organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Allyl-3-methyl-3′,5′-di­phenyl­spiro­[quinoxaline-2(1H),2′(3′H)-[1,3,4]thia­diazole]

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 9 November 2010; accepted 12 November 2010; online 20 November 2010)

In the title spiro compound, C25H22N4S, the planar quinoxaline (r.m.s. deviation = 0.070 Å) and planar thia­diazole (r.m.s. deviation = 0.060 Å) ring systems share a common C atom; their mean planes are aligned at 89.7 (1)°. The thia­zole ring possesses two aromatic ring substituents and is nearly coplanar with these rings [the dihedral angles between the thia­diazole and phenyl rings are 5.7 (1) and 10.7 (1)°]. The allyl unit is disordered over two positions in a 0.65 (1):0.35 (1) ratio.

Related literature

For pharmacologically active compounds derived from the 1,3-dipolar addition of diphenyl­nitrilimine to double bonds, see: Ahabchane & Essassi (2000[Ahabchane, N. E. & Essassi, E. M. (2000). J. Soc. Chem. Tunis. 4, 753-760.]); Canara et al. (2004[Canara, H. D., Attar, K., Benchidmi, M., Essassi, E. M. & Garrigues, B. (2004). Indian J. Chem. Sect. B, 43, 660-666.]); Ghomsi et al. (2004[Ghomsi, J. N. T., Ahabchane, N. H. & Essassi, E. M. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 353-364.]); Mustaphil et al. (2005[Mustaphil, N. E. H., Ferfra, S., Essassi, E. M. & Garrigues, B. (2005). Phosphorus Sulfur Silicon Relat. Elem. 180, 2193-2200.]).

[Scheme 1]

Experimental

Crystal data
  • C25H22N4S

  • Mr = 410.53

  • Triclinic, [P \overline 1]

  • a = 7.9201 (1) Å

  • b = 10.0713 (1) Å

  • c = 13.6642 (2) Å

  • α = 78.296 (1)°

  • β = 81.277 (1)°

  • γ = 89.826 (1)°

  • V = 1054.50 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.818, Tmax = 0.862

  • 38334 measured reflections

  • 8514 independent reflections

  • 5771 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.164

  • S = 1.03

  • 8514 reflections

  • 291 parameters

  • 28 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In our studies on pharmacologically active compounds, we have used diphenylnitrilimine to undergo 1,3-dipolar additions to double bonds (Ahabchane & Essassi, 2000; Canara et al., 2004; Ghomsi et al., 2004; Mustaphil et al., 2005). In the present study, this compound reacts with an aromatic thione to yield the title spiro compound (Scheme I, Fig. 1). The quinoxaline and the thiadiazole ring systems share a common C atom; their mean planes are aligned at 89.7 (1)°.

Related literature top

For pharmacologically active compounds derived from the 1,3-dipolar addition of diphenylnitrilimine to double bonds, see: Ahabchane & Essassi (2000); Canara et al. (2004); Ghomsi et al. (2004); Mustaphil et al. (2005).

Experimental top

To a solution of 1-allyl-3-methylquinoxaline-2-thione (1.00 g, 4.62 mmol) and diphenylnitrilimine (1.28 g, 5.55 mmol) in THF (20 ml) was added triethylamine (0.78 ml. 5.55 mmol). The mixture was heated for 24 h. The precipitate was recovered by filtration and was separated by chromatography on silica gel (hexane/ethyl acetate: 9/1). The title compound was obtained as yellow crystals upon evaporation of the solvent.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C). The allyl unit is disordered over two positions in a 65 (1):35 (1) ratio.

Structure description top

In our studies on pharmacologically active compounds, we have used diphenylnitrilimine to undergo 1,3-dipolar additions to double bonds (Ahabchane & Essassi, 2000; Canara et al., 2004; Ghomsi et al., 2004; Mustaphil et al., 2005). In the present study, this compound reacts with an aromatic thione to yield the title spiro compound (Scheme I, Fig. 1). The quinoxaline and the thiadiazole ring systems share a common C atom; their mean planes are aligned at 89.7 (1)°.

For pharmacologically active compounds derived from the 1,3-dipolar addition of diphenylnitrilimine to double bonds, see: Ahabchane & Essassi (2000); Canara et al. (2004); Ghomsi et al. (2004); Mustaphil et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of C25H22N4S at the 50% probability level; hydrogen atoms are drawn as arbitrary radius. The minor disorder component is not shown.
1-Allyl-3-methyl-3',5'-diphenylspiro[quinoxaline- 2(1H),2'(3'H)-[1,3,4]thiadiazole] top
Crystal data top
C25H22N4SZ = 2
Mr = 410.53F(000) = 432
Triclinic, P1Dx = 1.293 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9201 (1) ÅCell parameters from 9958 reflections
b = 10.0713 (1) Åθ = 2.3–33.0°
c = 13.6642 (2) ŵ = 0.17 mm1
α = 78.296 (1)°T = 293 K
β = 81.277 (1)°Prism, yellow
γ = 89.826 (1)°0.40 × 0.10 × 0.10 mm
V = 1054.50 (2) Å3
Data collection top
Bruker X8 APEXII
diffractometer
8514 independent reflections
Radiation source: fine-focus sealed tube5771 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 33.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.818, Tmax = 0.862k = 1515
38334 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0836P)2 + 0.1531P]
where P = (Fo2 + 2Fc2)/3
8514 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.32 e Å3
28 restraintsΔρmin = 0.20 e Å3
Crystal data top
C25H22N4Sγ = 89.826 (1)°
Mr = 410.53V = 1054.50 (2) Å3
Triclinic, P1Z = 2
a = 7.9201 (1) ÅMo Kα radiation
b = 10.0713 (1) ŵ = 0.17 mm1
c = 13.6642 (2) ÅT = 293 K
α = 78.296 (1)°0.40 × 0.10 × 0.10 mm
β = 81.277 (1)°
Data collection top
Bruker X8 APEXII
diffractometer
8514 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5771 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.862Rint = 0.022
38334 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05028 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.03Δρmax = 0.32 e Å3
8514 reflectionsΔρmin = 0.20 e Å3
291 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.55728 (4)0.85155 (3)0.59838 (2)0.04746 (11)
N10.50074 (13)0.71267 (12)0.79755 (8)0.0449 (2)
N20.15933 (13)0.76834 (10)0.77459 (8)0.0433 (2)
N30.50993 (16)0.59101 (10)0.66315 (9)0.0507 (3)
N40.64611 (15)0.60663 (10)0.58661 (9)0.0470 (2)
C10.8280 (5)0.5283 (5)0.9283 (4)0.0709 (12)0.654 (11)
H1A0.90400.59820.92900.085*0.654 (11)
H1B0.83820.44250.96740.085*0.654 (11)
C20.7059 (6)0.5510 (3)0.8718 (4)0.0527 (9)0.654 (11)
H20.63140.47960.87230.063*0.654 (11)
C1'0.8401 (10)0.5022 (8)0.8777 (11)0.085 (3)0.346 (11)
H1'10.90900.51890.81480.102*0.346 (11)
H1'20.86500.43200.92870.102*0.346 (11)
C2'0.7060 (13)0.5787 (8)0.8948 (4)0.0579 (19)0.346 (11)
H2'0.63380.56560.95650.070*0.346 (11)
C30.68125 (17)0.68768 (17)0.80623 (11)0.0584 (4)
H3A0.72620.75830.83480.070*
H3B0.74560.69240.73930.070*
C40.39793 (16)0.76799 (11)0.86969 (9)0.0406 (2)
C50.4548 (2)0.79361 (17)0.95621 (12)0.0577 (3)
H50.56700.77610.96620.069*
C60.3444 (3)0.84499 (19)1.02685 (13)0.0684 (4)
H60.38400.86231.08390.082*
C70.1772 (3)0.87124 (17)1.01491 (12)0.0649 (4)
H70.10430.90531.06340.078*
C80.11982 (19)0.84633 (14)0.93028 (11)0.0527 (3)
H80.00710.86370.92160.063*
C90.22789 (15)0.79542 (11)0.85726 (9)0.0400 (2)
C100.25755 (16)0.72698 (12)0.70458 (10)0.0432 (2)
C110.1835 (2)0.69551 (19)0.61697 (13)0.0644 (4)
H11A0.06550.71930.62260.097*
H11B0.19240.60040.61720.097*
H11C0.24520.74670.55490.097*
C120.44934 (15)0.71136 (11)0.70212 (9)0.0396 (2)
C130.44801 (17)0.45774 (11)0.70791 (10)0.0446 (3)
C140.3295 (2)0.43079 (15)0.79643 (12)0.0581 (4)
H140.29140.50070.82870.070*
C150.2686 (2)0.29836 (16)0.83610 (14)0.0659 (4)
H150.18790.28070.89450.079*
C160.3252 (2)0.19377 (15)0.79093 (16)0.0700 (5)
H160.28420.10560.81850.084*
C170.4432 (2)0.22055 (14)0.70430 (15)0.0648 (4)
H170.48250.14960.67360.078*
C180.50517 (19)0.35175 (13)0.66164 (12)0.0513 (3)
H180.58430.36840.60250.062*
C190.68575 (16)0.73197 (11)0.54723 (9)0.0412 (2)
C200.82935 (16)0.77223 (12)0.46545 (9)0.0411 (2)
C210.92074 (19)0.67363 (16)0.42316 (11)0.0535 (3)
H210.89110.58230.44740.064*
C221.0549 (2)0.7115 (2)0.34546 (13)0.0680 (4)
H221.11480.64560.31690.082*
C231.1010 (2)0.8468 (2)0.30971 (13)0.0704 (5)
H231.19240.87160.25760.085*
C241.0122 (2)0.94469 (19)0.35095 (13)0.0668 (4)
H241.04321.03580.32670.080*
C250.87667 (19)0.90801 (14)0.42849 (11)0.0538 (3)
H250.81670.97470.45610.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0582 (2)0.03341 (13)0.04398 (17)0.00401 (11)0.00390 (13)0.00090 (10)
N10.0345 (5)0.0579 (6)0.0390 (5)0.0047 (4)0.0036 (4)0.0039 (4)
N20.0388 (5)0.0427 (5)0.0474 (5)0.0021 (4)0.0070 (4)0.0069 (4)
N30.0578 (6)0.0322 (4)0.0531 (6)0.0008 (4)0.0132 (5)0.0036 (4)
N40.0507 (6)0.0375 (4)0.0478 (6)0.0013 (4)0.0057 (5)0.0070 (4)
C10.0616 (17)0.0673 (18)0.077 (2)0.0016 (14)0.0272 (18)0.0131 (17)
C20.0502 (14)0.0530 (13)0.0565 (19)0.0043 (11)0.0175 (15)0.0084 (13)
C1'0.071 (4)0.072 (4)0.103 (6)0.016 (3)0.015 (4)0.002 (4)
C2'0.056 (3)0.074 (4)0.047 (3)0.008 (3)0.008 (2)0.018 (2)
C30.0351 (6)0.0824 (10)0.0485 (7)0.0064 (6)0.0035 (5)0.0055 (7)
C40.0419 (6)0.0393 (5)0.0373 (5)0.0035 (4)0.0028 (4)0.0028 (4)
C50.0560 (8)0.0696 (9)0.0488 (7)0.0062 (7)0.0127 (6)0.0113 (6)
C60.0862 (12)0.0760 (10)0.0476 (8)0.0061 (9)0.0109 (8)0.0226 (7)
C70.0810 (11)0.0617 (8)0.0523 (8)0.0085 (8)0.0023 (7)0.0215 (7)
C80.0535 (7)0.0476 (6)0.0539 (7)0.0087 (5)0.0015 (6)0.0106 (5)
C90.0413 (6)0.0346 (5)0.0412 (6)0.0003 (4)0.0016 (4)0.0043 (4)
C100.0432 (6)0.0420 (5)0.0447 (6)0.0019 (4)0.0094 (5)0.0079 (4)
C110.0673 (10)0.0751 (10)0.0600 (9)0.0064 (8)0.0238 (8)0.0249 (8)
C120.0429 (6)0.0347 (4)0.0386 (5)0.0029 (4)0.0020 (4)0.0046 (4)
C130.0450 (6)0.0344 (5)0.0506 (7)0.0022 (4)0.0066 (5)0.0004 (4)
C140.0583 (8)0.0463 (6)0.0601 (8)0.0068 (6)0.0047 (7)0.0009 (6)
C150.0617 (9)0.0574 (8)0.0671 (9)0.0179 (7)0.0073 (8)0.0125 (7)
C160.0749 (11)0.0423 (6)0.0889 (12)0.0179 (7)0.0306 (10)0.0090 (7)
C170.0720 (10)0.0383 (6)0.0876 (12)0.0024 (6)0.0275 (9)0.0097 (7)
C180.0541 (7)0.0392 (5)0.0615 (8)0.0002 (5)0.0122 (6)0.0099 (5)
C190.0466 (6)0.0377 (5)0.0369 (5)0.0017 (4)0.0022 (4)0.0051 (4)
C200.0414 (6)0.0463 (6)0.0342 (5)0.0002 (4)0.0053 (4)0.0053 (4)
C210.0511 (7)0.0577 (7)0.0533 (7)0.0037 (6)0.0035 (6)0.0185 (6)
C220.0553 (9)0.0885 (12)0.0608 (9)0.0084 (8)0.0044 (7)0.0265 (9)
C230.0495 (8)0.1031 (14)0.0499 (8)0.0017 (8)0.0073 (6)0.0061 (8)
C240.0571 (9)0.0690 (9)0.0609 (9)0.0085 (7)0.0044 (7)0.0082 (7)
C250.0539 (8)0.0477 (6)0.0519 (7)0.0015 (5)0.0028 (6)0.0000 (5)
Geometric parameters (Å, º) top
S1—C191.7585 (12)C8—C91.3917 (17)
S1—C121.8872 (12)C8—H80.9300
N1—C41.3863 (15)C10—C111.4986 (19)
N1—C121.4263 (16)C10—C121.5227 (17)
N1—C31.4692 (16)C11—H11A0.9600
N2—C101.2757 (16)C11—H11B0.9600
N2—C91.3991 (17)C11—H11C0.9600
N3—N41.3689 (15)C13—C181.3887 (18)
N3—C131.4128 (15)C13—C141.394 (2)
N3—C121.4709 (14)C14—C151.391 (2)
N4—C191.2874 (15)C14—H140.9300
C1—C21.318 (3)C15—C161.367 (3)
C1—H1A0.9300C15—H150.9300
C1—H1B0.9300C16—C171.373 (3)
C2—C31.512 (3)C16—H160.9300
C2—H20.9300C17—C181.390 (2)
C1'—C2'1.330 (5)C17—H170.9300
C1'—H1'10.9300C18—H180.9300
C1'—H1'20.9300C19—C201.4629 (17)
C2'—C31.496 (4)C20—C251.3896 (18)
C2'—H2'0.9300C20—C211.3948 (18)
C3—H3A0.9700C21—C221.378 (2)
C3—H3B0.9700C21—H210.9300
C4—C51.3975 (19)C22—C231.381 (3)
C4—C91.4025 (17)C22—H220.9300
C5—C61.381 (2)C23—C241.374 (3)
C5—H50.9300C23—H230.9300
C6—C71.377 (3)C24—C251.382 (2)
C6—H60.9300C24—H240.9300
C7—C81.373 (2)C25—H250.9300
C7—H70.9300
C19—S1—C1289.97 (5)C10—C11—H11A109.5
C4—N1—C12120.78 (10)C10—C11—H11B109.5
C4—N1—C3120.12 (11)H11A—C11—H11B109.5
C12—N1—C3117.17 (10)C10—C11—H11C109.5
C10—N2—C9119.02 (11)H11A—C11—H11C109.5
N4—N3—C13117.81 (10)H11B—C11—H11C109.5
N4—N3—C12118.38 (9)N1—C12—N3111.72 (10)
C13—N3—C12123.41 (10)N1—C12—C10112.44 (10)
C19—N4—N3112.75 (10)N3—C12—C10111.80 (10)
C2—C1—H1A120.0N1—C12—S1112.47 (8)
C2—C1—H1B120.0N3—C12—S1100.87 (7)
H1A—C1—H1B120.0C10—C12—S1106.89 (8)
C1—C2—C3123.1 (3)C18—C13—C14119.45 (12)
C1—C2—H2118.5C18—C13—N3119.04 (12)
C3—C2—H2118.5C14—C13—N3121.50 (12)
C2'—C1'—H1'1120.0C15—C14—C13119.39 (15)
C2'—C1'—H1'2120.0C15—C14—H14120.3
H1'1—C1'—H1'2120.0C13—C14—H14120.3
C1'—C2'—C3114.3 (7)C16—C15—C14121.27 (17)
C1'—C2'—H2'122.9C16—C15—H15119.4
C3—C2'—H2'122.9C14—C15—H15119.4
N1—C3—C2'113.4 (4)C15—C16—C17119.15 (14)
N1—C3—C2112.4 (2)C15—C16—H16120.4
N1—C3—H3A109.1C17—C16—H16120.4
C2'—C3—H3A92.9C16—C17—C18121.24 (16)
C2—C3—H3A109.1C16—C17—H17119.4
N1—C3—H3B109.1C18—C17—H17119.4
C2'—C3—H3B122.5C13—C18—C17119.49 (15)
C2—C3—H3B109.1C13—C18—H18120.3
H3A—C3—H3B107.9C17—C18—H18120.3
N1—C4—C5122.78 (12)N4—C19—C20122.02 (11)
N1—C4—C9118.77 (11)N4—C19—S1115.81 (9)
C5—C4—C9118.41 (12)C20—C19—S1122.17 (9)
C6—C5—C4119.98 (15)C25—C20—C21119.00 (12)
C6—C5—H5120.0C25—C20—C19121.04 (11)
C4—C5—H5120.0C21—C20—C19119.96 (11)
C7—C6—C5121.61 (15)C22—C21—C20120.01 (15)
C7—C6—H6119.2C22—C21—H21120.0
C5—C6—H6119.2C20—C21—H21120.0
C8—C7—C6118.93 (14)C21—C22—C23120.40 (16)
C8—C7—H7120.5C21—C22—H22119.8
C6—C7—H7120.5C23—C22—H22119.8
C7—C8—C9120.97 (14)C24—C23—C22120.08 (15)
C7—C8—H8119.5C24—C23—H23120.0
C9—C8—H8119.5C22—C23—H23120.0
C8—C9—N2117.88 (12)C23—C24—C25120.06 (16)
C8—C9—C4120.09 (12)C23—C24—H24120.0
N2—C9—C4121.98 (11)C25—C24—H24120.0
N2—C10—C11119.02 (12)C24—C25—C20120.45 (14)
N2—C10—C12123.99 (11)C24—C25—H25119.8
C11—C10—C12116.96 (12)C20—C25—H25119.8
C13—N3—N4—C19176.13 (12)C13—N3—C12—S1171.95 (12)
C12—N3—N4—C1910.90 (18)N2—C10—C12—N115.62 (17)
C4—N1—C3—C2'67.3 (4)C11—C10—C12—N1166.40 (12)
C12—N1—C3—C2'128.4 (4)N2—C10—C12—N3142.24 (12)
C4—N1—C3—C286.4 (3)C11—C10—C12—N339.79 (15)
C12—N1—C3—C2109.3 (3)N2—C10—C12—S1108.26 (12)
C1'—C2'—C3—N1144.0 (11)C11—C10—C12—S169.71 (13)
C1'—C2'—C3—C253.6 (12)C19—S1—C12—N1106.99 (9)
C1—C2—C3—N1147.7 (7)C19—S1—C12—N312.17 (9)
C12—N1—C4—C5168.30 (12)C19—S1—C12—C10129.14 (9)
C3—N1—C4—C54.53 (19)N4—N3—C13—C1811.6 (2)
C12—N1—C4—C913.84 (17)C12—N3—C13—C18175.83 (12)
C3—N1—C4—C9177.61 (11)N4—N3—C13—C14169.30 (14)
N1—C4—C5—C6177.99 (14)C12—N3—C13—C143.3 (2)
C9—C4—C5—C60.1 (2)C18—C13—C14—C150.9 (2)
C4—C5—C6—C70.5 (3)N3—C13—C14—C15178.20 (15)
C5—C6—C7—C80.4 (3)C13—C14—C15—C161.2 (3)
C6—C7—C8—C90.0 (2)C14—C15—C16—C170.5 (3)
C7—C8—C9—N2177.98 (13)C15—C16—C17—C180.4 (3)
C7—C8—C9—C40.4 (2)C14—C13—C18—C170.0 (2)
C10—N2—C9—C8177.11 (12)N3—C13—C18—C17179.11 (14)
C10—N2—C9—C45.33 (17)C16—C17—C18—C130.6 (2)
N1—C4—C9—C8177.66 (11)N3—N4—C19—C20178.86 (11)
C5—C4—C9—C80.29 (18)N3—N4—C19—S10.79 (16)
N1—C4—C9—N20.16 (17)C12—S1—C19—N48.47 (11)
C5—C4—C9—N2177.80 (12)C12—S1—C19—C20171.19 (11)
C9—N2—C10—C11178.88 (12)N4—C19—C20—C25175.82 (13)
C9—N2—C10—C123.19 (18)S1—C19—C20—C253.81 (18)
C4—N1—C12—N3147.06 (11)N4—C19—C20—C214.4 (2)
C3—N1—C12—N348.70 (15)S1—C19—C20—C21175.98 (10)
C4—N1—C12—C1020.40 (15)C25—C20—C21—C220.5 (2)
C3—N1—C12—C10175.36 (11)C19—C20—C21—C22179.35 (14)
C4—N1—C12—S1100.32 (11)C20—C21—C22—C230.7 (3)
C3—N1—C12—S163.91 (13)C21—C22—C23—C240.6 (3)
N4—N3—C12—N1104.20 (13)C22—C23—C24—C250.2 (3)
C13—N3—C12—N168.34 (16)C23—C24—C25—C200.1 (3)
N4—N3—C12—C10128.80 (13)C21—C20—C25—C240.0 (2)
C13—N3—C12—C1058.66 (16)C19—C20—C25—C24179.75 (14)
N4—N3—C12—S115.50 (14)

Experimental details

Crystal data
Chemical formulaC25H22N4S
Mr410.53
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.9201 (1), 10.0713 (1), 13.6642 (2)
α, β, γ (°)78.296 (1), 81.277 (1), 89.826 (1)
V3)1054.50 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerBruker X8 APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.818, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
38334, 8514, 5771
Rint0.022
(sin θ/λ)max1)0.785
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.164, 1.03
No. of reflections8514
No. of parameters291
No. of restraints28
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationAhabchane, N. E. & Essassi, E. M. (2000). J. Soc. Chem. Tunis. 4, 753–760.  CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCanara, H. D., Attar, K., Benchidmi, M., Essassi, E. M. & Garrigues, B. (2004). Indian J. Chem. Sect. B, 43, 660–666.  Google Scholar
First citationGhomsi, J. N. T., Ahabchane, N. H. & Essassi, E. M. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 353–364.  Web of Science CrossRef CAS Google Scholar
First citationMustaphil, N. E. H., Ferfra, S., Essassi, E. M. & Garrigues, B. (2005). Phosphorus Sulfur Silicon Relat. Elem. 180, 2193–2200.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds