organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3,6-di-O-benzyl-2-de­­oxy-N-phthalimido-1-thio-β-D-gluco­pyran­oside

aDepartment of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, and bDepartment of Environmental and Material Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
*Correspondence e-mail: lars.eriksson@mmk.su.se

(Received 10 October 2010; accepted 13 November 2010; online 20 November 2010)

In the title compound, C30H31NO6S, the plane of the N-phthalimido group is nearly orthogonal to the least-squares plane of the sugar ring (defined by atoms C2, C3, C5 and O5 using standard glucose nomenclature), making a dihedral angle of 72.8 (1)°. The thio­ethyl group has the exo-anomeric conformation. The hy­droxy group forms an inter­molecular hydrogen bond to the O atom in the sugar ring, generating [100] chains. There are four close ππ contacts with centroid–centroid distances less than 4.0 Å, all with dihedral angles between the inter­acting π systems of only ≃ 8°, supporting energetically favourable stacking inter­actions.

Related literature

The title thio­glycoside is a valuable inter­mediate in synthesis of oligosaccharides containing N-acetyl-D-glucosa­mine residues, see: Söderman et al. (2002[Söderman, P., Larsson, E. A. & Widmalm, G. (2002). Eur. J. Org. Chem. 10, 1614-1618.]). For the exo-anomeric effect, see: Thøgersen et al. (1982[Thøgersen, H., Lemieux, R. U., Bock, K. & Meyer, B. (1982). Can. J. Chem. 60, 44-57.]). For total puckering amplitudes for previously described pyran­osides, see: Färnbäck et al. (2007[Färnbäck, M., Söderman, P., Eriksson, L. & Widmalm, G. (2007). Acta Cryst. E63, o1581-o1583.]). For the synthesis, see: Macindoe et al. (1995[Macindoe, W. A., Nakahara, Y. & Ogawa, T. (1995). Carbohydr. Res. 271, 207-216.]).

[Scheme 1]

Experimental

Crystal data
  • C30H31NO6S

  • Mr = 533.62

  • Orthorhombic, P 21 21 21

  • a = 8.5313 (1) Å

  • b = 14.7728 (2) Å

  • c = 21.1940 (4) Å

  • V = 2671.11 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 100 K

  • 0.25 × 0.10 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur II with Sapphire-3 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.96, Tmax = 0.98

  • 17362 measured reflections

  • 5059 independent reflections

  • 4023 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.067

  • S = 0.95

  • 5059 reflections

  • 346 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983)[Flack, H. D. (1983). Acta Cryst. A39, 876-881.], 2173 Friedel pairs

  • Flack parameter: 0.01 (7)

Table 1
Selected geometric parameters (Å, °)

S1—C1 1.796 (2)
C7—S1 1.819 (2)
C1—S1—C7 99.10 (11)
C7—S1—C1—H1 47.4
C7—S1—C1—O5 −72.06 (17)
O5—C5—C6—O6 63.3 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O5i 0.84 1.99 2.817 (2) 168
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title thioglycoside is a valuable intermediate in synthesis of oligosaccharides containing N-acetyl-D-glucosamine residues (Söderman et al. 2002). In the structure the least square plane of the N-phthaloyl group makes a dihedral angle of 72.8 (1)° to the sugar ring plane defined by the four atoms (C2,C3,C5,O5). The conformation of the glycosidic torsion angle φ (H1—C1—S1—C7) is govered by the exo-anomeric effect (Thøgersen et al., 1982) and also for this thioglucoside the torsion angles of 47.4° is typical of what is observed for glucosides with an oxygen atom at the glycosidic linkage. The Cremer-Pople parameters for the sugar ring (O5 C5) are: Q=0.582 (2) Å, θ=12.5 (2)° and φ=310 (1)°. The Q-value is similar to total puckering amplitudes for previously described pyranosides (Färnbäck et al., 2007).

The hydroxy group present in the title compound forms an intermolecular hydrogen bond with O5 in a neighbouring molecule, making up chains along the [100] direction. Besides this conventional hydrogen bond the intermolecular packing is stabilized by interactions between substituents of the sugar rings. There are four close ππ contacts with d(CgCg) < 4.0 Å, all with dihedral angles between the interacting π systems of only 8° supporting energetically favourable stacking interactions.

Related literature top

The title thioglycoside is a valuable intermediate in synthesis of oligosaccharides containing N-acetyl-D-glucosamine residues, see: Söderman et al. (2002). For the exo-anomeric effect, see: Thøgersen et al. (1982). For total puckering amplitudes for previously described pyranosides, see: Färnbäck et al. (2007). For the synthesis, see: Macindoe et al. (1995).

Experimental top

The title compound (Macindoe et al., 1995) was obtained from ethyl 4,6-O-benzylidene-2-deoxy-N-phtalimido-1-thio-β-D– glucopyranoside by bensylation of O3 and subsequent reductive opening of the 4,6-O-benzylidene group using NaCNBH3 and HCl(g) in tetrahydrofuran to give the 3,6-di-O-benzyl derivative. The title compound was crystallized from diethyl ether/pentane at ambient temperature to give colorless crystals.

Refinement top

The hydrogen atoms were positioned in calculated positions and refined in riding mode with C–H = 0.95–1.00 Å, O–H = 0.84 Å and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C,O) for methyl and hydroxy H atoms. The hydroxy H atom initial position was determined with a tetrahedral C—O—H angle and location such that it forms a favourable hydrogen bond to another oxygen atom. Finally the hydroxy H atoms were allowed to rotate about the C—O bond. The Flack parameter was determined to be 0.01 (7) from 2173 Friedel pairs.

Structure description top

The title thioglycoside is a valuable intermediate in synthesis of oligosaccharides containing N-acetyl-D-glucosamine residues (Söderman et al. 2002). In the structure the least square plane of the N-phthaloyl group makes a dihedral angle of 72.8 (1)° to the sugar ring plane defined by the four atoms (C2,C3,C5,O5). The conformation of the glycosidic torsion angle φ (H1—C1—S1—C7) is govered by the exo-anomeric effect (Thøgersen et al., 1982) and also for this thioglucoside the torsion angles of 47.4° is typical of what is observed for glucosides with an oxygen atom at the glycosidic linkage. The Cremer-Pople parameters for the sugar ring (O5 C5) are: Q=0.582 (2) Å, θ=12.5 (2)° and φ=310 (1)°. The Q-value is similar to total puckering amplitudes for previously described pyranosides (Färnbäck et al., 2007).

The hydroxy group present in the title compound forms an intermolecular hydrogen bond with O5 in a neighbouring molecule, making up chains along the [100] direction. Besides this conventional hydrogen bond the intermolecular packing is stabilized by interactions between substituents of the sugar rings. There are four close ππ contacts with d(CgCg) < 4.0 Å, all with dihedral angles between the interacting π systems of only 8° supporting energetically favourable stacking interactions.

The title thioglycoside is a valuable intermediate in synthesis of oligosaccharides containing N-acetyl-D-glucosamine residues, see: Söderman et al. (2002). For the exo-anomeric effect, see: Thøgersen et al. (1982). For total puckering amplitudes for previously described pyranosides, see: Färnbäck et al. (2007). For the synthesis, see: Macindoe et al. (1995).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 50% probability displacement ellipsoids.
Ethyl 3,6-di-O-benzyl-2-deoxy-N-(1,3-dioxo-2,3-dihydro- 1H-isoindol-2-yl)-1-thio-β-D-glucopyranoside top
Crystal data top
C30H31NO6SF(000) = 1128
Mr = 533.62Dx = 1.327 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6086 reflections
a = 8.5313 (1) Åθ = 3.7–32.3°
b = 14.7728 (2) ŵ = 0.17 mm1
c = 21.1940 (4) ÅT = 100 K
V = 2671.11 (7) Å3Prism, colourless
Z = 40.25 × 0.10 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur II with Sapphire-3 CCD
diffractometer
5059 independent reflections
Radiation source: Enhance (Mo) X-ray Source4023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 16.5467 pixels mm-1θmax = 25.7°, θmin = 3.7°
ω scans at differnt φh = 1010
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1318
Tmin = 0.96, Tmax = 0.98l = 2525
17362 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0261P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max = 0.001
S = 0.95Δρmax = 0.49 e Å3
5059 reflectionsΔρmin = 0.27 e Å3
346 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0028 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2173 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (7)
Crystal data top
C30H31NO6SV = 2671.11 (7) Å3
Mr = 533.62Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.5313 (1) ŵ = 0.17 mm1
b = 14.7728 (2) ÅT = 100 K
c = 21.1940 (4) Å0.25 × 0.10 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur II with Sapphire-3 CCD
diffractometer
5059 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
4023 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 0.98Rint = 0.054
17362 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.49 e Å3
S = 0.95Δρmin = 0.27 e Å3
5059 reflectionsAbsolute structure: Flack (1983), 2173 Friedel pairs
346 parametersAbsolute structure parameter: 0.01 (7)
0 restraints
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd.,Version 1.171.29.2. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32681 (7)0.66068 (4)0.88067 (3)0.01942 (15)
C70.3666 (3)0.73807 (17)0.81586 (11)0.0255 (6)
H7A0.32520.71270.77600.031*
H7B0.31420.79680.82370.031*
C80.5419 (3)0.75202 (18)0.81042 (12)0.0301 (6)
H8A0.58220.77710.85000.045*
H8B0.56390.79410.77580.045*
H8C0.59290.69390.80190.045*
C10.1170 (2)0.66968 (15)0.88275 (11)0.0156 (5)
H10.07410.66380.83900.019*
C20.0500 (3)0.59407 (14)0.92453 (10)0.0149 (5)
H20.10980.59460.96510.018*
C30.1227 (3)0.60855 (14)0.94058 (11)0.0147 (5)
H30.18890.59300.90320.018*
C40.1537 (3)0.70604 (14)0.96039 (11)0.0150 (5)
H40.10020.71841.00150.018*
C50.0901 (3)0.76978 (15)0.91011 (11)0.0153 (5)
H50.13690.75400.86830.018*
O50.07730 (18)0.75651 (10)0.90779 (7)0.0171 (4)
C60.1223 (3)0.86722 (14)0.92464 (11)0.0195 (6)
H6A0.23660.87670.92930.023*
H6B0.07110.88410.96490.023*
N20.0742 (2)0.50558 (12)0.89529 (8)0.0144 (4)
C210.1697 (3)0.43819 (15)0.92183 (11)0.0206 (6)
O220.2428 (2)0.44655 (11)0.97041 (8)0.0297 (4)
C230.1603 (3)0.36067 (14)0.87817 (12)0.0203 (5)
C240.2295 (3)0.27621 (16)0.88227 (12)0.0295 (6)
H240.29660.26080.91640.035*
C250.1966 (3)0.21488 (16)0.83440 (12)0.0315 (7)
H250.24010.15580.83640.038*
C260.1023 (3)0.23773 (16)0.78409 (12)0.0265 (6)
H260.08310.19440.75190.032*
C270.0348 (3)0.32341 (15)0.77964 (11)0.0211 (6)
H270.02900.33990.74470.025*
C280.0649 (3)0.38319 (15)0.82828 (11)0.0165 (5)
C290.0087 (3)0.47748 (15)0.83788 (11)0.0152 (5)
O300.07326 (19)0.52424 (10)0.80436 (7)0.0210 (4)
O30.15948 (18)0.54906 (10)0.99189 (7)0.0198 (4)
C310.3063 (3)0.50213 (15)0.98636 (11)0.0223 (6)
H31A0.38210.54110.96370.027*
H31B0.34870.49031.02910.027*
C320.2895 (3)0.41349 (15)0.95149 (11)0.0223 (6)
C330.1825 (3)0.34987 (17)0.97248 (13)0.0380 (7)
H330.11690.36281.00760.046*
C340.1718 (4)0.26677 (19)0.94180 (16)0.0544 (10)
H340.10100.22210.95690.065*
C350.2628 (4)0.2490 (2)0.88986 (18)0.0575 (10)
H350.25410.19250.86870.069*
C360.3653 (4)0.3123 (2)0.86889 (16)0.0570 (10)
H360.42770.30030.83270.068*
C370.3799 (3)0.3945 (2)0.89988 (13)0.0406 (8)
H370.45320.43810.88510.049*
O40.31735 (17)0.71949 (11)0.96734 (7)0.0214 (4)
H4A0.34030.72051.00590.032*
O60.06402 (19)0.92258 (10)0.87509 (8)0.0278 (4)
C610.1367 (3)1.01026 (15)0.87450 (13)0.0273 (6)
H61A0.07011.05270.85030.033*
H61B0.14431.03320.91830.033*
C620.2970 (3)1.00801 (15)0.84587 (11)0.0215 (6)
C630.4318 (3)0.99598 (14)0.88219 (12)0.0211 (5)
H630.42340.99380.92690.025*
C640.5772 (3)0.98725 (15)0.85426 (12)0.0274 (6)
H640.66700.97670.87970.033*
C650.5930 (3)0.99374 (16)0.78969 (12)0.0301 (7)
H650.69320.98800.77050.036*
C660.4620 (4)1.00867 (17)0.75332 (13)0.0368 (7)
H660.47231.01430.70890.044*
C670.3158 (3)1.01558 (15)0.78078 (12)0.0305 (7)
H670.22661.02570.75490.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0140 (3)0.0220 (3)0.0222 (3)0.0024 (3)0.0021 (3)0.0003 (3)
C70.0210 (16)0.0300 (15)0.0256 (15)0.0020 (12)0.0010 (11)0.0062 (12)
C80.0232 (16)0.0318 (15)0.0353 (17)0.0039 (13)0.0063 (12)0.0013 (13)
C10.0131 (12)0.0157 (12)0.0180 (13)0.0045 (10)0.0022 (10)0.0044 (11)
C20.0171 (13)0.0156 (13)0.0118 (13)0.0027 (11)0.0043 (10)0.0024 (10)
C30.0166 (14)0.0183 (13)0.0091 (13)0.0013 (10)0.0003 (10)0.0001 (10)
C40.0081 (13)0.0219 (13)0.0148 (13)0.0027 (11)0.0007 (10)0.0028 (10)
C50.0132 (14)0.0177 (13)0.0151 (13)0.0018 (10)0.0007 (10)0.0032 (10)
O50.0155 (9)0.0154 (9)0.0203 (9)0.0016 (7)0.0001 (7)0.0039 (7)
C60.0176 (14)0.0193 (14)0.0217 (14)0.0040 (11)0.0015 (11)0.0014 (11)
N20.0189 (11)0.0129 (10)0.0114 (10)0.0031 (9)0.0011 (8)0.0028 (8)
C210.0265 (15)0.0184 (13)0.0168 (14)0.0034 (13)0.0000 (12)0.0002 (11)
O220.0424 (12)0.0276 (10)0.0190 (10)0.0120 (9)0.0102 (9)0.0042 (8)
C230.0293 (14)0.0155 (13)0.0162 (13)0.0038 (11)0.0019 (12)0.0029 (11)
C240.0447 (17)0.0248 (14)0.0190 (14)0.0126 (13)0.0043 (14)0.0001 (13)
C250.0480 (19)0.0146 (13)0.0319 (16)0.0104 (13)0.0022 (14)0.0001 (12)
C260.0360 (17)0.0201 (15)0.0236 (15)0.0035 (13)0.0041 (13)0.0070 (12)
C270.0261 (15)0.0193 (14)0.0180 (14)0.0025 (12)0.0007 (11)0.0021 (11)
C280.0211 (14)0.0149 (13)0.0135 (13)0.0005 (11)0.0049 (11)0.0012 (10)
C290.0139 (13)0.0159 (13)0.0159 (13)0.0005 (10)0.0036 (11)0.0008 (11)
O300.0234 (10)0.0190 (9)0.0205 (10)0.0025 (8)0.0060 (8)0.0023 (7)
O30.0218 (9)0.0205 (9)0.0172 (9)0.0045 (8)0.0014 (7)0.0037 (7)
C310.0197 (14)0.0204 (13)0.0269 (14)0.0048 (12)0.0062 (11)0.0018 (11)
C320.0269 (16)0.0179 (13)0.0221 (14)0.0060 (12)0.0077 (12)0.0028 (11)
C330.056 (2)0.0241 (16)0.0342 (17)0.0014 (15)0.0080 (15)0.0051 (13)
C340.083 (3)0.0226 (17)0.057 (2)0.0080 (18)0.032 (2)0.0126 (16)
C350.075 (3)0.0244 (17)0.073 (3)0.0148 (17)0.031 (2)0.0201 (19)
C360.057 (2)0.064 (2)0.051 (2)0.0161 (19)0.0022 (18)0.0312 (19)
C370.0401 (19)0.0418 (18)0.0397 (19)0.0019 (14)0.0013 (15)0.0122 (14)
O40.0150 (9)0.0266 (9)0.0225 (9)0.0008 (8)0.0042 (8)0.0009 (8)
O60.0289 (10)0.0167 (9)0.0377 (11)0.0066 (8)0.0098 (9)0.0046 (8)
C610.0272 (16)0.0168 (14)0.0378 (17)0.0014 (11)0.0061 (13)0.0024 (12)
C620.0341 (16)0.0085 (12)0.0221 (14)0.0057 (12)0.0075 (12)0.0010 (10)
C630.0266 (15)0.0178 (13)0.0189 (13)0.0078 (12)0.0016 (13)0.0005 (12)
C640.0289 (16)0.0210 (15)0.0325 (16)0.0097 (13)0.0042 (13)0.0024 (12)
C650.0388 (18)0.0205 (14)0.0311 (16)0.0077 (14)0.0114 (14)0.0002 (13)
C660.066 (2)0.0267 (16)0.0182 (15)0.0091 (16)0.0061 (15)0.0012 (12)
C670.0456 (19)0.0170 (14)0.0289 (16)0.0037 (14)0.0160 (14)0.0012 (12)
Geometric parameters (Å, º) top
S1—C11.796 (2)C26—H260.9500
S1—C71.819 (2)C27—C281.381 (3)
C7—C81.513 (3)C27—H270.9500
C7—H7A0.9900C28—C291.487 (3)
C7—H7B0.9900C29—O301.213 (3)
C8—H8A0.9800O3—C311.436 (3)
C8—H8B0.9800C31—C321.510 (3)
C8—H8C0.9800C31—H31A0.9900
C1—O51.429 (2)C31—H31B0.9900
C1—C21.536 (3)C32—C371.367 (4)
C1—H11.0000C32—C331.383 (3)
C2—N21.462 (3)C33—C341.392 (4)
C2—C31.526 (3)C33—H330.9500
C2—H21.0000C34—C351.373 (5)
C3—O31.433 (3)C34—H340.9500
C3—C41.523 (3)C35—C361.356 (4)
C3—H31.0000C35—H350.9500
C4—O41.417 (2)C36—C371.386 (4)
C4—C51.522 (3)C36—H360.9500
C4—H41.0000C37—H370.9500
C5—O51.442 (3)O4—H4A0.8400
C5—C61.498 (3)O6—C611.436 (3)
C5—H51.0000C61—C621.496 (3)
C6—O61.421 (3)C61—H61A0.9900
C6—H6A0.9900C61—H61B0.9900
C6—H6B0.9900C62—C671.393 (3)
N2—C291.402 (3)C62—C631.395 (3)
N2—C211.404 (3)C63—C641.381 (3)
C21—O221.210 (3)C63—H630.9500
C21—C231.474 (3)C64—C651.378 (3)
C23—C281.376 (3)C64—H640.9500
C23—C241.383 (3)C65—C661.376 (4)
C24—C251.389 (3)C65—H650.9500
C24—H240.9500C66—C671.380 (4)
C25—C261.377 (3)C66—H660.9500
C25—H250.9500C67—H670.9500
C26—C271.394 (3)
C1—S1—C799.10 (11)C24—C25—H25119.2
C8—C7—S1109.13 (17)C25—C26—C27121.1 (2)
C8—C7—H7A109.9C25—C26—H26119.5
S1—C7—H7A109.9C27—C26—H26119.5
C8—C7—H7B109.9C28—C27—C26117.0 (2)
S1—C7—H7B109.9C28—C27—H27121.5
H7A—C7—H7B108.3C26—C27—H27121.5
C7—C8—H8A109.5C23—C28—C27121.9 (2)
C7—C8—H8B109.5C23—C28—C29108.2 (2)
H8A—C8—H8B109.5C27—C28—C29129.9 (2)
C7—C8—H8C109.5O30—C29—N2124.7 (2)
H8A—C8—H8C109.5O30—C29—C28129.7 (2)
H8B—C8—H8C109.5N2—C29—C28105.5 (2)
O5—C1—C2110.52 (17)C3—O3—C31115.16 (17)
O5—C1—S1108.16 (14)O3—C31—C32112.04 (18)
C2—C1—S1109.35 (15)O3—C31—H31A109.2
O5—C1—H1109.6C32—C31—H31A109.2
C2—C1—H1109.6O3—C31—H31B109.2
S1—C1—H1109.6C32—C31—H31B109.2
N2—C2—C3110.89 (18)H31A—C31—H31B107.9
N2—C2—C1110.68 (18)C37—C32—C33119.4 (2)
C3—C2—C1112.68 (17)C37—C32—C31121.0 (2)
N2—C2—H2107.4C33—C32—C31119.6 (2)
C3—C2—H2107.4C32—C33—C34119.5 (3)
C1—C2—H2107.4C32—C33—H33120.3
O3—C3—C4109.41 (17)C34—C33—H33120.3
O3—C3—C2107.13 (17)C35—C34—C33120.4 (3)
C4—C3—C2111.22 (18)C35—C34—H34119.8
O3—C3—H3109.7C33—C34—H34119.8
C4—C3—H3109.7C36—C35—C34119.7 (3)
C2—C3—H3109.7C36—C35—H35120.1
O4—C4—C5109.72 (18)C34—C35—H35120.1
O4—C4—C3109.43 (18)C35—C36—C37120.5 (3)
C5—C4—C3109.25 (17)C35—C36—H36119.8
O4—C4—H4109.5C37—C36—H36119.8
C5—C4—H4109.5C32—C37—C36120.5 (3)
C3—C4—H4109.5C32—C37—H37119.7
O5—C5—C6108.63 (19)C36—C37—H37119.7
O5—C5—C4107.04 (18)C4—O4—H4A109.5
C6—C5—C4112.65 (18)C6—O6—C61111.98 (18)
O5—C5—H5109.5O6—C61—C62112.21 (19)
C6—C5—H5109.5O6—C61—H61A109.2
C4—C5—H5109.5C62—C61—H61A109.2
C1—O5—C5111.66 (16)O6—C61—H61B109.2
O6—C6—C5109.69 (18)C62—C61—H61B109.2
O6—C6—H6A109.7H61A—C61—H61B107.9
C5—C6—H6A109.7C67—C62—C63117.5 (2)
O6—C6—H6B109.7C67—C62—C61120.4 (2)
C5—C6—H6B109.7C63—C62—C61122.2 (2)
H6A—C6—H6B108.2C64—C63—C62121.1 (2)
C29—N2—C21111.67 (18)C64—C63—H63119.5
C29—N2—C2125.19 (18)C62—C63—H63119.5
C21—N2—C2123.14 (18)C65—C64—C63120.5 (3)
O22—C21—N2124.6 (2)C65—C64—H64119.8
O22—C21—C23129.9 (2)C63—C64—H64119.8
N2—C21—C23105.5 (2)C66—C65—C64119.2 (3)
C28—C23—C24121.3 (2)C66—C65—H65120.4
C28—C23—C21109.05 (19)C64—C65—H65120.4
C24—C23—C21129.7 (2)C65—C66—C67120.7 (2)
C23—C24—C25117.2 (2)C65—C66—H66119.7
C23—C24—H24121.4C67—C66—H66119.7
C25—C24—H24121.4C66—C67—C62121.1 (2)
C26—C25—C24121.6 (2)C66—C67—H67119.5
C26—C25—H25119.2C62—C67—H67119.5
C7—S1—C1—H147.4C24—C25—C26—C270.6 (4)
C1—S1—C7—C8172.39 (18)C25—C26—C27—C281.0 (4)
C7—S1—C1—O572.06 (17)C24—C23—C28—C270.8 (4)
C7—S1—C1—C2167.52 (16)C21—C23—C28—C27179.8 (2)
O5—C1—C2—N2173.35 (17)C24—C23—C28—C29179.6 (2)
S1—C1—C2—N267.7 (2)C21—C23—C28—C290.2 (3)
O5—C1—C2—C348.5 (2)C26—C27—C28—C231.7 (4)
S1—C1—C2—C3167.49 (15)C26—C27—C28—C29178.8 (2)
N2—C2—C3—O370.3 (2)C21—N2—C29—O30177.1 (2)
C1—C2—C3—O3164.98 (17)C2—N2—C29—O302.2 (3)
N2—C2—C3—C4170.16 (17)C21—N2—C29—C281.4 (2)
C1—C2—C3—C445.5 (2)C2—N2—C29—C28179.31 (19)
O3—C3—C4—O469.0 (2)C23—C28—C29—O30177.4 (2)
C2—C3—C4—O4172.88 (17)C27—C28—C29—O302.1 (4)
O3—C3—C4—C5170.90 (17)C23—C28—C29—N21.0 (2)
C2—C3—C4—C552.7 (2)C27—C28—C29—N2179.5 (2)
O4—C4—C5—O5176.83 (17)C4—C3—O3—C31102.6 (2)
C3—C4—C5—O563.2 (2)C2—C3—O3—C31136.77 (18)
O4—C4—C5—C657.5 (2)C3—O3—C31—C3288.6 (2)
C3—C4—C5—C6177.45 (19)O3—C31—C32—C37125.6 (3)
C2—C1—O5—C561.2 (2)O3—C31—C32—C3355.3 (3)
S1—C1—O5—C5179.08 (15)C37—C32—C33—C341.8 (4)
C6—C5—O5—C1169.14 (17)C31—C32—C33—C34177.4 (2)
C4—C5—O5—C169.0 (2)C32—C33—C34—C352.1 (4)
O5—C5—C6—O663.3 (2)C33—C34—C35—C360.9 (5)
C4—C5—C6—O6178.31 (19)C34—C35—C36—C370.6 (5)
C3—C2—N2—C2962.2 (3)C33—C32—C37—C360.3 (4)
C1—C2—N2—C2963.6 (3)C31—C32—C37—C36178.9 (3)
C3—C2—N2—C21118.6 (2)C35—C36—C37—C320.9 (5)
C1—C2—N2—C21115.6 (2)C5—C6—O6—C61159.61 (19)
C29—N2—C21—O22178.0 (2)C6—O6—C61—C6278.3 (3)
C2—N2—C21—O221.3 (4)O6—C61—C62—C6785.7 (3)
C29—N2—C21—C231.3 (3)O6—C61—C62—C6392.6 (3)
C2—N2—C21—C23179.4 (2)C67—C62—C63—C643.3 (3)
O22—C21—C23—C28178.6 (3)C61—C62—C63—C64175.0 (2)
N2—C21—C23—C280.7 (3)C62—C63—C64—C652.5 (3)
O22—C21—C23—C242.1 (5)C63—C64—C65—C660.3 (4)
N2—C21—C23—C24178.7 (2)C64—C65—C66—C671.1 (4)
C28—C23—C24—C250.9 (4)C65—C66—C67—C620.3 (4)
C21—C23—C24—C25178.4 (3)C63—C62—C67—C661.9 (3)
C23—C24—C25—C261.6 (4)C61—C62—C67—C66176.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O5i0.841.992.817 (2)168
Symmetry code: (i) x1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formulaC30H31NO6S
Mr533.62
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)8.5313 (1), 14.7728 (2), 21.1940 (4)
V3)2671.11 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.25 × 0.10 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur II with Sapphire-3 CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.96, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
17362, 5059, 4023
Rint0.054
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.067, 0.95
No. of reflections5059
No. of parameters346
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.27
Absolute structureFlack (1983), 2173 Friedel pairs
Absolute structure parameter0.01 (7)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
S1—C11.796 (2)S1—C71.819 (2)
C1—S1—C799.10 (11)
C7—S1—C1—H147.4O5—C5—C6—O663.3 (2)
C7—S1—C1—O572.06 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O5i0.841.992.817 (2)168
Symmetry code: (i) x1/2, y+3/2, z+2.
 

Acknowledgements

This work was supported by a grant from the Swedish Research Council and by the Faculty of Natural Sciences at Stockholm University

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFärnbäck, M., Söderman, P., Eriksson, L. & Widmalm, G. (2007). Acta Cryst. E63, o1581–o1583.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacindoe, W. A., Nakahara, Y. & Ogawa, T. (1995). Carbohydr. Res. 271, 207–216.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSöderman, P., Larsson, E. A. & Widmalm, G. (2002). Eur. J. Org. Chem. 10, 1614–1618.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThøgersen, H., Lemieux, R. U., Bock, K. & Meyer, B. (1982). Can. J. Chem. 60, 44–57.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds