organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Pyrid­yl)pyridinium 3-amino-5-carb­­oxy-2,4,6-tri­iodo­benzoate–5-amino-2,4,6-tri­iodo­isophthalic acid (1/1)

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 October 2010; accepted 5 November 2010; online 13 November 2010)

In the title ammonium carboxyl­ate–carb­oxy­lic acid co-cystal, C10H9N2+·C8H3I3NO4−.C8H4I3NO4, the carboxyl­ate anion and carb­oxy­lic acid mol­ecule are linked by O—H⋯O and N—H⋯O hydrogen bonds to form a chain running along the c axis of the monoclinic unit cell. The chains are linked by pyridinum and pyridine N—H⋯O hydrogen bonds, generating a layer motif. O—H⋯N and O—H⋯O hydrogen bonds are also observed.

Related literature

For the crystal structure of 5-amino-2,4,6-triiodo­isophthalic acid monohydrate, see: Beck & Sheldrick (2008[Beck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N2+·C8H3I3NO4·C8H4I3NO4

  • Mr = 1273.83

  • Monoclinic, P 21 /c

  • a = 7.7388 (4) Å

  • b = 34.2377 (19) Å

  • c = 13.0739 (7) Å

  • β = 106.506 (1)°

  • V = 3321.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.66 mm−1

  • T = 295 K

  • 0.08 × 0.06 × 0.04 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.660, Tmax = 0.805

  • 28196 measured reflections

  • 7506 independent reflections

  • 6365 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.082

  • S = 1.03

  • 7506 reflections

  • 429 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.25 e Å−3

  • Δρmin = −1.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O8i 0.88 (1) 2.22 (4) 2.946 (6) 141 (5)
N3—H3⋯O1 0.88 (1) 1.78 (1) 2.651 (5) 174 (6)
O3—H3o⋯N4ii 0.84 (1) 1.75 (2) 2.585 (5) 171 (9)
O5—H5o⋯O1 0.84 (1) 1.77 (3) 2.568 (4) 159 (6)
O7—H7o⋯O2iii 0.84 (1) 1.84 (1) 2.679 (5) 174 (7)
Symmetry codes: (i) x-1, y, z-1; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y, z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

5-Amino-2,4,6-triiodoisophthalic acid exists as a monohydrated compound for which the acid and water molecules are linked by extensive O–H···O, O–H···N and N–H···O hydrogen bonds to form a three-dimensional network (Beck & Sheldrick, 2008). The acid furnishes a small number of coordination compounds. The attempt to synthesize a cadmium derivative that can be linked by 4,4'-bipyridine gave instead the co-crystal, C10H9N2+C8H3NO4I3-.C8H4NO4I3 (Scheme I, Fig. 1).

The carboxylate anion and carboxylic acid are linked by O–H···O and N–H···O hydrogen bonds to form a chain running along the c-axis of the monoclinic unit cell. The chains are linked by Npyridinum–H···O and Npyridyl–H···O hydrogen bonds to generate a layer motif (Fig. 2, Table 1).

Related literature top

For the crystal structure of 5-amino-2,4,6-triiodoisophthalic acid monohydrate, see: Beck & Sheldrick (2008).

Experimental top

An aqueous solution of cadmium dichloride 2.5 hydrate (0.023 g, 0.1 mmol) in water (5 ml) was added to a mixture of 5-amino-2,4,6-triiodoisophthalic acid (0.056 g, 0.1 mmol) in water (5 ml) and sodium hydroxide (0.2 ml, 0.5 M). To the solution was added 4,4'-bipyridine (0.016 g, 0.1 mmol) in water (5 ml). The solution was filed; slow evaporation yielded deep yellow crystals were collected (30% yield). CH&N elemental analysis. Calc. for C26H16I6N4O8: C 24.51, H 1.27, N 4.43%; Found: C, 24.43; H, 1.29; N, 4.50%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The amino and acid H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.88±0.01 and O–H 0.84±0.01 Å; their temperature factors were refined.

The final difference Fourier map had a peak in the vicinity of I5 and a hole in the vicinity of I3.

Structure description top

5-Amino-2,4,6-triiodoisophthalic acid exists as a monohydrated compound for which the acid and water molecules are linked by extensive O–H···O, O–H···N and N–H···O hydrogen bonds to form a three-dimensional network (Beck & Sheldrick, 2008). The acid furnishes a small number of coordination compounds. The attempt to synthesize a cadmium derivative that can be linked by 4,4'-bipyridine gave instead the co-crystal, C10H9N2+C8H3NO4I3-.C8H4NO4I3 (Scheme I, Fig. 1).

The carboxylate anion and carboxylic acid are linked by O–H···O and N–H···O hydrogen bonds to form a chain running along the c-axis of the monoclinic unit cell. The chains are linked by Npyridinum–H···O and Npyridyl–H···O hydrogen bonds to generate a layer motif (Fig. 2, Table 1).

For the crystal structure of 5-amino-2,4,6-triiodoisophthalic acid monohydrate, see: Beck & Sheldrick (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of C10H9N2+C8H3NO4I3-.C8H4NO4I3 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The hydrogen-bonded layer structure. Each amino group forms only one hydrogen bond; the weaker hydrogen bond is are not shown.
4-(4-Pyridyl)pyridinium 3-amino-5-carboxy-2,4,6-triiodobenzoate–5-amino-2,4,6-triiodoisophthalic acid (1/1) top
Crystal data top
C10H9N2+·C8H3I3NO4·C8H4I3NO4F(000) = 2328
Mr = 1273.83Dx = 2.547 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9939 reflections
a = 7.7388 (4) Åθ = 2.4–27.4°
b = 34.2377 (19) ŵ = 5.66 mm1
c = 13.0739 (7) ÅT = 295 K
β = 106.506 (1)°Prism, yellow
V = 3321.3 (3) Å30.08 × 0.06 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
7506 independent reflections
Radiation source: fine-focus sealed tube6365 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.660, Tmax = 0.805k = 4444
28196 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0387P)2 + 6.6421P]
where P = (Fo2 + 2Fc2)/3
7506 reflections(Δ/σ)max = 0.001
429 parametersΔρmax = 1.25 e Å3
8 restraintsΔρmin = 1.26 e Å3
Crystal data top
C10H9N2+·C8H3I3NO4·C8H4I3NO4V = 3321.3 (3) Å3
Mr = 1273.83Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7388 (4) ŵ = 5.66 mm1
b = 34.2377 (19) ÅT = 295 K
c = 13.0739 (7) Å0.08 × 0.06 × 0.04 mm
β = 106.506 (1)°
Data collection top
Bruker SMART APEX
diffractometer
7506 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6365 reflections with I > 2σ(I)
Tmin = 0.660, Tmax = 0.805Rint = 0.037
28196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0328 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.25 e Å3
7506 reflectionsΔρmin = 1.26 e Å3
429 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.89589 (4)0.633599 (10)0.26091 (3)0.03827 (9)
I20.17486 (6)0.713602 (10)0.08490 (4)0.05879 (13)
I30.22245 (5)0.537807 (9)0.07851 (3)0.03820 (9)
I40.63572 (4)0.521651 (8)0.65077 (2)0.03066 (8)
I50.57056 (6)0.666532 (10)0.90690 (3)0.04259 (10)
I60.36084 (5)0.672374 (10)0.42509 (3)0.04230 (10)
O10.6872 (5)0.54473 (9)0.2775 (2)0.0315 (7)
O20.6823 (5)0.54041 (10)0.1070 (3)0.0370 (8)
O30.6689 (6)0.71617 (11)0.1148 (3)0.0430 (9)
H3O0.724 (12)0.7376 (14)0.130 (7)0.12 (4)*
O40.6193 (7)0.72189 (11)0.2738 (3)0.0577 (12)
O50.6413 (5)0.58392 (11)0.4353 (3)0.0368 (8)
H5O0.628 (8)0.5720 (16)0.377 (3)0.055 (19)*
O60.3505 (5)0.56703 (11)0.4066 (3)0.0432 (9)
O70.5332 (5)0.56640 (12)0.9082 (3)0.0394 (8)
H7O0.575 (9)0.5570 (19)0.970 (2)0.07 (2)*
O80.8114 (5)0.56830 (13)0.8926 (3)0.0449 (9)
N10.0653 (6)0.62476 (12)0.0256 (4)0.0362 (9)
H110.004 (7)0.6029 (9)0.018 (4)0.045 (16)*
H120.001 (7)0.6455 (11)0.029 (5)0.048 (17)*
N20.4185 (7)0.69823 (12)0.6687 (4)0.0423 (11)
H210.461 (8)0.7106 (16)0.730 (3)0.052 (18)*
H220.412 (8)0.7143 (14)0.615 (3)0.048 (17)*
N30.8284 (5)0.47376 (12)0.3134 (3)0.0324 (9)
H30.787 (8)0.4976 (7)0.299 (5)0.055 (18)*
N41.1535 (6)0.28111 (12)0.3578 (4)0.0399 (10)
C10.6421 (6)0.55702 (12)0.1815 (3)0.0255 (9)
C20.5326 (6)0.59425 (12)0.1600 (3)0.0228 (9)
C30.6155 (6)0.63055 (12)0.1880 (3)0.0241 (9)
C40.5151 (6)0.66494 (12)0.1677 (3)0.0258 (9)
C50.3306 (6)0.66243 (12)0.1171 (4)0.0263 (9)
C60.2431 (6)0.62650 (12)0.0846 (3)0.0262 (9)
C70.3500 (6)0.59272 (12)0.1111 (3)0.0248 (9)
C80.6070 (7)0.70421 (13)0.1925 (4)0.0315 (10)
C90.6552 (6)0.57584 (13)0.8604 (3)0.0256 (9)
C100.5792 (6)0.59878 (13)0.7573 (3)0.0230 (9)
C110.5321 (7)0.63773 (13)0.7594 (3)0.0281 (9)
C120.4688 (6)0.66010 (13)0.6662 (4)0.0282 (9)
C130.4532 (6)0.64080 (13)0.5687 (3)0.0256 (9)
C140.5027 (6)0.60201 (12)0.5647 (3)0.0228 (8)
C150.5677 (6)0.58054 (12)0.6596 (3)0.0244 (9)
C160.4885 (6)0.58222 (13)0.4591 (3)0.0267 (9)
C170.8615 (7)0.45571 (14)0.4059 (4)0.0361 (11)
H170.84340.46890.46410.043*
C180.9221 (7)0.41776 (14)0.4184 (4)0.0329 (10)
H180.94610.40560.48460.040*
C190.9471 (6)0.39770 (12)0.3306 (4)0.0258 (9)
C200.9103 (7)0.41793 (14)0.2341 (4)0.0337 (11)
H200.92570.40570.17370.040*
C210.8514 (7)0.45584 (15)0.2286 (4)0.0375 (11)
H21A0.82710.46920.16410.045*
C221.1572 (7)0.30185 (14)0.4440 (4)0.0393 (12)
H22A1.20630.29070.51090.047*
C231.0905 (7)0.33952 (14)0.4377 (4)0.0381 (12)
H231.09550.35320.49990.046*
C241.0163 (6)0.35702 (13)0.3398 (4)0.0273 (9)
C251.0087 (9)0.33460 (16)0.2503 (5)0.0474 (14)
H250.95640.34460.18230.057*
C261.0804 (9)0.29694 (16)0.2632 (5)0.0505 (15)
H261.07660.28230.20260.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03160 (17)0.04546 (19)0.03463 (18)0.00668 (14)0.00433 (13)0.00376 (14)
I20.0485 (2)0.02261 (17)0.1008 (4)0.00977 (15)0.0140 (2)0.00154 (18)
I30.0456 (2)0.02220 (15)0.03956 (19)0.00873 (13)0.00046 (15)0.00157 (12)
I40.04117 (18)0.02040 (14)0.02876 (16)0.00191 (12)0.00727 (13)0.00067 (11)
I50.0665 (2)0.03696 (18)0.02578 (17)0.00401 (16)0.01550 (16)0.00919 (13)
I60.0586 (2)0.03503 (18)0.02813 (17)0.00338 (15)0.00399 (15)0.00980 (13)
O10.048 (2)0.0260 (16)0.0220 (16)0.0110 (14)0.0115 (14)0.0039 (12)
O20.055 (2)0.0356 (19)0.0235 (16)0.0134 (16)0.0155 (16)0.0004 (14)
O30.063 (3)0.034 (2)0.036 (2)0.0227 (18)0.0215 (18)0.0058 (16)
O40.106 (4)0.032 (2)0.041 (2)0.021 (2)0.031 (2)0.0154 (17)
O50.048 (2)0.040 (2)0.0256 (18)0.0024 (16)0.0162 (16)0.0078 (15)
O60.047 (2)0.044 (2)0.0331 (19)0.0068 (17)0.0031 (17)0.0128 (16)
O70.0347 (19)0.054 (2)0.033 (2)0.0066 (16)0.0138 (16)0.0192 (17)
O80.0283 (19)0.066 (3)0.037 (2)0.0010 (17)0.0044 (15)0.0109 (18)
N10.031 (2)0.027 (2)0.044 (2)0.0006 (17)0.0019 (19)0.0031 (19)
N20.073 (3)0.020 (2)0.035 (3)0.011 (2)0.017 (2)0.0015 (18)
N30.031 (2)0.027 (2)0.040 (2)0.0103 (17)0.0100 (18)0.0067 (17)
N40.048 (3)0.024 (2)0.052 (3)0.0102 (18)0.020 (2)0.0028 (19)
C10.032 (2)0.0177 (19)0.026 (2)0.0002 (17)0.0067 (18)0.0001 (17)
C20.035 (2)0.0186 (19)0.0145 (19)0.0001 (17)0.0065 (17)0.0022 (15)
C30.025 (2)0.028 (2)0.020 (2)0.0031 (17)0.0066 (17)0.0006 (17)
C40.040 (3)0.0163 (19)0.023 (2)0.0027 (17)0.0116 (19)0.0006 (16)
C50.034 (2)0.0162 (19)0.030 (2)0.0028 (17)0.0112 (19)0.0021 (17)
C60.035 (2)0.023 (2)0.022 (2)0.0023 (18)0.0102 (18)0.0008 (17)
C70.035 (2)0.0157 (18)0.023 (2)0.0047 (17)0.0080 (18)0.0014 (16)
C80.044 (3)0.018 (2)0.033 (2)0.0019 (19)0.011 (2)0.0022 (18)
C90.033 (3)0.025 (2)0.019 (2)0.0019 (18)0.0067 (18)0.0033 (16)
C100.024 (2)0.027 (2)0.018 (2)0.0044 (17)0.0061 (16)0.0021 (16)
C110.039 (3)0.025 (2)0.021 (2)0.0028 (19)0.0092 (19)0.0037 (17)
C120.034 (3)0.020 (2)0.031 (2)0.0035 (18)0.009 (2)0.0039 (17)
C130.030 (2)0.027 (2)0.019 (2)0.0010 (18)0.0044 (17)0.0050 (17)
C140.028 (2)0.0212 (19)0.021 (2)0.0026 (16)0.0088 (17)0.0015 (16)
C150.028 (2)0.020 (2)0.025 (2)0.0013 (16)0.0073 (18)0.0020 (17)
C160.034 (3)0.023 (2)0.021 (2)0.0009 (18)0.0050 (19)0.0002 (17)
C170.041 (3)0.030 (2)0.039 (3)0.011 (2)0.015 (2)0.001 (2)
C180.043 (3)0.026 (2)0.032 (2)0.010 (2)0.015 (2)0.0045 (19)
C190.027 (2)0.022 (2)0.029 (2)0.0044 (17)0.0088 (18)0.0023 (17)
C200.044 (3)0.027 (2)0.033 (3)0.003 (2)0.015 (2)0.0045 (19)
C210.046 (3)0.035 (3)0.034 (3)0.007 (2)0.015 (2)0.008 (2)
C220.049 (3)0.026 (2)0.042 (3)0.008 (2)0.010 (2)0.004 (2)
C230.050 (3)0.027 (2)0.038 (3)0.007 (2)0.014 (2)0.003 (2)
C240.026 (2)0.025 (2)0.032 (2)0.0052 (17)0.0108 (19)0.0011 (18)
C250.064 (4)0.037 (3)0.039 (3)0.015 (3)0.011 (3)0.004 (2)
C260.078 (4)0.033 (3)0.041 (3)0.016 (3)0.018 (3)0.004 (2)
Geometric parameters (Å, º) top
I1—C32.110 (4)C3—C41.394 (6)
I2—C52.100 (4)C4—C51.395 (7)
I3—C72.110 (4)C4—C81.513 (6)
I4—C152.095 (4)C5—C61.410 (6)
I5—C112.111 (4)C6—C71.407 (6)
I6—C132.108 (4)C9—C101.526 (6)
O1—C11.276 (5)C10—C111.385 (6)
O2—C11.241 (5)C10—C151.402 (6)
O3—C81.307 (6)C11—C121.404 (6)
O3—H3O0.84 (1)C12—C131.409 (6)
O4—C81.203 (6)C13—C141.388 (6)
O5—C161.307 (6)C14—C151.406 (6)
O5—H5O0.84 (1)C14—C161.513 (6)
O6—C161.211 (6)C17—C181.375 (6)
O7—C91.313 (6)C17—H170.9300
O7—H7O0.84 (1)C18—C191.398 (6)
O8—C91.190 (6)C18—H180.9300
N1—C61.374 (6)C19—C201.396 (6)
N1—H110.88 (1)C19—C241.485 (6)
N1—H120.88 (1)C20—C211.371 (7)
N2—C121.366 (6)C20—H200.9300
N2—H210.88 (1)C21—H21A0.9300
N2—H220.88 (1)C22—C231.383 (7)
N3—C171.316 (6)C22—H22A0.9300
N3—C211.323 (7)C23—C241.382 (7)
N3—H30.878 (10)C23—H230.9300
N4—C261.322 (7)C24—C251.387 (7)
N4—C221.325 (7)C25—C261.395 (7)
C1—C21.512 (6)C25—H250.9300
C2—C71.376 (6)C26—H260.9300
C2—C31.399 (6)
C8—O3—H3O111 (6)N2—C12—C11122.2 (4)
C16—O5—H5O108 (4)N2—C12—C13121.2 (4)
C9—O7—H7O115 (5)C11—C12—C13116.6 (4)
C6—N1—H11122 (4)C14—C13—C12122.0 (4)
C6—N1—H12116 (4)C14—C13—I6119.0 (3)
H11—N1—H12113 (6)C12—C13—I6119.0 (3)
C12—N2—H21117 (4)C13—C14—C15120.0 (4)
C12—N2—H22122 (4)C13—C14—C16120.9 (4)
H21—N2—H22110 (6)C15—C14—C16119.1 (4)
C17—N3—C21121.0 (4)C10—C15—C14119.0 (4)
C17—N3—H3127 (4)C10—C15—I4121.8 (3)
C21—N3—H3112 (4)C14—C15—I4119.1 (3)
C26—N4—C22118.5 (4)O6—C16—O5126.6 (4)
O2—C1—O1124.1 (4)O6—C16—C14122.2 (4)
O2—C1—C2119.6 (4)O5—C16—C14111.2 (4)
O1—C1—C2116.3 (4)N3—C17—C18121.6 (5)
C7—C2—C3119.3 (4)N3—C17—H17119.2
C7—C2—C1120.1 (4)C18—C17—H17119.2
C3—C2—C1120.6 (4)C17—C18—C19119.2 (4)
C4—C3—C2120.7 (4)C17—C18—H18120.4
C4—C3—I1119.4 (3)C19—C18—H18120.4
C2—C3—I1119.9 (3)C20—C19—C18117.3 (4)
C3—C4—C5118.6 (4)C20—C19—C24121.0 (4)
C3—C4—C8120.5 (4)C18—C19—C24121.7 (4)
C5—C4—C8120.8 (4)C21—C20—C19119.8 (4)
C4—C5—C6122.4 (4)C21—C20—H20120.1
C4—C5—I2119.7 (3)C19—C20—H20120.1
C6—C5—I2117.9 (3)N3—C21—C20121.1 (5)
N1—C6—C7121.8 (4)N3—C21—H21A119.4
N1—C6—C5121.7 (4)C20—C21—H21A119.4
C7—C6—C5116.4 (4)N4—C22—C23122.1 (5)
C2—C7—C6122.5 (4)N4—C22—H22A119.0
C2—C7—I3119.2 (3)C23—C22—H22A119.0
C6—C7—I3118.3 (3)C24—C23—C22120.6 (5)
O4—C8—O3125.1 (4)C24—C23—H23119.7
O4—C8—C4123.4 (4)C22—C23—H23119.7
O3—C8—C4111.4 (4)C23—C24—C25116.6 (4)
O8—C9—O7125.0 (4)C23—C24—C19121.8 (4)
O8—C9—C10121.5 (4)C25—C24—C19121.5 (4)
O7—C9—C10113.5 (4)C24—C25—C26119.3 (5)
C11—C10—C15119.9 (4)C24—C25—H25120.3
C11—C10—C9121.0 (4)C26—C25—H25120.3
C15—C10—C9119.0 (4)N4—C26—C25122.8 (5)
C10—C11—C12122.5 (4)N4—C26—H26118.6
C10—C11—I5119.9 (3)C25—C26—H26118.6
C12—C11—I5117.5 (3)
O2—C1—C2—C776.5 (6)C10—C11—C12—C130.6 (7)
O1—C1—C2—C7103.4 (5)I5—C11—C12—C13176.7 (3)
O2—C1—C2—C3102.6 (5)N2—C12—C13—C14179.6 (5)
O1—C1—C2—C377.5 (5)C11—C12—C13—C141.9 (7)
C7—C2—C3—C40.5 (6)N2—C12—C13—I62.7 (6)
C1—C2—C3—C4179.6 (4)C11—C12—C13—I6179.6 (3)
C7—C2—C3—I1179.1 (3)C12—C13—C14—C151.2 (7)
C1—C2—C3—I10.0 (5)I6—C13—C14—C15178.9 (3)
C2—C3—C4—C51.2 (6)C12—C13—C14—C16178.6 (4)
I1—C3—C4—C5178.4 (3)I6—C13—C14—C161.0 (6)
C2—C3—C4—C8176.6 (4)C11—C10—C15—C142.0 (6)
I1—C3—C4—C83.0 (5)C9—C10—C15—C14178.1 (4)
C3—C4—C5—C60.8 (7)C11—C10—C15—I4179.7 (3)
C8—C4—C5—C6174.5 (4)C9—C10—C15—I44.2 (6)
C3—C4—C5—I2179.9 (3)C13—C14—C15—C100.8 (6)
C8—C4—C5—I24.5 (6)C16—C14—C15—C10179.4 (4)
C4—C5—C6—N1173.5 (4)C13—C14—C15—I4178.6 (3)
I2—C5—C6—N15.6 (6)C16—C14—C15—I41.6 (5)
C4—C5—C6—C73.3 (6)C13—C14—C16—O686.0 (6)
I2—C5—C6—C7177.6 (3)C15—C14—C16—O694.1 (6)
C3—C2—C7—C62.2 (6)C13—C14—C16—O594.3 (5)
C1—C2—C7—C6176.9 (4)C15—C14—C16—O585.6 (5)
C3—C2—C7—I3175.9 (3)C21—N3—C17—C180.5 (8)
C1—C2—C7—I35.1 (5)N3—C17—C18—C190.8 (8)
N1—C6—C7—C2172.8 (4)C17—C18—C19—C200.7 (7)
C5—C6—C7—C24.0 (6)C17—C18—C19—C24178.6 (5)
N1—C6—C7—I39.1 (6)C18—C19—C20—C210.3 (7)
C5—C6—C7—I3174.0 (3)C24—C19—C20—C21178.2 (5)
C3—C4—C8—O496.2 (6)C17—N3—C21—C200.0 (8)
C5—C4—C8—O488.5 (7)C19—C20—C21—N30.0 (8)
C3—C4—C8—O384.2 (5)C26—N4—C22—C231.3 (9)
C5—C4—C8—O391.1 (5)N4—C22—C23—C240.1 (9)
O8—C9—C10—C11104.2 (6)C22—C23—C24—C251.6 (8)
O7—C9—C10—C1174.8 (5)C22—C23—C24—C19178.7 (5)
O8—C9—C10—C1571.9 (6)C20—C19—C24—C23165.6 (5)
O7—C9—C10—C15109.2 (5)C18—C19—C24—C2312.2 (7)
C15—C10—C11—C121.3 (7)C20—C19—C24—C2514.8 (7)
C9—C10—C11—C12177.3 (4)C18—C19—C24—C25167.4 (5)
C15—C10—C11—I5174.7 (3)C23—C24—C25—C262.2 (9)
C9—C10—C11—I51.3 (6)C19—C24—C25—C26178.1 (5)
C10—C11—C12—N2178.4 (5)C22—N4—C26—C250.6 (9)
I5—C11—C12—N25.5 (6)C24—C25—C26—N41.2 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O8i0.88 (1)2.22 (4)2.946 (6)141 (5)
N3—H3···O10.88 (1)1.78 (1)2.651 (5)174 (6)
O3—H3o···N4ii0.84 (1)1.75 (2)2.585 (5)171 (9)
O5—H5o···O10.84 (1)1.77 (3)2.568 (4)159 (6)
O7—H7o···O2iii0.84 (1)1.84 (1)2.679 (5)174 (7)
Symmetry codes: (i) x1, y, z1; (ii) x+2, y+1/2, z+1/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H9N2+·C8H3I3NO4·C8H4I3NO4
Mr1273.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.7388 (4), 34.2377 (19), 13.0739 (7)
β (°) 106.506 (1)
V3)3321.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.66
Crystal size (mm)0.08 × 0.06 × 0.04
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.660, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
28196, 7506, 6365
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.03
No. of reflections7506
No. of parameters429
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.25, 1.26

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O8i0.88 (1)2.22 (4)2.946 (6)141 (5)
N3—H3···O10.88 (1)1.78 (1)2.651 (5)174 (6)
O3—H3o···N4ii0.84 (1)1.75 (2)2.585 (5)171 (9)
O5—H5o···O10.84 (1)1.77 (3)2.568 (4)159 (6)
O7—H7o···O2iii0.84 (1)1.84 (1)2.679 (5)174 (7)
Symmetry codes: (i) x1, y, z1; (ii) x+2, y+1/2, z+1/2; (iii) x, y, z+1.
 

Acknowledgements

We thank the National Natural Science Foundation of China (grant No. 20773107), Yangzhou University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBeck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds