organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Adamantylmethyl 2-amino­benzoate

aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín,762 72, Czech Republic, and bDepartment of Chemistry, Faculty of Science, Masaryk University in Brno, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic
*Correspondence e-mail: rvicha@ft.utb.cz

(Received 8 November 2010; accepted 15 November 2010; online 20 November 2010)

The asymmetric unit of the title compound, C18H23NO2, consists of two crystallographically independent mol­ecules bearing an adamantane cage consisting of three fused cyclo­hexane rings in almost ideal chair conformations, with C—C—C angles in the range 108.47 (16)–110.59 (15)°. Both aryl rings are essentially planar, the maximum deviation from the best plane being 0.0125 (19) Å. One conformer forms chains parallel to the b axis via N—H⋯O hydrogen bonds, whereas the second exhibits only an intra­molecular N—H⋯O hydrogen bond. The crystal structure is stabilized by further weak N—H⋯O and N—H⋯N inter­actions.

Related literature

For some important biologically active compounds bearing the adamantane moiety, see: Jia et al. (2005[Jia, L., Tomaszewski, J. E., Hanrahan, C., Coward, L., Noker, P., Gorman, G., Nikonenko, B. & Protopopova, M. (2005). Br. J. Pharmacol. 144, 80-87.]); van der Schyf & Geldenhuys (2009)[Schyf, C. J. van der & Geldenhuys, W. J. (2009). Neurotherapeutics, 6, 175-186.]. For the synthesis, see: Vícha et al. (2009[Vícha, R., Kuřitka, I., Rouchal, M., Ježková, V. & Zierhut, A. (2009). Arkivoc, 12, 60-80.]).

[Scheme 1]

Experimental

Crystal data
  • C18H23NO2

  • Mr = 285.37

  • Monoclinic, C 2/c

  • a = 25.8665 (19) Å

  • b = 6.4575 (4) Å

  • c = 38.6173 (8) Å

  • β = 106.904 (7)°

  • V = 6171.7 (6) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire2 detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction. (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.849, Tmax = 1.000

  • 23009 measured reflections

  • 5431 independent reflections

  • 2752 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.061

  • S = 1.04

  • 5431 reflections

  • 395 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1 0.961 (17) 2.030 (18) 2.729 (3) 128.0 (14)
N21—H21B⋯N1i 0.90 (2) 2.64 (2) 3.385 (3) 140.9 (17)
N1—H1A⋯O1ii 0.913 (19) 2.47 (2) 2.930 (2) 111.4 (15)
N1—H1A⋯N21iii 0.913 (19) 2.60 (2) 3.511 (3) 173.4 (17)
N21—H21A⋯O21 0.912 (18) 2.014 (19) 2.698 (3) 130.6 (16)
N21—H21A⋯O1i 0.912 (18) 2.641 (18) 3.097 (2) 111.8 (14)
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-1, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction. (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction. (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Adamantane is a polycyclic hydrocarbon isolated by Czech chemists from petroleum fraction in the year 1933. Owing to its high lipophilicity and stability, adamantane is frequently used for the modification of compounds with known biological activity. The resulting molecules can display better pharmacodynamic and/or pharmacokinetic properties, such as SQ-109 – tuberculostatic agent derived from ethambutol (L. Jia et al. 2005) or saxagliptin – type 2 diabetes medicament (van der Schyf & Geldenhuys, 2009).

The asymmetric unit of the title compound (Fig. 1) consists of two crystallographically independent molecules slightly varying in their geometries. Both benzene rings are essentially planar with maximum deviations from the best plane being 0.0080 (19) Å for atom C5 in the first molecule and 0.0125 (19) Å for atom C22 in the second one. The dihedral angle between the best planes of the benzene rings is 26.889 (6)°. The torsion angles describing arrangement of benzene ring, adamantane cage and C7—O8—C9 linker C18–C10–C9–O8, C10–C9–O8–C7, C6–C7–O8–C9 and C1–C6–C7–O1 are -177.40 (14), -152.23 (16), -177.92 (15) and 14.4 (3)°, respectively. The values of corresponding torsion angles for the second distinct conformer are 174.24 (14), 160.52 (15), 177.07 (15) and -9.1 (3)°, respectively. While one conformer forms chains via N—H···O H-bonds parallel to the b-axis, the second conformer exhibits only intramolecular N—H···O hydrogen bond (Fig. 2, Table 1).

Related literature top

For some important biologically active compounds bearing the adamantane moiety, see: Jia et al. (2005); van der Schyf & Geldenhuys (2009). For the synthesis, see: Vícha et al. (2009).

Experimental top

The corresponding nitro ester - starting material for title compound preparation - was obtained by a procedure described previously (Vícha et al., 2009). The nitro ester (100 mg, 0.3 mmol) was dissolved in 5 ml of methanol and a portion of iron powder (134 mg, 2.4 mmol) was added. Concentrated hydrochloric acid (1 ml) was added into well stirred mixture. Reaction mixture was kept under reflux until starting material disappeared. The reaction mixture was poured into 5% aqueous Na2CO3 (10 ml) and extracted with mixture of hexane/diethyl ether, 2/1, v/v several times. The collected organic layers were dried over anhydrous Na2SO4 and crude product was obtained after solvent evaporation. Column chromatography (petroleum ether/ethyl acetate, 8:1, v/v) yielded 71 mg (83%) of yellow crystalline powder. The single-crystal used for data collection was obtained by crystallization from chloroform at room temperature.

Refinement top

Carbon bound hydrogen atoms were positioned geometrically and refined as riding using standard SHELXTL constraints, with their Uiso set to 1.2Ueq of their parent atoms. Nitrogen bound hydrogen atoms were located in a difference Fourier map and refined isotropically.

Structure description top

Adamantane is a polycyclic hydrocarbon isolated by Czech chemists from petroleum fraction in the year 1933. Owing to its high lipophilicity and stability, adamantane is frequently used for the modification of compounds with known biological activity. The resulting molecules can display better pharmacodynamic and/or pharmacokinetic properties, such as SQ-109 – tuberculostatic agent derived from ethambutol (L. Jia et al. 2005) or saxagliptin – type 2 diabetes medicament (van der Schyf & Geldenhuys, 2009).

The asymmetric unit of the title compound (Fig. 1) consists of two crystallographically independent molecules slightly varying in their geometries. Both benzene rings are essentially planar with maximum deviations from the best plane being 0.0080 (19) Å for atom C5 in the first molecule and 0.0125 (19) Å for atom C22 in the second one. The dihedral angle between the best planes of the benzene rings is 26.889 (6)°. The torsion angles describing arrangement of benzene ring, adamantane cage and C7—O8—C9 linker C18–C10–C9–O8, C10–C9–O8–C7, C6–C7–O8–C9 and C1–C6–C7–O1 are -177.40 (14), -152.23 (16), -177.92 (15) and 14.4 (3)°, respectively. The values of corresponding torsion angles for the second distinct conformer are 174.24 (14), 160.52 (15), 177.07 (15) and -9.1 (3)°, respectively. While one conformer forms chains via N—H···O H-bonds parallel to the b-axis, the second conformer exhibits only intramolecular N—H···O hydrogen bond (Fig. 2, Table 1).

For some important biologically active compounds bearing the adamantane moiety, see: Jia et al. (2005); van der Schyf & Geldenhuys (2009). For the synthesis, see: Vícha et al. (2009).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP of the asymmetric unit with atoms represented as 50% probability ellipsoids. H atoms are shown as small spheres at arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound shows chain of one crystallographically independent conformer linked by H-bonds (dashed lines) along the b-axis. Intramolecular H-bonds N1—H1B—O1 and hydrogen atoms except for those participating in H-bonds are omitted for clarity.
1-Adamantylmethyl 2-aminobenzoate top
Crystal data top
C18H23NO2F(000) = 2464
Mr = 285.37Dx = 1.229 Mg m3
Monoclinic, C2/cMelting point = 366–362 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 25.8665 (19) ÅCell parameters from 4567 reflections
b = 6.4575 (4) Åθ = 2.7–27.3°
c = 38.6173 (8) ŵ = 0.08 mm1
β = 106.904 (7)°T = 120 K
V = 6171.7 (6) Å3Block, yellow
Z = 160.40 × 0.30 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire2 detector
5431 independent reflections
Radiation source: Enhance (Mo) X-ray Source2752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 8.4353 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω scanh = 3030
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 77
Tmin = 0.849, Tmax = 1.000l = 3845
23009 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.015P)2]
where P = (Fo2 + 2Fc2)/3
5431 reflections(Δ/σ)max < 0.001
395 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H23NO2V = 6171.7 (6) Å3
Mr = 285.37Z = 16
Monoclinic, C2/cMo Kα radiation
a = 25.8665 (19) ŵ = 0.08 mm1
b = 6.4575 (4) ÅT = 120 K
c = 38.6173 (8) Å0.40 × 0.30 × 0.30 mm
β = 106.904 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire2 detector
5431 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2752 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 1.000Rint = 0.051
23009 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.21 e Å3
5431 reflectionsΔρmin = 0.19 e Å3
395 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27207 (5)0.3902 (2)0.21497 (4)0.0515 (4)
N10.29950 (7)0.0010 (4)0.24145 (5)0.0430 (5)
C10.33939 (7)0.0205 (3)0.22478 (5)0.0301 (5)
C20.37972 (8)0.1306 (3)0.23019 (5)0.0372 (5)
H20.37970.24320.24600.045*
C30.41922 (8)0.1190 (3)0.21309 (5)0.0422 (6)
H30.44640.22270.21750.051*
C40.42012 (8)0.0413 (3)0.18949 (5)0.0429 (6)
H40.44760.04880.17770.052*
C50.38052 (7)0.1888 (3)0.18354 (5)0.0338 (5)
H50.38050.29780.16700.041*
C60.34023 (7)0.1848 (3)0.20085 (5)0.0251 (5)
C70.30047 (8)0.3546 (3)0.19566 (5)0.0318 (5)
O80.29882 (4)0.4694 (2)0.16652 (3)0.0386 (4)
C90.26212 (7)0.6481 (3)0.15911 (5)0.0394 (6)
H9A0.28070.77120.17230.047*
H9B0.23000.61870.16740.047*
C100.24490 (7)0.6899 (3)0.11885 (5)0.0272 (5)
C110.21169 (7)0.5078 (3)0.09824 (4)0.0294 (5)
H11A0.23430.38140.10210.035*
H11B0.18050.48130.10760.035*
C120.19154 (7)0.5575 (3)0.05766 (5)0.0323 (5)
H120.17000.43790.04450.039*
C130.15625 (7)0.7498 (3)0.05152 (5)0.0380 (5)
H13A0.12440.72530.06030.046*
H13B0.14320.78130.02530.046*
C140.18892 (7)0.9333 (3)0.07187 (5)0.0350 (5)
H140.16561.05980.06790.042*
C150.23731 (7)0.9710 (3)0.05761 (5)0.0387 (5)
H15A0.22461.00450.03150.046*
H15B0.25861.08980.07050.046*
C160.27263 (7)0.7773 (3)0.06352 (5)0.0338 (5)
H160.30430.80240.05410.041*
C170.29290 (7)0.7285 (3)0.10409 (5)0.0345 (5)
H17A0.31630.60430.10810.041*
H17B0.31460.84600.11710.041*
C180.20872 (7)0.8839 (3)0.11237 (5)0.0336 (5)
H18A0.17740.85980.12170.040*
H18B0.22941.00300.12560.040*
C190.23996 (7)0.5952 (3)0.04336 (5)0.0357 (5)
H19A0.26290.46970.04700.043*
H19B0.22730.62560.01710.043*
O210.63002 (5)0.95579 (19)0.15600 (3)0.0426 (4)
N210.67083 (8)0.6087 (4)0.19276 (5)0.0466 (6)
C210.61810 (8)0.5686 (3)0.19077 (5)0.0310 (5)
C220.60638 (8)0.3934 (3)0.20847 (5)0.0376 (5)
H220.63470.30060.21990.045*
C230.55515 (9)0.3530 (3)0.20973 (5)0.0409 (6)
H230.54860.23470.22250.049*
C240.51230 (8)0.4830 (3)0.19257 (5)0.0391 (5)
H240.47670.45540.19360.047*
C250.52287 (7)0.6526 (3)0.17406 (5)0.0321 (5)
H250.49380.73980.16160.039*
C260.57499 (7)0.6995 (3)0.17309 (5)0.0255 (5)
C270.58532 (8)0.8871 (3)0.15428 (5)0.0300 (5)
O280.53969 (4)0.97894 (19)0.13458 (3)0.0327 (3)
C290.54562 (7)1.1712 (3)0.11641 (5)0.0317 (5)
H29A0.57671.16050.10640.038*
H29B0.55251.28730.13390.038*
C300.49414 (7)1.2116 (3)0.08609 (5)0.0244 (5)
C310.48638 (7)1.0487 (3)0.05613 (4)0.0301 (5)
H31A0.51831.04800.04690.036*
H31B0.48310.90980.06610.036*
C320.43554 (7)1.0966 (3)0.02513 (5)0.0310 (5)
H320.43080.98890.00590.037*
C330.38650 (7)1.0953 (3)0.03946 (5)0.0374 (6)
H33A0.38250.95680.04940.045*
H33B0.35351.12490.01950.045*
C340.39332 (7)1.2585 (3)0.06906 (5)0.0343 (5)
H340.36111.25700.07840.041*
C350.39899 (7)1.4717 (3)0.05345 (5)0.0368 (5)
H35A0.40351.57830.07250.044*
H35B0.36591.50470.03370.044*
C360.44816 (7)1.4731 (3)0.03881 (5)0.0308 (5)
H360.45181.61280.02860.037*
C370.49895 (7)1.4253 (3)0.06989 (4)0.0286 (5)
H37A0.50381.53260.08890.034*
H37B0.53101.42800.06080.034*
C380.44432 (6)1.2112 (3)0.09989 (4)0.0306 (5)
H38A0.44071.07400.11040.037*
H38B0.44881.31650.11920.037*
C390.44104 (7)1.3093 (3)0.00931 (5)0.0346 (5)
H39A0.47271.31040.00020.041*
H39B0.40831.34010.01090.041*
H1B0.2805 (7)0.125 (3)0.2443 (5)0.054 (7)*
H21B0.6966 (9)0.517 (3)0.2037 (6)0.094 (10)*
H1A0.3045 (8)0.098 (3)0.2590 (5)0.073 (9)*
H21A0.6781 (7)0.722 (3)0.1807 (5)0.058 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0435 (9)0.0695 (12)0.0492 (10)0.0164 (8)0.0257 (8)0.0112 (8)
N10.0432 (12)0.0529 (16)0.0355 (13)0.0100 (12)0.0158 (10)0.0053 (12)
C10.0284 (12)0.0392 (14)0.0219 (12)0.0115 (11)0.0062 (10)0.0021 (11)
C20.0480 (14)0.0317 (14)0.0287 (13)0.0019 (12)0.0061 (12)0.0079 (11)
C30.0460 (14)0.0404 (15)0.0404 (14)0.0098 (11)0.0127 (12)0.0029 (12)
C40.0452 (14)0.0486 (16)0.0421 (15)0.0107 (12)0.0240 (11)0.0114 (13)
C50.0370 (13)0.0396 (15)0.0274 (13)0.0035 (11)0.0133 (11)0.0069 (11)
C60.0211 (11)0.0283 (13)0.0240 (12)0.0006 (10)0.0035 (10)0.0013 (10)
C70.0334 (13)0.0379 (14)0.0240 (13)0.0071 (11)0.0083 (11)0.0017 (12)
O80.0392 (8)0.0427 (9)0.0329 (9)0.0116 (7)0.0091 (7)0.0055 (8)
C90.0362 (12)0.0390 (14)0.0389 (14)0.0087 (11)0.0042 (11)0.0053 (11)
C100.0303 (12)0.0310 (13)0.0191 (12)0.0015 (10)0.0051 (10)0.0010 (10)
C110.0352 (11)0.0279 (12)0.0277 (12)0.0031 (10)0.0131 (9)0.0019 (10)
C120.0372 (12)0.0319 (14)0.0252 (13)0.0100 (10)0.0050 (10)0.0052 (10)
C130.0366 (12)0.0472 (15)0.0293 (13)0.0004 (12)0.0083 (10)0.0025 (12)
C140.0384 (13)0.0295 (14)0.0361 (14)0.0084 (10)0.0092 (11)0.0024 (11)
C150.0450 (13)0.0280 (13)0.0428 (14)0.0057 (11)0.0123 (11)0.0031 (11)
C160.0337 (12)0.0318 (13)0.0392 (14)0.0045 (11)0.0160 (11)0.0013 (11)
C170.0271 (11)0.0305 (13)0.0439 (15)0.0009 (10)0.0070 (11)0.0006 (11)
C180.0416 (12)0.0302 (13)0.0296 (13)0.0076 (10)0.0114 (10)0.0003 (10)
C190.0480 (13)0.0329 (13)0.0283 (13)0.0034 (11)0.0146 (11)0.0038 (11)
O210.0267 (8)0.0497 (10)0.0507 (10)0.0001 (8)0.0104 (7)0.0114 (8)
N210.0338 (13)0.0507 (15)0.0521 (14)0.0090 (12)0.0077 (11)0.0114 (12)
C210.0349 (13)0.0371 (14)0.0206 (12)0.0017 (11)0.0077 (10)0.0049 (11)
C220.0454 (14)0.0353 (14)0.0266 (13)0.0074 (12)0.0016 (11)0.0000 (11)
C230.0613 (16)0.0279 (14)0.0324 (14)0.0001 (12)0.0122 (13)0.0038 (11)
C240.0408 (13)0.0379 (14)0.0427 (14)0.0015 (12)0.0186 (11)0.0032 (12)
C250.0354 (13)0.0299 (13)0.0298 (13)0.0041 (10)0.0073 (10)0.0020 (11)
C260.0280 (12)0.0264 (13)0.0221 (12)0.0030 (10)0.0072 (10)0.0013 (10)
C270.0255 (12)0.0394 (14)0.0240 (12)0.0069 (11)0.0055 (11)0.0005 (11)
O280.0267 (7)0.0332 (9)0.0345 (8)0.0012 (7)0.0032 (6)0.0119 (7)
C290.0330 (12)0.0282 (13)0.0311 (13)0.0032 (10)0.0049 (10)0.0056 (11)
C300.0262 (11)0.0238 (12)0.0217 (12)0.0007 (9)0.0046 (10)0.0022 (10)
C310.0364 (12)0.0224 (12)0.0313 (12)0.0003 (10)0.0095 (10)0.0026 (10)
C320.0429 (13)0.0259 (13)0.0221 (12)0.0067 (10)0.0063 (11)0.0050 (10)
C330.0316 (12)0.0385 (14)0.0341 (13)0.0098 (10)0.0030 (11)0.0100 (11)
C340.0256 (12)0.0456 (15)0.0324 (13)0.0023 (10)0.0095 (10)0.0097 (12)
C350.0359 (12)0.0401 (15)0.0310 (13)0.0075 (11)0.0044 (10)0.0030 (11)
C360.0384 (12)0.0232 (12)0.0299 (13)0.0018 (10)0.0086 (10)0.0068 (11)
C370.0327 (11)0.0248 (13)0.0272 (12)0.0028 (10)0.0071 (10)0.0006 (10)
C380.0354 (12)0.0332 (13)0.0240 (12)0.0009 (10)0.0099 (10)0.0031 (10)
C390.0357 (12)0.0363 (14)0.0290 (13)0.0015 (10)0.0051 (10)0.0043 (11)
Geometric parameters (Å, º) top
O1—C71.211 (2)O21—C271.2222 (19)
N1—C11.372 (2)N21—C211.368 (2)
N1—H1B0.961 (17)N21—H21B0.90 (2)
N1—H1A0.913 (19)N21—H21A0.912 (18)
C1—C21.399 (2)C21—C221.400 (2)
C1—C61.412 (2)C21—C261.408 (2)
C2—C31.370 (2)C22—C231.365 (2)
C2—H20.9500C22—H220.9500
C3—C41.384 (2)C23—C241.395 (2)
C3—H30.9500C23—H230.9500
C4—C51.368 (2)C24—C251.378 (2)
C4—H40.9500C24—H240.9500
C5—C61.392 (2)C25—C261.393 (2)
C5—H50.9500C25—H250.9500
C6—C71.476 (2)C26—C271.476 (2)
C7—O81.3379 (19)C27—O281.3422 (19)
O8—C91.4688 (18)O28—C291.4562 (18)
C9—C101.512 (2)C29—C301.518 (2)
C9—H9A0.9900C29—H29A0.9900
C9—H9B0.9900C29—H29B0.9900
C10—C171.530 (2)C30—C381.531 (2)
C10—C111.535 (2)C30—C311.533 (2)
C10—C181.540 (2)C30—C371.535 (2)
C11—C121.535 (2)C31—C321.531 (2)
C11—H11A0.9900C31—H31A0.9900
C11—H11B0.9900C31—H31B0.9900
C12—C131.519 (2)C32—C331.524 (2)
C12—C191.528 (2)C32—C391.526 (2)
C12—H121.0000C32—H321.0000
C13—C141.533 (2)C33—C341.527 (2)
C13—H13A0.9900C33—H33A0.9900
C13—H13B0.9900C33—H33B0.9900
C14—C151.526 (2)C34—C351.527 (2)
C14—C181.531 (2)C34—C381.529 (2)
C14—H141.0000C34—H341.0000
C15—C161.526 (2)C35—C361.535 (2)
C15—H15A0.9900C35—H35A0.9900
C15—H15B0.9900C35—H35B0.9900
C16—C191.523 (2)C36—C391.526 (2)
C16—C171.534 (2)C36—C371.531 (2)
C16—H161.0000C36—H361.0000
C17—H17A0.9900C37—H37A0.9900
C17—H17B0.9900C37—H37B0.9900
C18—H18A0.9900C38—H38A0.9900
C18—H18B0.9900C38—H38B0.9900
C19—H19A0.9900C39—H39A0.9900
C19—H19B0.9900C39—H39B0.9900
C1—N1—H1B117.1 (11)C21—N21—H21B119.5 (14)
C1—N1—H1A116.6 (13)C21—N21—H21A118.2 (12)
H1B—N1—H1A117.9 (18)H21B—N21—H21A122.0 (18)
N1—C1—C2119.7 (2)N21—C21—C22118.7 (2)
N1—C1—C6122.2 (2)N21—C21—C26123.3 (2)
C2—C1—C6117.99 (18)C22—C21—C26117.94 (19)
C3—C2—C1121.22 (19)C23—C22—C21121.48 (19)
C3—C2—H2119.4C23—C22—H22119.3
C1—C2—H2119.4C21—C22—H22119.3
C2—C3—C4121.0 (2)C22—C23—C24120.88 (19)
C2—C3—H3119.5C22—C23—H23119.6
C4—C3—H3119.5C24—C23—H23119.6
C5—C4—C3118.41 (19)C25—C24—C23118.35 (18)
C5—C4—H4120.8C25—C24—H24120.8
C3—C4—H4120.8C23—C24—H24120.8
C4—C5—C6122.36 (19)C24—C25—C26121.76 (18)
C4—C5—H5118.8C24—C25—H25119.1
C6—C5—H5118.8C26—C25—H25119.1
C5—C6—C1118.95 (18)C25—C26—C21119.53 (18)
C5—C6—C7120.69 (18)C25—C26—C27120.45 (17)
C1—C6—C7120.29 (18)C21—C26—C27120.00 (18)
O1—C7—O8122.43 (19)O21—C27—O28122.17 (18)
O1—C7—C6125.50 (19)O21—C27—C26125.10 (18)
O8—C7—C6112.08 (18)O28—C27—C26112.73 (17)
C7—O8—C9117.37 (15)C27—O28—C29116.84 (14)
O8—C9—C10108.72 (15)O28—C29—C30109.06 (14)
O8—C9—H9A109.9O28—C29—H29A109.9
C10—C9—H9A109.9C30—C29—H29A109.9
O8—C9—H9B109.9O28—C29—H29B109.9
C10—C9—H9B109.9C30—C29—H29B109.9
H9A—C9—H9B108.3H29A—C29—H29B108.3
C9—C10—C17112.57 (15)C29—C30—C38111.68 (14)
C9—C10—C11110.47 (15)C29—C30—C31110.92 (14)
C17—C10—C11108.91 (15)C38—C30—C31108.83 (14)
C9—C10—C18107.19 (15)C29—C30—C37108.17 (14)
C17—C10—C18109.11 (15)C38—C30—C37108.64 (14)
C11—C10—C18108.48 (14)C31—C30—C37108.53 (14)
C12—C11—C10110.00 (14)C32—C31—C30110.24 (14)
C12—C11—H11A109.7C32—C31—H31A109.6
C10—C11—H11A109.7C30—C31—H31A109.6
C12—C11—H11B109.7C32—C31—H31B109.6
C10—C11—H11B109.7C30—C31—H31B109.6
H11A—C11—H11B108.2H31A—C31—H31B108.1
C13—C12—C19109.38 (16)C33—C32—C39109.54 (15)
C13—C12—C11109.92 (15)C33—C32—C31109.36 (15)
C19—C12—C11109.37 (14)C39—C32—C31109.63 (15)
C13—C12—H12109.4C33—C32—H32109.4
C19—C12—H12109.4C39—C32—H32109.4
C11—C12—H12109.4C31—C32—H32109.4
C12—C13—C14109.60 (14)C32—C33—C34109.93 (15)
C12—C13—H13A109.7C32—C33—H33A109.7
C14—C13—H13A109.7C34—C33—H33A109.7
C12—C13—H13B109.7C32—C33—H33B109.7
C14—C13—H13B109.8C34—C33—H33B109.7
H13A—C13—H13B108.2H33A—C33—H33B108.2
C15—C14—C18109.61 (15)C33—C34—C35109.28 (15)
C15—C14—C13109.02 (15)C33—C34—C38109.33 (15)
C18—C14—C13109.49 (15)C35—C34—C38109.11 (15)
C15—C14—H14109.6C33—C34—H34109.7
C18—C14—H14109.6C35—C34—H34109.7
C13—C14—H14109.6C38—C34—H34109.7
C16—C15—C14109.49 (15)C34—C35—C36109.62 (15)
C16—C15—H15A109.8C34—C35—H35A109.7
C14—C15—H15A109.8C36—C35—H35A109.7
C16—C15—H15B109.8C34—C35—H35B109.7
C14—C15—H15B109.8C36—C35—H35B109.7
H15A—C15—H15B108.2H35A—C35—H35B108.2
C19—C16—C15109.71 (15)C39—C36—C37109.59 (15)
C19—C16—C17109.71 (15)C39—C36—C35109.73 (15)
C15—C16—C17109.45 (15)C37—C36—C35108.90 (14)
C19—C16—H16109.3C39—C36—H36109.5
C15—C16—H16109.3C37—C36—H36109.5
C17—C16—H16109.3C35—C36—H36109.5
C10—C17—C16109.93 (14)C36—C37—C30110.36 (14)
C10—C17—H17A109.7C36—C37—H37A109.6
C16—C17—H17A109.7C30—C37—H37A109.6
C10—C17—H17B109.7C36—C37—H37B109.6
C16—C17—H17B109.7C30—C37—H37B109.6
H17A—C17—H17B108.2H37A—C37—H37B108.1
C14—C18—C10110.02 (14)C34—C38—C30110.57 (14)
C14—C18—H18A109.7C34—C38—H38A109.5
C10—C18—H18A109.7C30—C38—H38A109.5
C14—C18—H18B109.7C34—C38—H38B109.5
C10—C18—H18B109.7C30—C38—H38B109.5
H18A—C18—H18B108.2H38A—C38—H38B108.1
C16—C19—C12109.24 (15)C36—C39—C32109.27 (15)
C16—C19—H19A109.8C36—C39—H39A109.8
C12—C19—H19A109.8C32—C39—H39A109.8
C16—C19—H19B109.8C36—C39—H39B109.8
C12—C19—H19B109.8C32—C39—H39B109.8
H19A—C19—H19B108.3H39A—C39—H39B108.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O10.961 (17)2.030 (18)2.729 (3)128.0 (14)
N21—H21B···N1i0.90 (2)2.64 (2)3.385 (3)140.9 (17)
N1—H1A···O1ii0.913 (19)2.47 (2)2.930 (2)111.4 (15)
N1—H1A···N21iii0.913 (19)2.60 (2)3.511 (3)173.4 (17)
N21—H21A···O210.912 (18)2.014 (19)2.698 (3)130.6 (16)
N21—H21A···O1i0.912 (18)2.641 (18)3.097 (2)111.8 (14)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y1, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H23NO2
Mr285.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)25.8665 (19), 6.4575 (4), 38.6173 (8)
β (°) 106.904 (7)
V3)6171.7 (6)
Z16
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire2 detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.849, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
23009, 5431, 2752
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.061, 1.04
No. of reflections5431
No. of parameters395
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O10.961 (17)2.030 (18)2.729 (3)128.0 (14)
N21—H21B···N1i0.90 (2)2.64 (2)3.385 (3)140.9 (17)
N1—H1A···O1ii0.913 (19)2.47 (2)2.930 (2)111.4 (15)
N1—H1A···N21iii0.913 (19)2.60 (2)3.511 (3)173.4 (17)
N21—H21A···O210.912 (18)2.014 (19)2.698 (3)130.6 (16)
N21—H21A···O1i0.912 (18)2.641 (18)3.097 (2)111.8 (14)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y1, z+1/2.
 

Acknowledgements

Financial support of this work by an inter­nal grant from TBU in Zlín (No. IGA/7/FT/10/D) funded from the resources of specific university research is gratefully acknowledged.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJia, L., Tomaszewski, J. E., Hanrahan, C., Coward, L., Noker, P., Gorman, G., Nikonenko, B. & Protopopova, M. (2005). Br. J. Pharmacol. 144, 80–87.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction. (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSchyf, C. J. van der & Geldenhuys, W. J. (2009). Neurotherapeutics, 6, 175–186.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVícha, R., Kuřitka, I., Rouchal, M., Ježková, V. & Zierhut, A. (2009). Arkivoc, 12, 60–80.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds