metal-organic compounds
Bis(2-hydroxyethanaminium) tetrachloridopalladate(II)
aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, and bDepartment of Chemistry, University of Johannesburg, Auckland Park Kingsway Campus, Auckland Park 2006, South Africa
*Correspondence e-mail: iguzei@chem.wisc.edu
In the title compound, (C2H8NO)2[PdCl4], 2-hydroxyethanaminium cations and tetrachloridopalladate(II) dianions crystallize in a 2:1 ratio with the anion residing on a crystallographic inversion center. The cations and anions are linked in a complex three-dimensional framework by three types of strong hydrogen bonds (N—H⋯O, N—H⋯Cl, and O—H⋯Cl), which form various ring and chain patterns of up to the ternary graph-set level.
Related literature
For the hydrolysis of et al. (2007); Czaun et al. (2010); Guzei et al. (2010); Lee et al. (1948). For the use of Schiff base first-row transition metal complexes as amine protecting groups, see: Deng et al. (2002); Kurita (2001); Shelley et al. (1999). For geometrical parameter checks, see: Bruno et al. (2004). For R factor comparisons, see: Allen (2002). For graph-set notation, see: Bernstein et al. (1995).
in Schiff base first-row transition metal complexes, see: ChattopadhyayExperimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL, OLEX2 (Dolomanov et al., 2009) and FCF_filter (Guzei 2007); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).
Supporting information
https://doi.org/10.1107/S1600536810045435/nk2068sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810045435/nk2068Isup2.hkl
A solution of [PdCl2(NCMe)2] (0.11 g, 0.429 mmol) in dichloromethane (5 ml) was added to a solution of 2,4-di-tert-butyl-6-[(2-hydroxy-ethylimino)methyl]-phenol (0.12 g, 0.429 mmol) in dichloromethane (5 ml). The mixture was stirred at room temperature for 16 h, filtered, and the filtrate evaporated to dryness. Recrystallization of the residue from dichloromethane-hexane gave brown crystals over several days. Yield: 0.10 g (58%).
All H-atoms were placed in idealized locations with an O—H distance of 0.84 Å, N—H distances of 0.91 Å, and C—H distances of 0.99 Å. All H-atoms were refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.5 times Ueq(bearing atom) for the hydrogen atoms attached to oxygen atoms or 1.2 times Ueq(bearing atom) for all hydrogen atoms attached to nitrogen or carbon atoms.
Hydrolysis of
in Schiff base first row transition metal complexes is now common (Chattopadhyay et al. 2007, Czaun et al., 2010; Guzei et al., 2010; Lee et al., 1948) These metal complexes have been used to protect by first converting them to followed by metal assisted hydrolysis back to the amine (Deng et al., 2002; Kurita, 2001; Shelley et al., 1999). However, hydrolysis of by second row transition metal complexes is very rare. In an attempt to use 2,4-di-tert-butyl-6-{(2-hydroxyethylimino)methyl}phenol to prepare a palladium complex, we isolated the ammonium chloride salt of tetrachloropalladate, [C2H8NO]2+[PdCl4]2-, a result of the hydrolysis of the imine ligand.The ionic title compound (I) consists of bis(2-hydroxyethanaminium) cations and tetrachloro-palladium(II) dianions in a 2:1 ratio. The tetrachloro-palladium(II) dianion resides on a crystallographic inversion center. The geometrical parameters of (I) are typical as confirmed by a Mogul geometrical check (Bruno et al., 2004). Three types of hydrogen bonds, N1—H1A···O1,(a), N1—H1C···Cl2,(b), and O1—H1···Cl1,(c) form a three dimensional framework. The most easily visualized graph set motifs in the network include the primary ring pattern R22(10) a->a->, three different secondary patterns formed by bonds b and c, the chain C22(9) b→ c←, the chain C44(18) b→c←c← and the ring R44(18) b→c←b→c←, and the ternary chain pattern C33(8) a→c→b← (Bernstein et al., 1995).
The R-factor of the structural determination of (I) is a mere 1.18%. Data mining of the Cambridge Structural Database (Cambridge Structural Database, CSD, version 1.12, August 2010 update; Allen, 2002) found only 113 reported structural determinations with lower R-factors. This extremely low R-factor along with the unusually low standard uncertainties on the bond distances (fourth decimal place) and angles (third decimal place) are indicative of the high precision of this structure.
For the hydrolysis of
in Schiff base first-row transition metal complexes, see: Chattopadhyay et al. (2007); Czaun et al. (2010); Guzei et al. (2010); Lee et al. (1948). For the use of Schiff base first-row transition metal complexes as amine protecting groups, see: Deng et al. (2002); Kurita (2001); Shelley et al. (1999). For geometrical parameter checks, see: Bruno et al. (2004). For factor comparisons, see: Allen (2002). For graph-set notation, see: Bernstein et al. (1995).Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and FCF_filter (Guzei 2007); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).(C2H8NO)2[PdCl4] | F(000) = 368 |
Mr = 372.39 | Dx = 2.028 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9951 reflections |
a = 8.9401 (4) Å | θ = 3.4–30.6° |
b = 8.1621 (4) Å | µ = 2.37 mm−1 |
c = 8.5921 (4) Å | T = 100 K |
β = 103.445 (2)° | Block, orange |
V = 609.78 (5) Å3 | 0.30 × 0.10 × 0.06 mm |
Z = 2 |
Bruker SMART APEXII area-detector diffractometer | 1769 reflections with I > 2σ(I) |
Mirror optics monochromator | Rint = 0.024 |
0.60° ω and 0.6° φ scans | θmax = 30.6°, θmin = 3.4° |
Absorption correction: analytical (SADABS; Bruker, 2001) | h = −12→12 |
Tmin = 0.536, Tmax = 0.871 | k = −11→11 |
14744 measured reflections | l = −12→12 |
1851 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.012 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.028 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0111P)2 + 0.3119P] where P = (Fo2 + 2Fc2)/3 |
1851 reflections | (Δ/σ)max = 0.001 |
62 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.50 e Å−3 |
(C2H8NO)2[PdCl4] | V = 609.78 (5) Å3 |
Mr = 372.39 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.9401 (4) Å | µ = 2.37 mm−1 |
b = 8.1621 (4) Å | T = 100 K |
c = 8.5921 (4) Å | 0.30 × 0.10 × 0.06 mm |
β = 103.445 (2)° |
Bruker SMART APEXII area-detector diffractometer | 1851 independent reflections |
Absorption correction: analytical (SADABS; Bruker, 2001) | 1769 reflections with I > 2σ(I) |
Tmin = 0.536, Tmax = 0.871 | Rint = 0.024 |
14744 measured reflections |
R[F2 > 2σ(F2)] = 0.012 | 0 restraints |
wR(F2) = 0.028 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.43 e Å−3 |
1851 reflections | Δρmin = −0.50 e Å−3 |
62 parameters |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 1.0000 | 1.0000 | 0.5000 | 0.00979 (3) | |
Cl1 | 0.73683 (3) | 0.96899 (3) | 0.46100 (3) | 0.01355 (5) | |
Cl2 | 1.04022 (3) | 0.81392 (3) | 0.70777 (3) | 0.01331 (5) | |
O1 | 0.57008 (9) | 0.31533 (9) | 0.44982 (9) | 0.01677 (15) | |
H1 | 0.6147 | 0.2245 | 0.4527 | 0.025* | |
N1 | 0.74116 (10) | 0.59194 (11) | 0.58009 (10) | 0.01328 (16) | |
H1A | 0.6491 | 0.6449 | 0.5570 | 0.016* | |
H1C | 0.8177 | 0.6650 | 0.6185 | 0.016* | |
H1B | 0.7404 | 0.5135 | 0.6552 | 0.016* | |
C1 | 0.62509 (12) | 0.42371 (14) | 0.34444 (12) | 0.01645 (19) | |
H1E | 0.5438 | 0.5041 | 0.2987 | 0.020* | |
H1D | 0.6487 | 0.3600 | 0.2551 | 0.020* | |
C2 | 0.76792 (13) | 0.51374 (13) | 0.43181 (13) | 0.01585 (19) | |
H2A | 0.8549 | 0.4359 | 0.4604 | 0.019* | |
H2B | 0.7951 | 0.5988 | 0.3610 | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.00874 (5) | 0.00986 (5) | 0.01049 (5) | 0.00005 (3) | 0.00164 (3) | −0.00051 (3) |
Cl1 | 0.01008 (10) | 0.01379 (10) | 0.01650 (11) | 0.00018 (8) | 0.00250 (8) | 0.00104 (8) |
Cl2 | 0.01270 (10) | 0.01301 (10) | 0.01342 (10) | −0.00109 (8) | 0.00143 (8) | 0.00129 (7) |
O1 | 0.0146 (3) | 0.0126 (3) | 0.0239 (4) | 0.0011 (3) | 0.0062 (3) | 0.0002 (3) |
N1 | 0.0124 (4) | 0.0126 (4) | 0.0146 (4) | −0.0007 (3) | 0.0028 (3) | 0.0006 (3) |
C1 | 0.0148 (4) | 0.0202 (5) | 0.0141 (4) | 0.0002 (4) | 0.0029 (4) | −0.0009 (4) |
C2 | 0.0136 (4) | 0.0199 (5) | 0.0153 (4) | −0.0011 (4) | 0.0059 (4) | −0.0009 (4) |
Pd1—Cl2 | 2.3074 (2) | N1—H1B | 0.9100 |
Pd1—Cl1 | 2.3119 (3) | C1—C2 | 1.5127 (15) |
O1—C1 | 1.4322 (13) | C1—H1E | 0.9900 |
O1—H1 | 0.8400 | C1—H1D | 0.9900 |
N1—C2 | 1.4932 (13) | C2—H2A | 0.9900 |
N1—H1A | 0.9100 | C2—H2B | 0.9900 |
N1—H1C | 0.9100 | ||
Cl2i—Pd1—Cl1 | 89.409 (8) | C2—C1—H1E | 109.4 |
Cl2—Pd1—Cl1 | 90.591 (9) | O1—C1—H1D | 109.4 |
C1—O1—H1 | 109.5 | C2—C1—H1D | 109.4 |
C2—N1—H1A | 109.5 | H1E—C1—H1D | 108.0 |
C2—N1—H1C | 109.5 | N1—C2—C1 | 110.29 (8) |
H1A—N1—H1C | 109.5 | N1—C2—H2A | 109.6 |
C2—N1—H1B | 109.5 | C1—C2—H2A | 109.6 |
H1A—N1—H1B | 109.5 | N1—C2—H2B | 109.6 |
H1C—N1—H1B | 109.5 | C1—C2—H2B | 109.6 |
O1—C1—C2 | 111.14 (8) | H2A—C2—H2B | 108.1 |
O1—C1—H1E | 109.4 | ||
O1—C1—C2—N1 | −51.28 (11) |
Symmetry code: (i) −x+2, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1ii | 0.91 | 1.97 | 2.8370 (12) | 158 |
O1—H1···Cl1iii | 0.84 | 2.35 | 3.1869 (8) | 179 |
N1—H1C···Cl2 | 0.91 | 2.30 | 3.2048 (9) | 170 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | (C2H8NO)2[PdCl4] |
Mr | 372.39 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 8.9401 (4), 8.1621 (4), 8.5921 (4) |
β (°) | 103.445 (2) |
V (Å3) | 609.78 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.37 |
Crystal size (mm) | 0.30 × 0.10 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART APEXII area-detector |
Absorption correction | Analytical (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.536, 0.871 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14744, 1851, 1769 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.715 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.012, 0.028, 0.98 |
No. of reflections | 1851 |
No. of parameters | 62 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.50 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and FCF_filter (Guzei 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2009), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).
Pd1—Cl2 | 2.3074 (2) | Pd1—Cl1 | 2.3119 (3) |
Cl2i—Pd1—Cl1 | 89.409 (8) | Cl2—Pd1—Cl1 | 90.591 (9) |
Symmetry code: (i) −x+2, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1ii | 0.91 | 1.97 | 2.8370 (12) | 157.8 |
O1—H1···Cl1iii | 0.84 | 2.35 | 3.1869 (8) | 179.3 |
N1—H1C···Cl2 | 0.91 | 2.30 | 3.2048 (9) | 169.9 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z. |
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chattopadhyay, S., Brew, M. D. G. & Gosh, A. (2007). Polyhedron, 26, 3513–3522. Web of Science CSD CrossRef CAS Google Scholar
Czaun, M., Nelana, S. M., Hasselgren, C., Jagner, S., Oskarsson, A., Lisensky, G., Darkwa, J. & Nordlander, E. (2010). Inorg. Chim. Acta, 363, 3002–3112. Web of Science CSD CrossRef Google Scholar
Deng, W.-P., Wong, K. A. & Kirk, K. L. (2002). Tetrahedron Asymmetry, 13, 1135-1140. Web of Science CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA. Google Scholar
Guzei, I. A., Spencer, L. C., Ainooson, M. K. & Darkwa, J. (2010). Acta Cryst. C66, m89–m96. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kurita, K. (2001). Prog. Polym. Sci. 26, 1921–1971. Web of Science CrossRef CAS Google Scholar
Lee, T. S., Kolthoff, I. M. & Leussing, D. L. (1948). J. Am. Chem. Soc. 70, 3596–3600. CrossRef PubMed CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shelley, M. D., Hartley, L., Fish, R. G., Groundwater, P., Morgan, J. J. G., Mort, D., Mason, M. & Evans, A. (1999). Cancer Lett. 135, 171–180. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrolysis of imines in Schiff base first row transition metal complexes is now common (Chattopadhyay et al. 2007, Czaun et al., 2010; Guzei et al., 2010; Lee et al., 1948) These metal complexes have been used to protect amines by first converting them to imines followed by metal assisted hydrolysis back to the amine (Deng et al., 2002; Kurita, 2001; Shelley et al., 1999). However, hydrolysis of imines by second row transition metal complexes is very rare. In an attempt to use 2,4-di-tert-butyl-6-{(2-hydroxyethylimino)methyl}phenol to prepare a palladium complex, we isolated the ammonium chloride salt of tetrachloropalladate, [C2H8NO]2+[PdCl4]2-, a result of the hydrolysis of the imine ligand.
The ionic title compound (I) consists of bis(2-hydroxyethanaminium) cations and tetrachloro-palladium(II) dianions in a 2:1 ratio. The tetrachloro-palladium(II) dianion resides on a crystallographic inversion center. The geometrical parameters of (I) are typical as confirmed by a Mogul geometrical check (Bruno et al., 2004). Three types of hydrogen bonds, N1—H1A···O1,(a), N1—H1C···Cl2,(b), and O1—H1···Cl1,(c) form a three dimensional framework. The most easily visualized graph set motifs in the network include the primary ring pattern R22(10) a->a->, three different secondary patterns formed by bonds b and c, the chain C22(9) b→ c←, the chain C44(18) b→c←c← and the ring R44(18) b→c←b→c←, and the ternary chain pattern C33(8) a→c→b← (Bernstein et al., 1995).
The R-factor of the structural determination of (I) is a mere 1.18%. Data mining of the Cambridge Structural Database (Cambridge Structural Database, CSD, version 1.12, August 2010 update; Allen, 2002) found only 113 reported structural determinations with lower R-factors. This extremely low R-factor along with the unusually low standard uncertainties on the bond distances (fourth decimal place) and angles (third decimal place) are indicative of the high precision of this structure.