inorganic compounds
Kôzulite, an Mn-rich alkali amphibole
aDepartment of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721-0077, USA
*Correspondence e-mail: barkleym@email.arizona.edu
The 2[Mn42+(Fe3+,Al)]Si8O22(OH)2, trisodium tetramanganese iron/aluminium octasilicate dihydroxide, was refined from a natural specimen with composition (K0.20Na0.80)(Na1.60Ca0.18Mn2+0.22)(Mn2+2.14Mn3+0.25Mg2.20Fe3+0.27Al0.14)(Si7.92Al0.06Ti0.02)O22[(OH)1.86F0.14]. The site occupancies determined from the refinements are M1 = 0.453 (1) Mn + 0.547 (1) Mg, M2 = 0.766 (1) Mn + 0.234 (1) Mg, and M3 = 0.257 (1) Mn + 0.743 (1) Mg, where Mn and Mg represent (Mn+Fe) and (Mg+Al), respectively. The average M—O bond lengths are 2.064 (1), 2.139 (1), and 2.060 (1) Å for the M1, M2, and M3 sites, respectively, indicating the preference of large Mn2+ for the M2 site. Four partially occupied amphibole A sites were revealed from the with A(m) = 0.101 (4) K, A(m)′ = 0.187 (14) Na, A(2) = 0.073 (6) Na, and A(1) = 0.056 (18) Na, in accord with the result derived from microprobe analysis (0.20 K + 0.80 Na), considering experimental uncertainties.
of kôzulite, an Mn-rich alkali amphibole with the ideal formula NaNaRelated literature
For more information on the geologic occurrence of kôzulite, see: Ashley (1986); Banno (1997); Hirtopanu (2006); Kawachi & Coombs (1993); Matsubara et al. (2002); Nambu et al. (1969, 1970, 1981); Watanabe et al. (1976). For the initial structural of kôzulite, see: Fleischer & Nickel (1970); Kitamura & Morimoto (1972). For general background to the amphibole group, see: Hawthorne (1983); Hawthorne et al. (1995, 1996); Hawthorne & Harlow (2008). For background information on the amphibole group and nomenclature, see: Leake (1978); Leake et al. (1997, 2003); Mogessie et al. (2004).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2003); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).
Supporting information
https://doi.org/10.1107/S1600536810046015/pk2265sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810046015/pk2265Isup2.hkl
The kôzulite specimen used in this study is from the type locality Tanohata Mine, Iwate Prefecture, Tohoku Region, Honshu Island, Japan and is in the collection of the RRUFF project (deposition No. R070122; http://rruff.info). The crystal chemistry was determined with a CAMECA SX50 electron microprobe (http://rruff.info) on the same single-crystal used for the collection of
data. The average composition (10 point analyses) yielded a chemical formula (normalized on the basis of 23 oxygen): (K0.20Na0.80)(Na1.60Ca0.18Mn2+0.22)˘Mn2+2.14Mn3+0.25Mg2.20Fe3+0.27Al0.14)˘Si7.92Al0.06Ti0.02)O22[(OH)1.86F0.14].The chemical analysis and crystal-chemical considerations show that the C-group cations consist of Mn2+, Mn3+, Fe3+, Mg, and Al3+. Because of similar X-ray scattering powers, Fe and Mn were grouped together (represented by the scattering factor for Mn) and Mg and Al together (represented by Mg) throughout the structure refinements. No
was made for the cations in the M4 site (= Na0.80Ca0.09Mn2+0.11); they were assigned based on crystal-chemical considerations and previous studies on amphiboles (Hawthorne 1983). The total Mn and Mg in the M1 + M2 + M3 sites were fixed to those from the chemical analysis. To dampen the extreme correlations that would otherwise occur among the refined A-site variables, the isotropic displacement factors of these A sites were constrained to be equal (Hawthorne & Harlow 2008).Kôzulite, with the ideal formula NaNa2[Mn42+(Fe3+,Al)]Si8O22(OH)2, is an Mn-rich alkali member of the rock-forming amphibole family and was first described by Nambu et al. (1969). Kitamura and Morimoto (1972), in a meeting abstract, presented the structure Σi8.00O21.78[(OH)2.18F0.04]. However, they did not report its detailed structure information, such as atomic coordinates and displacement parameters. This study presents the first reported structure of kôzulite based on single-crystal X-ray diffraction data, as a part of our effort to build an integrated, web-based database of Raman spectra, X-ray diffraction, and chemistry data for all minerals (http://rruff.info).
of a kôzulite crystal with the composition (Na2.54K0.27Ca0.19)(Mn3.69Mg0.63Fe3+0.33Al3+0.31)The site occupancies determined from the refinements are M1 = 0.453 (1) Mn + 0.547 (1) Mg, M2 = 0.766 (1) Mn + 0.234 (1) Mg, and M3 = 0.257 (1) Mn + 0.743 (1) Mg, where Mn and Mg represent (Mn +Fe) and (Mg + Al), respectively. There results should be compared to those given by Kitamura and Morimoto (1972) for their kôzulite crystal: M1 = 0.78 Mn + 0.22 Mg, M2 = 0.95 Mn + 0.05 Mg, and M3 = 0.58 Mn + 0.42 Mg. The average M—O bond lengths are 2.064 (1), 2.139 (1), and 2.060 (1) Å for the M1, M2, and M3 sites, respectively. These values indicate that the M2 site is dominantly occupied by larger Mn2+, whereas the M1 and M3 sites should have similar amounts of (Mn3+ + Fe3+) and Mg. The relatively short average M3—O distance (versus. M1—O) suggests that Al3+ is preferentially ordered into the M3 site. Our results on kôzulite are very similar to those observed by Hawthorne et al. (1995) for ungarettiite with the composition (K0.15Na0.82)(Na1.97Ca0.03)˘Mn2+1.66Mn3+2.97Mg0.34Fe3+0.03Zn0.01)(Si7.99Al0.01)O22O2. The average M—O distances in ungarettiite are 2.03, 2.17, and 2.01 Å for the M1, M2, and M3 sites, respectively, pointing to the strong ordering of larger Mn2+ into the M2 site and smaller Mn3+ into M1 and M3.
Four partially occupied amphibole A sites [A(m), A(m)', A(2), and A(1)] were revealed from the structure refinements. The
shows that K prefers the A(m) site, whereas Na is distributed among the other three sites. The refined A site occupancies are 0.208 K + 0.764Na [A(m) = 0.208 (4) K, A(m)' = 0.374 (14) Na, A(2) = 0.146 (6)Na, and A(1) = 0.224 (18) Na], consistent with the result derived from microprobe analysis (0.20 K + 0.80Na), considering experimental uncertainties. The presence of two distinct A sites on the mirror plane, A(m) and A(m)' has also been observed in many other alkali amphiboles (e.g., Hawthorne et al. 1996; Hawthorne and Harlow 2008).For more information on the geologic occurrence of kôzulite, see: Ashley (1986); Banno (1997); Hirtopanu (2006); Kawachi & Coombs (1993); Matsubara et al. (2002); Nambu et al. (1969, 1970, 1981); Watanabe et al. (1976). For the initial structural
of kôzulite, see: Fleischer & Nickel (1970); Kitamura & Morimoto (1972). For general background to the amphibole group, see: Hawthorne (1983); Hawthorne et al. (1995, 1996); Hawthorne & Harlow (2008).For background information on the amphibole group and nomenclature, see: Leake (1978); Leake et al. (1997, 2003); Mogessie et al. (2004).Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).Na3[Mn4(Fe)]Si8O22(OH)2 | F(000) = 954 |
Mr = 897.29 | Dx = 3.232 Mg m−3 |
Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2y | Cell parameters from 2537 reflections |
a = 9.9024 (7) Å | θ = 4.0–34.7° |
b = 18.1117 (12) Å | µ = 2.87 mm−1 |
c = 5.2992 (4) Å | T = 293 K |
β = 104.034 (4)° | Euhedral, brown |
V = 922.04 (11) Å3 | 0.06 × 0.05 × 0.04 mm |
Z = 2 |
Bruker APEXII CCD area-detector diffractometer | 1977 independent reflections |
Radiation source: fine-focus sealed tube | 1656 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
φ and ω scans | θmax = 34.4°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | h = −15→15 |
Tmin = 0.847, Tmax = 0.894 | k = −28→28 |
7829 measured reflections | l = −8→7 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | H-atom parameters not refined |
wR(F2) = 0.067 | w = 1/[σ2(Fo2) + (0.0302P)2 + 1.2008P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
1977 reflections | Δρmax = 0.58 e Å−3 |
111 parameters | Δρmin = −0.59 e Å−3 |
1 restraint |
Na3[Mn4(Fe)]Si8O22(OH)2 | V = 922.04 (11) Å3 |
Mr = 897.29 | Z = 2 |
Monoclinic, C2/m | Mo Kα radiation |
a = 9.9024 (7) Å | µ = 2.87 mm−1 |
b = 18.1117 (12) Å | T = 293 K |
c = 5.2992 (4) Å | 0.06 × 0.05 × 0.04 mm |
β = 104.034 (4)° |
Bruker APEXII CCD area-detector diffractometer | 1977 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | 1656 reflections with I > 2σ(I) |
Tmin = 0.847, Tmax = 0.894 | Rint = 0.019 |
7829 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 1 restraint |
wR(F2) = 0.067 | H-atom parameters not refined |
S = 1.08 | Δρmax = 0.58 e Å−3 |
1977 reflections | Δρmin = −0.59 e Å−3 |
111 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
M1 | 0.0000 | 0.08447 (2) | 0.5000 | 0.00933 (11) | 0.4529 (19) |
M1A | 0.0000 | 0.08447 (2) | 0.5000 | 0.00933 (11) | 0.5471 (19) |
M2 | 0.0000 | 0.182241 (18) | 0.0000 | 0.00935 (9) | 0.766 (2) |
M2A | 0.0000 | 0.182241 (18) | 0.0000 | 0.00935 (9) | 0.234 (2) |
M3 | 0.0000 | 0.0000 | 0.0000 | 0.00682 (19) | 0.256 (4) |
M3A | 0.0000 | 0.0000 | 0.0000 | 0.00682 (19) | 0.744 (4) |
M4A | 0.0000 | 0.27152 (4) | 0.5000 | 0.02191 (15) | 0.79 |
M4B | 0.0000 | 0.27152 (4) | 0.5000 | 0.02191 (15) | 0.09 |
M4C | 0.0000 | 0.27152 (4) | 0.5000 | 0.02191 (15) | 0.11 |
Si1 | 0.28233 (4) | 0.084285 (19) | 0.28706 (7) | 0.00858 (8) | |
Si2 | 0.28734 (4) | 0.16909 (2) | 0.79054 (7) | 0.00908 (8) | |
O1 | 0.11555 (10) | 0.08452 (5) | 0.2127 (2) | 0.01077 (18) | |
O2 | 0.11918 (11) | 0.16575 (6) | 0.7170 (2) | 0.01460 (19) | |
O3 | 0.10330 (15) | 0.0000 | 0.7118 (3) | 0.0131 (3) | |
O4 | 0.35819 (12) | 0.24732 (6) | 0.7901 (2) | 0.0179 (2) | |
O5 | 0.34710 (10) | 0.12714 (6) | 0.0742 (2) | 0.01335 (19) | |
O6 | 0.34473 (10) | 0.11704 (6) | 0.57692 (19) | 0.01358 (19) | |
O7 | 0.34279 (16) | 0.0000 | 0.2884 (3) | 0.0154 (3) | |
AM | 0.5211 (9) | 0.0000 | 0.053 (2) | 0.0149 (9)* | 0.104 (4) |
AM' | 0.5562 (10) | 0.0000 | 0.1298 (17) | 0.0149 (9)* | 0.187 (11) |
A2 | 0.5000 | −0.0215 (15) | 0.0000 | 0.0149 (9)* | 0.073 (6) |
A1 | 0.5386 (18) | −0.0192 (18) | 0.103 (4) | 0.0149 (9)* | 0.056 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
M1 | 0.00812 (19) | 0.01278 (19) | 0.00693 (19) | 0.000 | 0.00151 (14) | 0.000 |
M1A | 0.00812 (19) | 0.01278 (19) | 0.00693 (19) | 0.000 | 0.00151 (14) | 0.000 |
M2 | 0.00981 (15) | 0.00801 (14) | 0.01081 (16) | 0.000 | 0.00360 (11) | 0.000 |
M2A | 0.00981 (15) | 0.00801 (14) | 0.01081 (16) | 0.000 | 0.00360 (11) | 0.000 |
M3 | 0.0078 (3) | 0.0059 (3) | 0.0063 (3) | 0.000 | 0.0009 (2) | 0.000 |
M3A | 0.0078 (3) | 0.0059 (3) | 0.0063 (3) | 0.000 | 0.0009 (2) | 0.000 |
M4A | 0.0226 (4) | 0.0251 (4) | 0.0224 (4) | 0.000 | 0.0139 (3) | 0.000 |
M4B | 0.0226 (4) | 0.0251 (4) | 0.0224 (4) | 0.000 | 0.0139 (3) | 0.000 |
M4C | 0.0226 (4) | 0.0251 (4) | 0.0224 (4) | 0.000 | 0.0139 (3) | 0.000 |
Si1 | 0.00867 (16) | 0.00776 (15) | 0.00854 (16) | −0.00068 (11) | 0.00063 (12) | 0.00007 (11) |
Si2 | 0.00895 (16) | 0.00906 (15) | 0.00918 (16) | −0.00125 (11) | 0.00213 (12) | 0.00087 (11) |
O1 | 0.0088 (4) | 0.0112 (4) | 0.0115 (4) | −0.0013 (3) | 0.0009 (3) | −0.0005 (3) |
O2 | 0.0093 (4) | 0.0202 (5) | 0.0138 (5) | 0.0015 (4) | 0.0018 (3) | 0.0031 (4) |
O3 | 0.0139 (6) | 0.0114 (6) | 0.0133 (6) | 0.000 | 0.0021 (5) | 0.000 |
O4 | 0.0236 (5) | 0.0115 (4) | 0.0186 (5) | −0.0056 (4) | 0.0054 (4) | 0.0012 (4) |
O5 | 0.0112 (4) | 0.0171 (5) | 0.0114 (4) | 0.0000 (3) | 0.0021 (3) | 0.0049 (3) |
O6 | 0.0115 (4) | 0.0184 (5) | 0.0099 (4) | 0.0004 (3) | 0.0006 (3) | −0.0039 (3) |
O7 | 0.0149 (7) | 0.0076 (5) | 0.0227 (7) | 0.000 | 0.0022 (5) | 0.000 |
M1—O3i | 2.0223 (10) | M4A—O5ix | 3.0160 (12) |
M1—O3 | 2.0223 (10) | Si1—O1 | 1.6022 (11) |
M1—O2 | 2.0551 (11) | Si1—O6 | 1.6226 (11) |
M1—O2ii | 2.0551 (11) | Si1—O5 | 1.6240 (10) |
M1—O1 | 2.1148 (10) | Si1—O7 | 1.6391 (7) |
M1—O1ii | 2.1148 (10) | Si2—O4 | 1.5814 (11) |
M2—O4iii | 2.0197 (11) | Si2—O2 | 1.6166 (11) |
M2—O4iv | 2.0197 (11) | Si2—O5x | 1.6598 (11) |
M2—O2v | 2.1425 (11) | Si2—O6 | 1.6748 (11) |
M2—O2ii | 2.1425 (11) | AM—O7xi | 2.506 (7) |
M2—O1vi | 2.2554 (10) | AM—O5xii | 2.809 (3) |
M2—O1 | 2.2554 (10) | AM—O5xi | 2.809 (3) |
M3—O3i | 2.0339 (15) | AM—O5viii | 2.894 (4) |
M3—O3v | 2.0339 (15) | AM'—O7xi | 2.643 (7) |
M3—O1 | 2.0730 (10) | AM'—O6xiii | 2.671 (6) |
M3—O1vi | 2.0730 (10) | AM'—O6xiv | 2.671 (6) |
M3—O1vii | 2.0730 (10) | AM'—O5xii | 2.809 (4) |
M3—O1viii | 2.0730 (10) | A2—O7xi | 2.463 (4) |
M4A—O4ix | 2.3450 (12) | A2—O5viii | 2.53 (2) |
M4A—O4iii | 2.3450 (12) | A2—O5xi | 2.53 (2) |
M4A—O2ii | 2.3930 (13) | A1—O6xiv | 2.53 (3) |
M4A—O2 | 2.3930 (13) | A1—O5xi | 2.55 (3) |
M4A—O6iii | 2.6283 (12) | A1—O7xi | 2.644 (17) |
M4A—O6ix | 2.6283 (12) | A1—O5viii | 2.70 (3) |
M4A—O5iii | 3.0160 (12) | ||
O3i—M1—O3 | 81.68 (6) | O1vi—M2—O1 | 76.60 (5) |
O3i—M1—O2 | 175.50 (5) | O3i—M3—O3v | 180.00 (6) |
O3—M1—O2 | 94.98 (4) | O3i—M3—O1 | 84.47 (4) |
O3i—M1—O2ii | 94.98 (4) | O3v—M3—O1 | 95.53 (4) |
O3—M1—O2ii | 175.50 (5) | O3i—M3—O1vi | 95.53 (4) |
O2—M1—O2ii | 88.50 (6) | O3v—M3—O1vi | 84.47 (4) |
O3i—M1—O1 | 83.68 (5) | O1—M3—O1vi | 84.81 (5) |
O3—M1—O1 | 96.35 (5) | O3i—M3—O1vii | 95.53 (4) |
O2—M1—O1 | 93.72 (4) | O3v—M3—O1vii | 84.47 (4) |
O2ii—M1—O1 | 86.24 (4) | O1—M3—O1vii | 180.00 (6) |
O3i—M1—O1ii | 96.35 (5) | O1vi—M3—O1vii | 95.19 (5) |
O3—M1—O1ii | 83.68 (5) | O3i—M3—O1viii | 84.47 (4) |
O2—M1—O1ii | 86.24 (4) | O3v—M3—O1viii | 95.53 (4) |
O2ii—M1—O1ii | 93.72 (4) | O1—M3—O1viii | 95.19 (5) |
O1—M1—O1ii | 179.95 (6) | O1vi—M3—O1viii | 180.00 (3) |
O4iii—M2—O4iv | 101.65 (7) | O1vii—M3—O1viii | 84.81 (5) |
O4iii—M2—O2v | 92.64 (4) | O1—Si1—O6 | 111.41 (5) |
O4iv—M2—O2v | 97.47 (4) | O1—Si1—O5 | 112.64 (5) |
O4iii—M2—O2ii | 97.47 (4) | O6—Si1—O5 | 111.04 (6) |
O4iv—M2—O2ii | 92.64 (4) | O1—Si1—O7 | 110.92 (6) |
O2v—M2—O2ii | 163.97 (6) | O6—Si1—O7 | 106.35 (7) |
O4iii—M2—O1vi | 166.32 (4) | O5—Si1—O7 | 104.05 (7) |
O4iv—M2—O1vi | 91.14 (4) | O4—Si2—O2 | 117.68 (6) |
O2v—M2—O1vi | 80.77 (4) | O4—Si2—O5x | 110.52 (6) |
O2ii—M2—O1vi | 86.65 (4) | O2—Si2—O5x | 108.75 (6) |
O4iii—M2—O1 | 91.14 (4) | O4—Si2—O6 | 106.26 (6) |
O4iv—M2—O1 | 166.32 (4) | O2—Si2—O6 | 108.33 (6) |
O2v—M2—O1 | 86.65 (4) | O5x—Si2—O6 | 104.45 (6) |
O2ii—M2—O1 | 80.77 (4) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x, y, −z+1; (iii) −x+1/2, −y+1/2, −z+1; (iv) x−1/2, −y+1/2, z−1; (v) x, y, z−1; (vi) −x, y, −z; (vii) −x, −y, −z; (viii) x, −y, z; (ix) x−1/2, −y+1/2, z; (x) x, y, z+1; (xi) −x+1, −y, −z; (xii) −x+1, y, −z; (xiii) −x+1, y, −z+1; (xiv) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | Na3[Mn4(Fe)]Si8O22(OH)2 |
Mr | 897.29 |
Crystal system, space group | Monoclinic, C2/m |
Temperature (K) | 293 |
a, b, c (Å) | 9.9024 (7), 18.1117 (12), 5.2992 (4) |
β (°) | 104.034 (4) |
V (Å3) | 922.04 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.87 |
Crystal size (mm) | 0.06 × 0.05 × 0.04 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008a) |
Tmin, Tmax | 0.847, 0.894 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7829, 1977, 1656 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.795 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.067, 1.08 |
No. of reflections | 1977 |
No. of parameters | 111 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 0.58, −0.59 |
Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), XtalDraw (Downs & Hall-Wallace, 2003), SHELXTL (Sheldrick, 2008b).
Acknowledgements
The authors gratefully acknowledge support of this study by the RRUFF Project, Chevron Texaco, the Carnegie-DOE Alliance Center under cooperative agreement DE FC52–08 N A28554, and the Arizona Science Foundation.
References
Ashley, P. M. (1986). Aust. J. Earth Sci. 33, 441–456. CrossRef Web of Science Google Scholar
Banno, Y. (1997). J. Miner. Petrol. Econ. Geol. 92, 189-194. CrossRef CAS Google Scholar
Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Downs, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247–250. CrossRef CAS Google Scholar
Fleischer, M. & Nickel, E. H. (1970). Am. Mineral. 55, 1810–1818. Google Scholar
Hawthorne, F. C. (1983). Can. Mineral. 21, 173–480. CAS Google Scholar
Hawthorne, F. C. & Harlow, G. E. (2008). Can. Mineral. 46, 151–162. Web of Science CrossRef CAS Google Scholar
Hawthorne, F. C., Oberti, R., Cannilo, E., Sardone, N. & Zanetti, A. (1995). Am. Mineral. 80, 165–172. CAS Google Scholar
Hawthorne, F. C., Oberti, R., Ungaretti, L. & Grice, J. D. (1996). Am. Mineral. 81, 995–1002. CAS Google Scholar
Hirtopanu, P. (2006). Acta Miner. Petrog. Abstr. Ser. 5, 38. Google Scholar
Kawachi, Y. & Coombs, D. S. (1993). Mineral. Mag. 57, 533–538. CrossRef CAS Web of Science Google Scholar
Kitamura, M. & Morimoto, N. (1972). Acta Cryst. A28, S71. Google Scholar
Leake, B. E. (1978). Am. Mineral. 63, 1023–1052. CAS Google Scholar
Leake, B. E., Wooley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J. & Mandarino, J. (1997). Mineral. Mag. 61, 295–321. CrossRef CAS Web of Science Google Scholar
Leake, B. E., Woolley, A. R., Birch, W. D., Burke, E. A. J., Ferraris, G., Grice, J. D., Hawthorne, F. C., Kisch, H. J., Krivovichev, V. G., Schumacher, J. C., Stephenson, N. C. N. & Whittaker, E. J. W. (2003). Can. Mineral. 41, 1355–1362. Web of Science CrossRef CAS Google Scholar
Matsubara, S., Miyawaki, R., Kurosawa, M. & Suzuki, Y. (2002). J. Miner. Petrol. Sci. 97, 177–184. CrossRef CAS Google Scholar
Mogessie, A., Ettinger, K. & Leake, B. E. (2004). Mineral. Mag. 68, 825–830. Web of Science CrossRef CAS Google Scholar
Nambu M. K., Tanida K., Kitamura, T. (1969). J. Jpn Assoc. Miner. Petrol. Econ. Geol. 62, 311–328. Google Scholar
Nambu, M., Tanida, K. & Kitamura, T. (1970). Am. Mineral. 55, 1815–1816. Google Scholar
Nambu, M., Tanida, K. & Kitamura, T. (1981). Bul. Res. Inst. Miner. Dres. Met. Tohoku Univ. 37, 205-212. CAS Google Scholar
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watanabe, T., Kato, A., Nambu, M., Tanida, K. & Kitamura, T. (1976). Bul. Res. Inst. Miner. Dres. Met. Tohoku Univ. 31, 2–13. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Kôzulite, with the ideal formula NaNa2[Mn42+(Fe3+,Al)]Si8O22(OH)2, is an Mn-rich alkali member of the rock-forming amphibole family and was first described by Nambu et al. (1969). Kitamura and Morimoto (1972), in a meeting abstract, presented the structure refinement of a kôzulite crystal with the composition (Na2.54K0.27Ca0.19)(Mn3.69Mg0.63Fe3+0.33Al3+0.31)Σi8.00O21.78[(OH)2.18F0.04]. However, they did not report its detailed structure information, such as atomic coordinates and displacement parameters. This study presents the first reported structure of kôzulite based on single-crystal X-ray diffraction data, as a part of our effort to build an integrated, web-based database of Raman spectra, X-ray diffraction, and chemistry data for all minerals (http://rruff.info).
The site occupancies determined from the refinements are M1 = 0.453 (1) Mn + 0.547 (1) Mg, M2 = 0.766 (1) Mn + 0.234 (1) Mg, and M3 = 0.257 (1) Mn + 0.743 (1) Mg, where Mn and Mg represent (Mn +Fe) and (Mg + Al), respectively. There results should be compared to those given by Kitamura and Morimoto (1972) for their kôzulite crystal: M1 = 0.78 Mn + 0.22 Mg, M2 = 0.95 Mn + 0.05 Mg, and M3 = 0.58 Mn + 0.42 Mg. The average M—O bond lengths are 2.064 (1), 2.139 (1), and 2.060 (1) Å for the M1, M2, and M3 sites, respectively. These values indicate that the M2 site is dominantly occupied by larger Mn2+, whereas the M1 and M3 sites should have similar amounts of (Mn3+ + Fe3+) and Mg. The relatively short average M3—O distance (versus. M1—O) suggests that Al3+ is preferentially ordered into the M3 site. Our results on kôzulite are very similar to those observed by Hawthorne et al. (1995) for ungarettiite with the composition (K0.15Na0.82)(Na1.97Ca0.03)˘Mn2+1.66Mn3+2.97Mg0.34Fe3+0.03Zn0.01)(Si7.99Al0.01)O22O2. The average M—O distances in ungarettiite are 2.03, 2.17, and 2.01 Å for the M1, M2, and M3 sites, respectively, pointing to the strong ordering of larger Mn2+ into the M2 site and smaller Mn3+ into M1 and M3.
Four partially occupied amphibole A sites [A(m), A(m)', A(2), and A(1)] were revealed from the structure refinements. The refinement shows that K prefers the A(m) site, whereas Na is distributed among the other three sites. The refined A site occupancies are 0.208 K + 0.764Na [A(m) = 0.208 (4) K, A(m)' = 0.374 (14) Na, A(2) = 0.146 (6)Na, and A(1) = 0.224 (18) Na], consistent with the result derived from microprobe analysis (0.20 K + 0.80Na), considering experimental uncertainties. The presence of two distinct A sites on the mirror plane, A(m) and A(m)' has also been observed in many other alkali amphiboles (e.g., Hawthorne et al. 1996; Hawthorne and Harlow 2008).