.,2006). A our ongoing part studies in this area (Li et al., 2009). Here, we reacted phen derivative 4,5-diazafluorene-9-one (C11H6N2O; L) with CdII and benzene-1,3-dicarboxylate (C8H4O42-; 1,3-BDC), resulting in the title polymeric complex (I). In compound (I), the CdII atom of unit is surrounded by two N atoms derived from the bidentate L ligand, two O atoms from a bidentate 1,3-BDC ligand and thr ee O atoms from three H2O moleculars. The distances between Cd and O rang from 2.226 (4) to 2.644 (4). This results in a very distorted CdN2O5 pentagonal bipyramid with the donor atoms of both the bidentate species occupying both an equatorial and an axial site (Table 1, Fig.1). Neighbouring units in (I) are connected through π-π interactions between L ligands with ππ stacking distances of 3.380 (3) and 3.283 (4) Å. Similar values occur in related structures (Noveron et al.,2002). Finally, three types of hydrogen bonds exist between coordinated dissociative water molecules and hybridization water molecules and carboxylate group oxygen atoms. The related parameters are listed in (Table 2). resulting in a two-dimensional supramolecular structure. (Fig.2) A l l the H atoms carried on O atoms were located by Forrier map and then refined as riding atoms with Uiso(H)= 1.2 times Ueq(O). One of the water oxygen atoms is disordered in two positions as Ow8 and Ow8'. The occupancies of Ow8 and Ow8' were assigned as 0.75 and 1/4, respectively.

The structure has been refined to add an extra water molecule Ow8' in the vicinity of Ow8. Ow8 and Ow8' atoms have been considered as two disodered parts of one water oxygen atom. By this way, there were no any large residual peaks more than 1.0 e.A-3 in the final refinement.

Related literature top

For applications of 1,10-phenanthroline and its derivatives in the construction of metal-organic complexes, see: Li et al. (2006, 2009); Olivier et al. (2008); Hong et al. (2009). For ππ stacking in related structures, see: Noveron et al. (2002). For the synthesis of 4,5-diazafluorene-9-one, see: Henderson et al. (1984).

Experimental top

Ligand was synthesized according to the literature method. (Henderson et al., 1984). A mixture of CdCl2 (0.3 mmol), L (0.1 mmol) and H21,3-BDC (0.3 mmol) in distilled water (30 ml) was stirred thoroughly for 1 h at ambient temperature. The pH was adjusted to 7.5 with aqueous NaOH solution. The suspension was then sealed in a Teflon-lined stainless steel reaction vessel (40 ml). The reaction was performed under autogeneous pressure and static conditions in an oven at 443 K for 4.5 d. The vessel was then cooled slowly inside the oven to 298 K at a rate of 5 K h-1 before opening: yellow crystals of (I) were collected.

Refinement top

All H atoms on C atoms were generated geometrically and refined as riding atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Over the past decade, coordination complexes in which rigid linear π-conjugated organic chains span transition metal centres have been proposed as models for molecular wires or for molecular (Olivier et al., 2008). Organocopper, copper cadmium and zinc complexes have been widely explored due to their rich structural chemistry (Hong et al., 2009). The chelating 1,10-phenanthroline (phen) and its derivatives are important ligands with numerous applications in the construction of metal-organic complexes(see, for example, Li et al.,2006). A our ongoing part studies in this area (Li et al., 2009). Here, we reacted phen derivative 4,5-diazafluorene-9-one (C11H6N2O; L) with CdII and benzene-1,3-dicarboxylate (C8H4O42-; 1,3-BDC), resulting in the title polymeric complex (I). In compound (I), the CdII atom of unit is surrounded by two N atoms derived from the bidentate L ligand, two O atoms from a bidentate 1,3-BDC ligand and thr ee O atoms from three H2O moleculars. The distances between Cd and O rang from 2.226 (4) to 2.644 (4). This results in a very distorted CdN2O5 pentagonal bipyramid with the donor atoms of both the bidentate species occupying both an equatorial and an axial site (Table 1, Fig.1). Neighbouring units in (I) are connected through π-π interactions between L ligands with ππ stacking distances of 3.380 (3) and 3.283 (4) Å. Similar values occur in related structures (Noveron et al.,2002). Finally, three types of hydrogen bonds exist between coordinated dissociative water molecules and hybridization water molecules and carboxylate group oxygen atoms. The related parameters are listed in (Table 2). resulting in a two-dimensional supramolecular structure. (Fig.2) A l l the H atoms carried on O atoms were located by Forrier map and then refined as riding atoms with Uiso(H)= 1.2 times Ueq(O). One of the water oxygen atoms is disordered in two positions as Ow8 and Ow8'. The occupancies of Ow8 and Ow8' were assigned as 0.75 and 1/4, respectively.

The structure has been refined to add an extra water molecule Ow8' in the vicinity of Ow8. Ow8 and Ow8' atoms have been considered as two disodered parts of one water oxygen atom. By this way, there were no any large residual peaks more than 1.0 e.A-3 in the final refinement.

For applications of 1,10-phenanthroline and its derivatives in the construction of metal-organic complexes, see: Li et al. (2006, 2009); Olivier et al. (2008); Hong et al. (2009). For ππ stacking in related structures, see: Noveron et al. (2002). For the synthesis of 4,5-diazafluorene-9-one, see: Henderson et al. (1984).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the local coordination of Cd(II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A view down crystallographic axis a of the two-dimensional supramolecular structure of (I) generated by π-π interaction and hydrogen-bonding.
Triaqua(benzene-1,3-dicarboxylato)(4,5-diazafluoren-9-one)cadmium(II) pentahydrate top
Crystal data top
[Cd(C8H4O4)(C11H6N2O)(H2O)3]·5H2OF(000) = 1224
Mr = 602.83Dx = 1.665 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.1218 (6) Åθ = 2.0–26.3°
b = 31.893 (3) ŵ = 0.98 mm1
c = 11.0278 (9) ÅT = 292 K
β = 106.579 (1)°Block, yellow
V = 2400.7 (4) Å30.54 × 0.23 × 0.18 mm
Z = 4
Data collection top
Bruker SMART
diffractometer
4721 independent reflections
Radiation source: fine-focus sealed tube3839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 0 pixels mm-1θmax = 26.0°, θmin = 2.0°
ω scansh = 58
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 3939
Tmin = 0.762, Tmax = 0.839l = 1313
14040 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0547P)2 + 1.8475P]
where P = (Fo2 + 2Fc2)/3
4721 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.81 e Å3
Crystal data top
[Cd(C8H4O4)(C11H6N2O)(H2O)3]·5H2OV = 2400.7 (4) Å3
Mr = 602.83Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1218 (6) ŵ = 0.98 mm1
b = 31.893 (3) ÅT = 292 K
c = 11.0278 (9) Å0.54 × 0.23 × 0.18 mm
β = 106.579 (1)°
Data collection top
Bruker SMART
diffractometer
4721 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3839 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.839Rint = 0.064
14040 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.07Δρmax = 0.85 e Å3
4721 reflectionsΔρmin = 0.81 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.56424 (5)0.130201 (10)0.55013 (3)0.02848 (13)
O10.7075 (5)0.13446 (11)0.7651 (3)0.0416 (9)
OW10.8374 (4)0.09822 (9)0.5298 (3)0.0312 (7)
HW1A0.88900.11090.48090.037*
HW1B0.92500.09420.59790.037*
O20.5183 (5)0.07925 (12)0.7288 (3)0.0456 (9)
OW20.2993 (5)0.16577 (13)0.5563 (3)0.0578 (12)
HW2A0.20580.16670.48910.069*
HW2B0.26680.17740.62070.069*
O30.9536 (5)0.18494 (9)1.2167 (3)0.0336 (8)
OW30.7151 (6)0.19952 (11)0.5577 (3)0.0515 (10)
HW3A0.77870.20950.63380.062*
HW3B0.78380.20840.51310.062*
O40.9934 (5)0.13719 (10)1.3685 (3)0.0333 (8)
O50.1452 (5)0.05436 (10)0.0081 (3)0.0349 (8)
N10.4690 (5)0.14857 (11)0.3209 (3)0.0259 (8)
N20.3800 (5)0.07067 (11)0.4391 (3)0.0264 (8)
C10.4799 (7)0.18203 (14)0.2489 (5)0.0333 (11)
H10.53830.20640.28890.040*
C20.4087 (7)0.18207 (15)0.1182 (5)0.0359 (11)
H2A0.42020.20620.07330.043*
C30.3204 (7)0.14672 (15)0.0531 (4)0.0316 (10)
H30.27420.14620.03470.038*
C40.3049 (6)0.11249 (14)0.1256 (4)0.0263 (9)
C50.2193 (6)0.06945 (14)0.0947 (4)0.0287 (10)
C60.2442 (6)0.04832 (13)0.2210 (4)0.0245 (9)
C70.1839 (6)0.01058 (14)0.2564 (4)0.0308 (10)
H70.12120.00940.19720.037*
C80.2219 (7)0.00387 (14)0.3860 (4)0.0334 (11)
H80.18130.02100.41470.040*
C90.3191 (7)0.03368 (14)0.4727 (4)0.0312 (10)
H90.34360.02780.55850.037*
C100.3391 (6)0.07652 (13)0.3142 (4)0.0221 (9)
C110.3795 (6)0.11571 (13)0.2567 (4)0.0243 (9)
C120.9333 (6)0.14869 (14)1.2546 (4)0.0251 (9)
C130.8319 (6)0.11616 (13)1.1591 (4)0.0234 (9)
C140.7805 (6)0.12412 (13)1.0307 (4)0.0243 (9)
H140.80810.15031.00250.029*
C150.6886 (6)0.09410 (14)0.9428 (4)0.0274 (10)
C160.6496 (7)0.05520 (15)0.9856 (5)0.0338 (11)
H160.58790.03490.92740.041*
C170.7005 (7)0.04609 (14)1.1122 (5)0.0337 (11)
H170.67370.01971.13930.040*
C180.7922 (6)0.07636 (14)1.2003 (4)0.0285 (10)
H180.82710.07021.28630.034*
C190.6332 (6)0.10307 (16)0.8034 (4)0.0321 (11)
OW40.1300 (5)0.07422 (14)0.7339 (3)0.0625 (12)
HW4A0.13310.06760.81690.075*
HW4B0.24670.07160.73190.075*
OW50.2756 (7)0.19371 (15)0.7778 (4)0.0766 (14)
HW5A0.16980.18910.79590.092*
HW5B0.31850.21980.80400.092*
OW60.3635 (6)0.25918 (11)0.5216 (3)0.0536 (11)
HW6A0.39270.27930.57230.064*
HW6B0.43120.23860.55450.064*
OW70.9155 (6)0.20440 (13)0.8111 (3)0.0589 (11)
HW7A0.86620.17810.81820.071*
HW7B0.88810.22070.86340.071*
OW80.4647 (6)0.26328 (12)0.9142 (4)0.0279 (9)0.75
HW8A0.46930.28410.86850.033*0.75
HW8B0.58020.25460.94050.033*0.75
OW8'0.477 (2)0.2319 (4)1.0368 (17)0.061 (5)0.25
H8'0.41580.21041.00820.073*0.25
H8''0.59630.23591.04930.073*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0292 (2)0.03009 (19)0.02268 (19)0.00057 (15)0.00189 (14)0.00493 (14)
O10.044 (2)0.054 (2)0.0225 (17)0.0072 (17)0.0024 (16)0.0039 (15)
OW10.0296 (17)0.0403 (18)0.0240 (16)0.0001 (14)0.0079 (14)0.0083 (14)
O20.036 (2)0.064 (2)0.034 (2)0.0091 (18)0.0051 (16)0.0191 (18)
OW20.034 (2)0.092 (3)0.036 (2)0.028 (2)0.0080 (17)0.033 (2)
O30.044 (2)0.0315 (17)0.0209 (16)0.0052 (15)0.0032 (15)0.0013 (13)
OW30.068 (3)0.039 (2)0.035 (2)0.0166 (19)0.0034 (19)0.0003 (16)
O40.0363 (19)0.0418 (19)0.0182 (16)0.0087 (15)0.0019 (14)0.0018 (13)
O50.0340 (18)0.0456 (19)0.0220 (17)0.0038 (15)0.0032 (14)0.0081 (15)
N10.0227 (19)0.0261 (18)0.026 (2)0.0014 (16)0.0030 (16)0.0035 (16)
N20.0241 (19)0.0296 (19)0.0224 (19)0.0020 (15)0.0016 (16)0.0012 (15)
C10.033 (3)0.026 (2)0.044 (3)0.003 (2)0.015 (2)0.002 (2)
C20.036 (3)0.034 (3)0.038 (3)0.002 (2)0.012 (2)0.010 (2)
C30.032 (3)0.037 (2)0.027 (2)0.006 (2)0.011 (2)0.005 (2)
C40.020 (2)0.033 (2)0.023 (2)0.0041 (19)0.0023 (18)0.0000 (19)
C50.021 (2)0.035 (2)0.031 (3)0.0055 (19)0.009 (2)0.006 (2)
C60.021 (2)0.030 (2)0.021 (2)0.0025 (18)0.0029 (18)0.0022 (17)
C70.028 (2)0.029 (2)0.032 (3)0.0005 (19)0.003 (2)0.007 (2)
C80.039 (3)0.025 (2)0.035 (3)0.003 (2)0.009 (2)0.005 (2)
C90.035 (3)0.034 (2)0.023 (2)0.004 (2)0.007 (2)0.0049 (19)
C100.019 (2)0.025 (2)0.021 (2)0.0022 (17)0.0026 (17)0.0035 (17)
C110.017 (2)0.029 (2)0.027 (2)0.0039 (18)0.0060 (18)0.0015 (18)
C120.016 (2)0.038 (2)0.022 (2)0.0006 (19)0.0060 (18)0.0037 (19)
C130.018 (2)0.028 (2)0.026 (2)0.0011 (17)0.0085 (18)0.0039 (18)
C140.021 (2)0.028 (2)0.025 (2)0.0008 (18)0.0085 (18)0.0035 (18)
C150.016 (2)0.038 (2)0.027 (2)0.0002 (19)0.0053 (18)0.006 (2)
C160.024 (2)0.039 (3)0.039 (3)0.007 (2)0.009 (2)0.018 (2)
C170.033 (3)0.030 (2)0.040 (3)0.006 (2)0.014 (2)0.001 (2)
C180.024 (2)0.034 (2)0.027 (2)0.0000 (19)0.0061 (19)0.0018 (19)
C190.020 (2)0.047 (3)0.027 (2)0.008 (2)0.002 (2)0.010 (2)
OW40.035 (2)0.115 (4)0.034 (2)0.009 (2)0.0048 (18)0.020 (2)
OW50.085 (3)0.096 (3)0.061 (3)0.034 (3)0.041 (3)0.030 (3)
OW60.090 (3)0.0289 (18)0.035 (2)0.0020 (19)0.008 (2)0.0007 (15)
OW70.068 (3)0.069 (3)0.041 (2)0.021 (2)0.018 (2)0.0136 (19)
OW80.036 (2)0.0227 (19)0.025 (2)0.0051 (17)0.0096 (19)0.0136 (16)
OW8'0.060 (10)0.038 (8)0.096 (14)0.021 (8)0.040 (10)0.007 (8)
Geometric parameters (Å, º) top
Cd1—OW22.219 (3)C6—C101.388 (6)
Cd1—OW12.264 (3)C7—C81.394 (6)
Cd1—O12.302 (3)C7—H70.9300
Cd1—N22.431 (4)C8—C91.386 (6)
Cd1—OW32.449 (3)C8—H80.9300
Cd1—N12.492 (4)C9—H90.9300
Cd1—O22.645 (4)C10—C111.467 (6)
O1—C191.260 (6)C12—C131.508 (6)
OW1—HW1A0.8387C13—C141.381 (6)
OW1—HW1B0.8379C13—C181.404 (6)
O2—C191.241 (5)C14—C151.386 (6)
OW2—HW2A0.8440C14—H140.9300
OW2—HW2B0.8887C15—C161.383 (7)
O3—C121.252 (5)C15—C191.502 (6)
OW3—HW3A0.8910C16—C171.370 (7)
OW3—HW3B0.8352C16—H160.9300
O4—C121.259 (5)C17—C181.393 (6)
O5—C51.206 (5)C17—H170.9300
N1—C111.323 (6)C18—H180.9300
N1—C11.346 (6)OW4—HW4A0.9335
N2—C101.336 (5)OW4—HW4B0.8417
N2—C91.345 (6)OW5—HW5A0.8459
C1—C21.385 (7)OW5—HW5B0.9059
C1—H10.9300OW6—HW6A0.8383
C2—C31.387 (7)OW6—HW6B0.8348
C2—H2A0.9300OW7—HW7A0.9227
C3—C41.376 (6)OW7—HW7B0.8391
C3—H30.9300OW8—OW8'1.663 (16)
C4—C111.394 (6)OW8—HW8A0.8407
C4—C51.501 (6)OW8—HW8B0.8376
C5—C61.511 (6)OW8'—H8'0.8260
C6—C71.372 (6)OW8'—H8''0.8296
OW2—Cd1—OW1174.63 (14)C7—C6—C10118.9 (4)
OW2—Cd1—O193.95 (13)C7—C6—C5133.6 (4)
OW1—Cd1—O189.31 (12)C10—C6—C5107.4 (4)
OW2—Cd1—N294.20 (13)C6—C7—C8116.2 (4)
OW1—Cd1—N287.35 (11)C6—C7—H7121.9
O1—Cd1—N2125.57 (12)C8—C7—H7121.9
OW2—Cd1—OW384.62 (15)C9—C8—C7121.0 (4)
OW1—Cd1—OW391.66 (12)C9—C8—H8119.5
O1—Cd1—OW381.41 (12)C7—C8—H8119.5
N2—Cd1—OW3152.96 (12)N2—C9—C8123.2 (4)
OW2—Cd1—N185.60 (13)N2—C9—H9118.4
OW1—Cd1—N189.90 (11)C8—C9—H9118.4
O1—Cd1—N1160.53 (12)N2—C10—C6126.2 (4)
N2—Cd1—N173.81 (12)N2—C10—C11123.5 (4)
OW3—Cd1—N179.17 (12)C6—C10—C11110.2 (4)
OW2—Cd1—O290.23 (14)N1—C11—C4126.6 (4)
OW1—Cd1—O295.13 (11)N1—C11—C10124.6 (4)
O1—Cd1—O251.81 (11)C4—C11—C10108.8 (4)
N2—Cd1—O274.44 (11)O3—C12—O4124.3 (4)
OW3—Cd1—O2132.49 (11)O3—C12—C13118.7 (4)
N1—Cd1—O2147.56 (11)O4—C12—C13117.1 (4)
C19—O1—Cd1101.1 (3)C14—C13—C18118.7 (4)
Cd1—OW1—HW1A113.1C14—C13—C12121.6 (4)
Cd1—OW1—HW1B114.9C18—C13—C12119.7 (4)
HW1A—OW1—HW1B107.4C13—C14—C15121.6 (4)
C19—O2—Cd185.4 (3)C13—C14—H14119.2
Cd1—OW2—HW2A117.1C15—C14—H14119.2
Cd1—OW2—HW2B131.0C16—C15—C14118.8 (4)
HW2A—OW2—HW2B111.6C16—C15—C19120.0 (4)
Cd1—OW3—HW3A117.0C14—C15—C19121.2 (4)
Cd1—OW3—HW3B127.6C17—C16—C15121.1 (4)
HW3A—OW3—HW3B102.0C17—C16—H16119.4
C11—N1—C1114.3 (4)C15—C16—H16119.4
C11—N1—Cd1107.9 (3)C16—C17—C18120.0 (4)
C1—N1—Cd1137.8 (3)C16—C17—H17120.0
C10—N2—C9114.5 (4)C18—C17—H17120.0
C10—N2—Cd1109.7 (3)C17—C18—C13119.9 (4)
C9—N2—Cd1135.7 (3)C17—C18—H18120.1
N1—C1—C2123.3 (4)C13—C18—H18120.1
N1—C1—H1118.3O2—C19—O1121.7 (4)
C2—C1—H1118.3O2—C19—C15119.6 (5)
C1—C2—C3121.0 (4)O1—C19—C15118.8 (4)
C1—C2—H2A119.5HW4A—OW4—HW4B104.8
C3—C2—H2A119.5HW5A—OW5—HW5B109.1
C4—C3—C2116.4 (4)HW6A—OW6—HW6B108.2
C4—C3—H3121.8HW7A—OW7—HW7B109.6
C2—C3—H3121.8OW8'—OW8—HW8A163.9
C3—C4—C11118.3 (4)OW8'—OW8—HW8B72.6
C3—C4—C5133.5 (4)HW8A—OW8—HW8B105.4
C11—C4—C5108.2 (4)OW8—OW8'—H8'106.8
O5—C5—C4128.2 (4)OW8—OW8'—H8''81.8
O5—C5—C6126.4 (4)H8'—OW8'—H8''126.5
C4—C5—C6105.4 (4)
OW2—Cd1—O1—C1986.5 (3)C4—C5—C6—C101.2 (4)
OW1—Cd1—O1—C1997.7 (3)C10—C6—C7—C80.8 (6)
N2—Cd1—O1—C1911.5 (3)C5—C6—C7—C8174.3 (4)
OW3—Cd1—O1—C19170.5 (3)C6—C7—C8—C91.4 (7)
N1—Cd1—O1—C19174.5 (3)C10—N2—C9—C80.0 (6)
O2—Cd1—O1—C190.7 (3)Cd1—N2—C9—C8176.4 (3)
OW2—Cd1—O2—C1994.2 (3)C7—C8—C9—N21.0 (7)
OW1—Cd1—O2—C1985.7 (3)C9—N2—C10—C60.6 (6)
O1—Cd1—O2—C190.7 (3)Cd1—N2—C10—C6176.7 (3)
N2—Cd1—O2—C19171.5 (3)C9—N2—C10—C11175.5 (4)
OW3—Cd1—O2—C1911.3 (3)Cd1—N2—C10—C117.2 (5)
N1—Cd1—O2—C19176.3 (3)C7—C6—C10—N20.2 (7)
OW2—Cd1—N1—C1199.8 (3)C5—C6—C10—N2176.5 (4)
OW1—Cd1—N1—C1183.2 (3)C7—C6—C10—C11176.3 (4)
O1—Cd1—N1—C11170.8 (3)C5—C6—C10—C110.0 (5)
N2—Cd1—N1—C114.1 (3)C1—N1—C11—C42.4 (6)
OW3—Cd1—N1—C11174.9 (3)Cd1—N1—C11—C4179.1 (4)
O2—Cd1—N1—C1116.3 (4)C1—N1—C11—C10176.2 (4)
OW2—Cd1—N1—C178.2 (4)Cd1—N1—C11—C102.3 (5)
OW1—Cd1—N1—C198.9 (4)C3—C4—C11—N11.3 (7)
O1—Cd1—N1—C111.2 (7)C5—C4—C11—N1179.0 (4)
N2—Cd1—N1—C1173.9 (5)C3—C4—C11—C10177.5 (4)
OW3—Cd1—N1—C17.2 (4)C5—C4—C11—C102.2 (5)
O2—Cd1—N1—C1161.7 (4)N2—C10—C11—N13.6 (7)
OW2—Cd1—N2—C1089.9 (3)C6—C10—C11—N1179.7 (4)
OW1—Cd1—N2—C1085.0 (3)N2—C10—C11—C4175.2 (4)
O1—Cd1—N2—C10172.2 (3)C6—C10—C11—C41.4 (5)
OW3—Cd1—N2—C103.5 (5)O3—C12—C13—C147.0 (6)
N1—Cd1—N2—C105.7 (3)O4—C12—C13—C14172.5 (4)
O2—Cd1—N2—C10179.0 (3)O3—C12—C13—C18174.5 (4)
OW2—Cd1—N2—C993.6 (4)O4—C12—C13—C185.9 (6)
OW1—Cd1—N2—C991.6 (4)C18—C13—C14—C151.0 (6)
O1—Cd1—N2—C94.3 (5)C12—C13—C14—C15179.5 (4)
OW3—Cd1—N2—C9180.0 (4)C13—C14—C15—C160.6 (6)
N1—Cd1—N2—C9177.8 (4)C13—C14—C15—C19180.0 (4)
O2—Cd1—N2—C94.5 (4)C14—C15—C16—C170.1 (7)
C11—N1—C1—C21.6 (6)C19—C15—C16—C17179.3 (4)
Cd1—N1—C1—C2179.5 (3)C15—C16—C17—C180.3 (7)
N1—C1—C2—C30.1 (8)C16—C17—C18—C130.1 (7)
C1—C2—C3—C41.2 (7)C14—C13—C18—C170.8 (6)
C2—C3—C4—C110.6 (6)C12—C13—C18—C17179.3 (4)
C2—C3—C4—C5178.9 (5)Cd1—O2—C19—O11.1 (4)
C3—C4—C5—O52.2 (8)Cd1—O2—C19—C15179.9 (4)
C11—C4—C5—O5178.2 (4)Cd1—O1—C19—O21.3 (5)
C3—C4—C5—C6177.5 (5)Cd1—O1—C19—C15179.7 (3)
C11—C4—C5—C62.1 (5)C16—C15—C19—O214.8 (6)
O5—C5—C6—C75.5 (8)C14—C15—C19—O2165.8 (4)
C4—C5—C6—C7174.2 (5)C16—C15—C19—O1164.2 (4)
O5—C5—C6—C10179.0 (4)C14—C15—C19—O115.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1A···O4i0.841.822.660 (4)177
OW1—HW1B···OW4ii0.841.882.705 (5)168
OW2—HW2A···O4iii0.841.952.700 (5)148
OW3—HW3B···OW8iv0.842.112.945 (6)174
OW3—HW3A···OW70.891.932.756 (5)154
OW5—HW5A···OW7v0.851.932.714 (6)154
OW4—HW4B···O20.841.962.787 (5)167
OW6—HW6A···O3vi0.841.902.725 (5)166
OW7—HW7B···OW6vii0.841.912.715 (5)159
OW8—HW8A···O3vi0.841.922.717 (5)158
OW8—HW8A···O4vi0.842.523.230 (5)143
OW8—HW8B···OW6vii0.842.012.839 (6)172
OW6—HW6B···OW30.832.373.079 (5)144
OW6—HW6B···OW20.832.513.055 (6)124
OW7—HW7A···O10.921.782.646 (5)155
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x1, y, z1; (iv) x+1/2, y+1/2, z1/2; (v) x1, y, z; (vi) x1/2, y+1/2, z1/2; (vii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C8H4O4)(C11H6N2O)(H2O)3]·5H2O
Mr602.83
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)7.1218 (6), 31.893 (3), 11.0278 (9)
β (°) 106.579 (1)
V3)2400.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.54 × 0.23 × 0.18
Data collection
DiffractometerBruker SMART
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.762, 0.839
No. of measured, independent and
observed [I > 2σ(I)] reflections
14040, 4721, 3839
Rint0.064
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.119, 1.07
No. of reflections4721
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.81

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1A···O4i0.841.822.660 (4)177.3
OW1—HW1B···OW4ii0.841.882.705 (5)167.5
OW2—HW2A···O4iii0.841.952.700 (5)147.9
OW3—HW3B···OW8iv0.842.112.945 (6)173.5
OW3—HW3A···OW70.891.932.756 (5)154.1
OW5—HW5A···OW7v0.851.932.714 (6)153.9
OW4—HW4B···O20.841.962.787 (5)167.1
OW6—HW6A···O3vi0.841.902.725 (5)166.0
OW7—HW7B···OW6vii0.841.912.715 (5)159.1
OW8—HW8A···O3vi0.841.922.717 (5)158.0
OW8—HW8A···O4vi0.842.523.230 (5)143.4
OW8—HW8B···OW6vii0.842.012.839 (6)171.6
OW6—HW6B···OW30.832.373.079 (5)143.8
OW6—HW6B···OW20.832.513.055 (6)124.2
OW7—HW7A···O10.921.782.646 (5)154.7
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x1, y, z1; (iv) x+1/2, y+1/2, z1/2; (v) x1, y, z; (vi) x1/2, y+1/2, z1/2; (vii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The author thanks Baicheng Normal University for supporting this work.

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHenderson, L. J., Fronczek, F. J. & Cherry, W. R. (1984). J. Am. Chem. Soc. 106, 5876–5879.  CSD CrossRef CAS Web of Science Google Scholar
First citationHong, M., Zhang, K., Li, Y.-Z. & Zhu, J. (2009). Polyhedron, 28, 445–452.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, C.-B., Fang, W., Gao, G.-G. & Liu, B. (2006). Acta Cryst. E62, m1312–m1314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X.-P., Fang, W., Mei, Z.-M., Jin, X.-J. & Qi, W.-L. (2009). Acta Cryst. E65, m1069–m1070.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNoveron, J. C., Lah, M. S., Sesto, R. E. D., Arif, A. M., Miller, J. S. & Stang, P. J. (2002). J. Am. Chem. Soc. 124, 6613–6625.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOlivier, P., Celine, O., Thierry, R., Daniel, T. & Stephane, R. (2008). J. Organomet. Chem. 693, 2153–2158.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds