metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,6-dihy­dr­oxy­benzoato-κ2O1,O1′)(nitrato-κ2O,O′)bis­­(1,10-phenanthroline-κ2N,N′)gadolinium(III)

aCollege of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: jin_hongxiao@yahoo.com.cn

(Received 14 October 2010; accepted 14 November 2010; online 20 November 2010)

In the mononuclear title complex, [Gd(C7H5O3)2(NO3)(C12H8N2)2], the Gd atom is in a pseudo-bicapped square-anti­prismatic geometry formed by four N atoms from two chelating 1,10-phenanthroline (phen) ligands and by six O atoms, four from two 2,6-dihy­droxy­benzoate (DHB) ligands and the other two from a nitrate anion. ππ stacking inter­actions between phen–DHB [centroid–centroid distances = 3.5334 (18) and 3.8414 (16) Å] and phen–phen [face-to-face separation = 3.4307 (17) Å] ligands of adjacent complex molecules stabilize the crystal structure. Intra­molecular O—H⋯O hydrogen bonds are observed in the DHB ligands.

Related literature

For background to the complexation of Gd(III) ions with multidentate ligands with O- and N-donors, see: Kido & Okamoto (2002[Kido, J. & Okamoto, Y. (2002). Chem. Rev. 102, 2357-2393.]); Lauffer (1990[Lauffer, R. B. (1990). Magn. Reson. Q. 6, 65-92.]). For related structures, see: Ma et al. (2010[Ma, P., Huang, M.-L. & Chen, K.-H. (2010). Acta Cryst. E66, m833.]); Wang et al. (2008[Wang, S.-B., He, H.-M., Li, S. & Tang, K. (2008). Acta Cryst. E64, m516.]); Xia et al. (2007[Xia, J., Zhao, B., Wang, H.-S., Shi, W., Ma, Y., Song, H., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Inorg. Chem. 46, 3450-3458.]).

[Scheme 1]

Experimental

Crystal data
  • [Gd(C7H5O3)2(NO3)(C12H8N2)2]

  • Mr = 885.89

  • Monoclinic, P 21 /c

  • a = 11.1623 (2) Å

  • b = 26.7666 (4) Å

  • c = 14.2979 (4) Å

  • β = 127.445 (1)°

  • V = 3391.60 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.03 mm−1

  • T = 298 K

  • 0.46 × 0.42 × 0.40 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan [ABSPACK in CrysAlis PRO RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, England.])] Tmin = 0.455, Tmax = 0.497

  • 18394 measured reflections

  • 5979 independent reflections

  • 4815 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.043

  • S = 1.01

  • 5979 reflections

  • 496 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O5 0.82 1.87 2.592 (2) 147
O8—H8⋯O6 0.82 1.83 2.563 (3) 148
O4—H4⋯O1 0.82 1.86 2.585 (3) 147
O3—H3⋯O2 0.82 1.84 2.574 (3) 148

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of lanthanide-based metal-organic frameworks is currently of great interest because of their unusual coordination characteristics and optical and magnetic properties. The complexation of gadolinium (III) ions with multidentate ligands with O– and N-donors, has received great attention because of its relevance in biomedical applications as magnetic resonance imaging (MRI) agents (Kido & Okamoto, 2002; Lauffer, 1990). Herein, we report on the preparation and the single-crystal X-ray structure behavior of the novel mononuclear mixed-ligand complex [Gd(C12H8N2)2 (C7H8O3)2(NO3)].

The mononuclear structure is shown in Fig. 1. The ten-coordinate geometry of the GdIII ion is completed by four 2, 6-dihydroxybenzoate (DHB) O atoms, four phenanthroline N atoms and two nitrate O atoms. In one unit cell, there are four complex molecules (Fig. 2).

The complex forms a ten-coordinate pseudo-bicapped square antiprismatic structure in which the set of O5, O9, N2 and N4 and the set of O2, O6, N1 and N3 form two approximate squares, respectively. The ninth coordinate atom O1 and tenth coordinate atom O10 are above and under the two planes formed by O5, O9, N2 and N4 and of O2, O6, N1 and N3, respectively, and locate at bicapped positions. The O2–Gd–O9 is 175.388 (1)°, close to 180°. Because the coordinate O1 and O10 atoms are excluded by O5, O9, N2 and N4 (forming the above plane) and O2, O6, N1 and N3 (forming the plane beneath), respectively, the bond distances of GdIII–O1 (2.5673 (16) Å) and GdIII–O10 (2.6022 (17) Å) are correspondingly longer than those of GdIII–O2 (2.4781 (17) Å) and GdIII–O9 (2.5039 (17) Å), respectively.

π··· π stacking is observed in the crystal structure (Fig. 2). The centroid-centroid distances between the phen and DHB are 3.5334 (18) and 3.8414 (16) Å, while the face-to-face separation between parallel phen ligands is 3.4307 (17) Å.

Intramolecular O–H···O hydrogen bonds are observed in the DHB ligands (Fig. 1 & Table 1).

Related literature top

For background to the complexation of gadolinium (III) ions with multidentate ligands with O- and N-donors see: Kido & Okamoto (2002); Lauffer (1990). For related structures, see: Ma et al. (2010); Wang et al. (2008); Xia et al. (2007).

Experimental top

Each reagent was commercially available and of analytical grade. GdNO3.6H2O (0.226 g, 0.5 mmol), 2, 6-dihydroxybenzoic acid (0.074 g 0.5 mmol), 1, 10-phenanthroline (0.090 g, 0.5 mmol) and NaHCO3 (0.042 g, 0.5 mmol) were dissolved in water-ethanol solution (10 ml, 5:5). The solution was refluxed for 4 h, and filtered after cooling to room temperature. Orange single crystals were obtained from the filtrate after 1 d.

Refinement top

H atoms were positioned geometrically (C—H = 0.93 Å and O—H = 0.82 Å) and refined as riding, with Uiso (H) = 1.2Ueq (C) and Uiso(H) = 1.5Ueq (O). The displacement parameters of N atom in nitrate and one O atom in DHB were restrained to be equal, while one O atom and N atom in nitrate were restrained to be approximately isotropic.

Structure description top

The chemistry of lanthanide-based metal-organic frameworks is currently of great interest because of their unusual coordination characteristics and optical and magnetic properties. The complexation of gadolinium (III) ions with multidentate ligands with O– and N-donors, has received great attention because of its relevance in biomedical applications as magnetic resonance imaging (MRI) agents (Kido & Okamoto, 2002; Lauffer, 1990). Herein, we report on the preparation and the single-crystal X-ray structure behavior of the novel mononuclear mixed-ligand complex [Gd(C12H8N2)2 (C7H8O3)2(NO3)].

The mononuclear structure is shown in Fig. 1. The ten-coordinate geometry of the GdIII ion is completed by four 2, 6-dihydroxybenzoate (DHB) O atoms, four phenanthroline N atoms and two nitrate O atoms. In one unit cell, there are four complex molecules (Fig. 2).

The complex forms a ten-coordinate pseudo-bicapped square antiprismatic structure in which the set of O5, O9, N2 and N4 and the set of O2, O6, N1 and N3 form two approximate squares, respectively. The ninth coordinate atom O1 and tenth coordinate atom O10 are above and under the two planes formed by O5, O9, N2 and N4 and of O2, O6, N1 and N3, respectively, and locate at bicapped positions. The O2–Gd–O9 is 175.388 (1)°, close to 180°. Because the coordinate O1 and O10 atoms are excluded by O5, O9, N2 and N4 (forming the above plane) and O2, O6, N1 and N3 (forming the plane beneath), respectively, the bond distances of GdIII–O1 (2.5673 (16) Å) and GdIII–O10 (2.6022 (17) Å) are correspondingly longer than those of GdIII–O2 (2.4781 (17) Å) and GdIII–O9 (2.5039 (17) Å), respectively.

π··· π stacking is observed in the crystal structure (Fig. 2). The centroid-centroid distances between the phen and DHB are 3.5334 (18) and 3.8414 (16) Å, while the face-to-face separation between parallel phen ligands is 3.4307 (17) Å.

Intramolecular O–H···O hydrogen bonds are observed in the DHB ligands (Fig. 1 & Table 1).

For background to the complexation of gadolinium (III) ions with multidentate ligands with O- and N-donors see: Kido & Okamoto (2002); Lauffer (1990). For related structures, see: Ma et al. (2010); Wang et al. (2008); Xia et al. (2007).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2006); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 15% probablility level. Some H atoms are omitted for clarity. Dashed lines indicate the intramolecular O–H···O hydrogen bonds.
[Figure 2] Fig. 2. A packing diagram of the unit cell. Pink dashed lines show ππ stacking between ligands.
Bis(2,6-dihydroxybenzoato-κ2O1,O1')(nitrato- κ2O,O')bis(1,10-phenanthroline- κ2N,N')gadolinium(III) top
Crystal data top
[Gd(C7H5O3)2(NO3)(C12H8N2)2]F(000) = 1764
Mr = 885.89Dx = 1.735 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11955 reflections
a = 11.1623 (2) Åθ = 2.9–29.1°
b = 26.7666 (4) ŵ = 2.03 mm1
c = 14.2979 (4) ÅT = 298 K
β = 127.445 (1)°Block, orange
V = 3391.60 (12) Å30.46 × 0.42 × 0.40 mm
Z = 4
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
5979 independent reflections
Radiation source: Enhance (Mo) X-ray Source4815 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 15.9 pixels mm-1θmax = 25.0°, θmin = 2.9°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
k = 3131
Tmin = 0.455, Tmax = 0.497l = 1715
18394 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.020P)2]
where P = (Fo2 + 2Fc2)/3
5979 reflections(Δ/σ)max = 0.001
496 parametersΔρmax = 0.46 e Å3
12 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Gd(C7H5O3)2(NO3)(C12H8N2)2]V = 3391.60 (12) Å3
Mr = 885.89Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1623 (2) ŵ = 2.03 mm1
b = 26.7666 (4) ÅT = 298 K
c = 14.2979 (4) Å0.46 × 0.42 × 0.40 mm
β = 127.445 (1)°
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
5979 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
4815 reflections with I > 2σ(I)
Tmin = 0.455, Tmax = 0.497Rint = 0.024
18394 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02112 restraints
wR(F2) = 0.043H-atom parameters constrained
S = 1.01Δρmax = 0.46 e Å3
5979 reflectionsΔρmin = 0.47 e Å3
496 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.930008 (14)0.862284 (4)0.221059 (11)0.03241 (5)
O10.8890 (2)0.91866 (6)0.05856 (15)0.0451 (5)
O20.8450 (2)0.83835 (7)0.02180 (15)0.0443 (4)
O30.7536 (2)0.80218 (7)0.17849 (17)0.0606 (5)
H30.78120.80190.11060.091*
O40.8349 (3)0.97874 (7)0.1046 (2)0.0816 (7)
H40.85330.97050.04190.122*
O50.69658 (19)0.81249 (6)0.13465 (16)0.0434 (4)
O60.66669 (19)0.89321 (6)0.09915 (17)0.0505 (5)
O70.4812 (2)0.75919 (7)0.10366 (17)0.0542 (5)
H70.56520.76490.12200.081*
O80.4200 (2)0.93646 (8)0.0290 (2)0.0753 (7)
H80.50600.93370.04920.113*
O90.8459 (2)0.87228 (7)0.34724 (17)0.0506 (5)
O100.9519 (2)0.80131 (6)0.37257 (17)0.0492 (5)
O110.8610 (3)0.81841 (9)0.46695 (19)0.0817 (7)
N10.9754 (2)0.95435 (7)0.29187 (19)0.0368 (5)
N21.1640 (2)0.88032 (7)0.43955 (18)0.0357 (5)
N31.1797 (2)0.86803 (7)0.24844 (18)0.0375 (5)
N41.0554 (2)0.77981 (7)0.23851 (18)0.0355 (5)
N50.8865 (3)0.82976 (9)0.3979 (2)0.0470 (6)
C10.8820 (3)0.99069 (10)0.2201 (3)0.0471 (7)
H10.80630.98310.14140.057*
C20.8935 (4)1.03981 (10)0.2589 (3)0.0534 (8)
H20.82611.06410.20650.064*
C31.0030 (4)1.05157 (10)0.3726 (3)0.0517 (8)
H3A1.01161.08410.39890.062*
C41.1037 (3)1.01476 (9)0.4510 (3)0.0407 (7)
C51.0847 (3)0.96619 (9)0.4060 (2)0.0343 (6)
C61.2220 (3)1.02442 (10)0.5721 (3)0.0510 (8)
H61.23461.05660.60130.061*
C71.3153 (3)0.98818 (11)0.6447 (3)0.0530 (8)
H7A1.39110.99570.72340.064*
C81.3011 (3)0.93797 (10)0.6037 (2)0.0403 (6)
C91.1850 (3)0.92708 (9)0.4844 (2)0.0347 (6)
C101.3956 (3)0.89923 (11)0.6760 (3)0.0496 (7)
H101.47230.90510.75540.060*
C111.3754 (3)0.85270 (10)0.6303 (3)0.0475 (7)
H111.43870.82650.67740.057*
C121.2586 (3)0.84516 (10)0.5121 (2)0.0421 (7)
H121.24580.81320.48180.050*
C131.2402 (3)0.91126 (10)0.2505 (2)0.0475 (7)
H131.18140.94000.22620.057*
C141.3874 (3)0.91551 (12)0.2872 (3)0.0566 (8)
H141.42550.94650.28750.068*
C151.4749 (3)0.87395 (12)0.3226 (3)0.0565 (8)
H151.57390.87650.34850.068*
C161.4167 (3)0.82720 (11)0.3202 (2)0.0436 (7)
C171.2668 (3)0.82630 (9)0.2817 (2)0.0360 (6)
C181.1987 (3)0.77906 (9)0.2718 (2)0.0350 (6)
C191.2788 (3)0.73454 (10)0.2958 (2)0.0412 (7)
C201.4327 (3)0.73749 (12)0.3397 (2)0.0541 (8)
H201.48840.70820.36020.065*
C211.4990 (3)0.78140 (12)0.3522 (2)0.0542 (8)
H211.59980.78210.38200.065*
C221.2026 (3)0.68959 (10)0.2755 (2)0.0482 (7)
H221.25070.65930.28710.058*
C231.0593 (3)0.69013 (10)0.2392 (2)0.0478 (7)
H231.00750.66040.22460.057*
C240.9899 (3)0.73592 (10)0.2237 (2)0.0435 (7)
H240.89260.73580.20200.052*
C250.8459 (3)0.88219 (10)0.0120 (2)0.0375 (6)
C260.7966 (3)0.89003 (9)0.1327 (2)0.0357 (6)
C270.7529 (3)0.84952 (10)0.2109 (2)0.0420 (7)
C280.7051 (3)0.85738 (11)0.3242 (3)0.0534 (8)
H280.67560.83050.37520.064*
C290.7015 (3)0.90493 (13)0.3609 (3)0.0605 (8)
H290.66900.91000.43750.073*
C300.7443 (4)0.94522 (12)0.2884 (3)0.0633 (9)
H300.74080.97720.31540.076*
C310.7930 (3)0.93800 (11)0.1744 (3)0.0512 (7)
C320.6141 (3)0.85113 (10)0.1004 (2)0.0422 (7)
C330.4596 (3)0.84803 (9)0.0660 (2)0.0386 (6)
C340.3692 (3)0.89083 (11)0.0327 (2)0.0508 (7)
C350.2258 (3)0.88797 (13)0.0027 (3)0.0600 (8)
H350.16600.91640.02010.072*
C360.1739 (3)0.84251 (13)0.0071 (3)0.0583 (8)
H360.07750.84060.01320.070*
C370.2579 (3)0.79927 (12)0.0404 (2)0.0520 (8)
H370.21900.76900.04270.062*
C380.4019 (3)0.80189 (11)0.0705 (2)0.0426 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.03358 (7)0.02755 (7)0.03929 (8)0.00033 (6)0.02381 (6)0.00046 (6)
O10.0562 (12)0.0395 (11)0.0428 (12)0.0024 (9)0.0317 (10)0.0020 (9)
O20.0514 (12)0.0361 (11)0.0439 (12)0.0019 (9)0.0282 (10)0.0033 (9)
O30.0691 (14)0.0414 (12)0.0488 (13)0.0016 (10)0.0242 (11)0.0072 (10)
O40.141 (2)0.0415 (13)0.0582 (15)0.0182 (14)0.0586 (16)0.0043 (11)
O50.0347 (10)0.0386 (11)0.0571 (13)0.0035 (9)0.0281 (10)0.0013 (9)
O60.0426 (11)0.0421 (12)0.0640 (14)0.0030 (9)0.0310 (11)0.0097 (9)
O70.0449 (11)0.0497 (12)0.0694 (15)0.0009 (10)0.0354 (12)0.0074 (10)
O80.0592 (14)0.0560 (14)0.102 (2)0.0174 (12)0.0444 (14)0.0139 (13)
O90.0563 (11)0.0455 (12)0.0608 (13)0.0035 (9)0.0412 (10)0.0022 (9)
O100.0541 (12)0.0383 (11)0.0579 (13)0.0010 (9)0.0354 (11)0.0016 (9)
O110.0799 (16)0.124 (2)0.0590 (16)0.0099 (15)0.0517 (14)0.0115 (14)
N10.0465 (13)0.0265 (11)0.0444 (15)0.0023 (10)0.0312 (12)0.0038 (10)
N20.0358 (12)0.0318 (12)0.0413 (13)0.0038 (10)0.0244 (11)0.0025 (10)
N30.0377 (12)0.0396 (13)0.0400 (13)0.0057 (10)0.0261 (11)0.0030 (10)
N40.0362 (12)0.0331 (12)0.0399 (14)0.0023 (10)0.0244 (11)0.0025 (10)
N50.0413 (12)0.0588 (15)0.0441 (14)0.0096 (11)0.0275 (11)0.0031 (11)
C10.0557 (18)0.0389 (16)0.054 (2)0.0056 (14)0.0374 (17)0.0061 (14)
C20.074 (2)0.0281 (16)0.077 (3)0.0104 (15)0.056 (2)0.0109 (15)
C30.075 (2)0.0262 (15)0.083 (3)0.0060 (15)0.063 (2)0.0072 (16)
C40.0507 (17)0.0308 (15)0.062 (2)0.0094 (13)0.0457 (17)0.0074 (14)
C50.0390 (15)0.0303 (14)0.0474 (18)0.0039 (12)0.0334 (15)0.0031 (12)
C60.061 (2)0.0370 (17)0.076 (2)0.0197 (15)0.052 (2)0.0204 (16)
C70.0485 (18)0.057 (2)0.059 (2)0.0200 (16)0.0356 (17)0.0208 (17)
C80.0352 (15)0.0462 (17)0.0482 (18)0.0081 (13)0.0299 (15)0.0077 (14)
C90.0380 (15)0.0339 (15)0.0472 (18)0.0058 (12)0.0336 (15)0.0044 (12)
C100.0332 (15)0.068 (2)0.0407 (18)0.0031 (14)0.0189 (14)0.0040 (15)
C110.0393 (16)0.055 (2)0.0460 (19)0.0062 (14)0.0246 (15)0.0073 (14)
C120.0449 (16)0.0393 (16)0.0453 (19)0.0035 (13)0.0291 (16)0.0007 (13)
C130.0537 (18)0.0454 (17)0.0510 (19)0.0092 (14)0.0358 (16)0.0039 (14)
C140.0531 (19)0.060 (2)0.061 (2)0.0240 (17)0.0367 (18)0.0091 (17)
C150.0399 (17)0.083 (2)0.050 (2)0.0146 (17)0.0292 (16)0.0107 (17)
C160.0357 (15)0.0623 (19)0.0350 (17)0.0046 (14)0.0226 (14)0.0050 (14)
C170.0355 (14)0.0444 (16)0.0291 (15)0.0008 (13)0.0203 (13)0.0025 (12)
C180.0373 (15)0.0391 (15)0.0315 (15)0.0014 (12)0.0224 (13)0.0012 (12)
C190.0457 (17)0.0467 (17)0.0358 (17)0.0133 (14)0.0271 (15)0.0033 (13)
C200.0507 (19)0.064 (2)0.048 (2)0.0203 (16)0.0303 (17)0.0051 (16)
C210.0359 (16)0.079 (2)0.0451 (19)0.0125 (16)0.0234 (15)0.0017 (16)
C220.065 (2)0.0359 (16)0.0473 (19)0.0130 (15)0.0358 (17)0.0019 (13)
C230.0609 (19)0.0329 (16)0.0479 (19)0.0004 (14)0.0321 (17)0.0024 (13)
C240.0462 (16)0.0359 (16)0.0477 (19)0.0007 (13)0.0282 (15)0.0019 (13)
C250.0289 (14)0.0428 (16)0.0396 (17)0.0007 (12)0.0201 (13)0.0018 (14)
C260.0284 (13)0.0377 (15)0.0392 (16)0.0025 (12)0.0196 (13)0.0011 (12)
C270.0313 (14)0.0457 (18)0.0432 (18)0.0026 (12)0.0195 (14)0.0016 (13)
C280.0468 (17)0.063 (2)0.0461 (19)0.0013 (16)0.0263 (16)0.0140 (16)
C290.065 (2)0.076 (2)0.045 (2)0.0119 (18)0.0356 (18)0.0035 (18)
C300.085 (2)0.057 (2)0.050 (2)0.0113 (18)0.042 (2)0.0047 (17)
C310.062 (2)0.0495 (19)0.0443 (19)0.0095 (15)0.0333 (17)0.0050 (15)
C320.0373 (15)0.0504 (19)0.0384 (17)0.0010 (14)0.0227 (14)0.0002 (13)
C330.0311 (14)0.0488 (17)0.0330 (16)0.0065 (12)0.0180 (13)0.0033 (12)
C340.0482 (18)0.054 (2)0.0454 (19)0.0092 (15)0.0258 (16)0.0042 (15)
C350.0411 (18)0.080 (2)0.054 (2)0.0259 (17)0.0260 (16)0.0097 (17)
C360.0330 (16)0.097 (3)0.0443 (19)0.0055 (17)0.0231 (16)0.0017 (17)
C370.0391 (17)0.075 (2)0.0426 (19)0.0039 (16)0.0251 (15)0.0011 (15)
C380.0367 (15)0.0589 (19)0.0315 (16)0.0004 (14)0.0203 (14)0.0005 (13)
Geometric parameters (Å, º) top
Gd1—O62.4764 (17)C8—C101.389 (4)
Gd1—O22.4781 (17)C8—C91.409 (4)
Gd1—O52.4854 (16)C10—C111.360 (4)
Gd1—O92.5039 (17)C10—H100.9300
Gd1—N42.5433 (19)C11—C121.384 (4)
Gd1—O12.5673 (16)C11—H110.9300
Gd1—N32.5728 (19)C12—H120.9300
Gd1—N12.5943 (19)C13—C141.392 (4)
Gd1—O102.6022 (17)C13—H130.9300
Gd1—N22.625 (2)C14—C151.359 (4)
Gd1—C322.847 (3)C14—H140.9300
Gd1—C252.910 (3)C15—C161.401 (4)
O1—C251.270 (3)C15—H150.9300
O2—C251.271 (3)C16—C171.407 (3)
O3—C271.347 (3)C16—C211.430 (4)
O3—H30.8201C17—C181.438 (3)
O4—C311.355 (3)C18—C191.402 (3)
O4—H40.8201C19—C221.399 (4)
O5—C321.268 (3)C19—C201.428 (4)
O6—C321.275 (3)C20—C211.342 (4)
O7—C381.343 (3)C20—H200.9300
O7—H70.8199C21—H210.9300
O8—C341.361 (3)C22—C231.348 (4)
O8—H80.8201C22—H220.9300
O9—N51.275 (3)C23—C241.394 (4)
O10—N51.252 (3)C23—H230.9300
O11—N51.220 (3)C24—H240.9300
N1—C11.336 (3)C25—C261.473 (3)
N1—C51.353 (3)C26—C311.406 (3)
N2—C121.321 (3)C26—C271.414 (3)
N2—C91.360 (3)C27—C281.380 (4)
N3—C131.331 (3)C28—C291.368 (4)
N3—C171.363 (3)C28—H280.9300
N4—C241.331 (3)C29—C301.365 (4)
N4—C181.364 (3)C29—H290.9300
C1—C21.402 (3)C30—C311.384 (4)
C1—H10.9300C30—H300.9300
C2—C31.349 (4)C32—C331.480 (3)
C2—H20.9300C33—C341.405 (4)
C3—C41.400 (4)C33—C381.413 (3)
C3—H3A0.9300C34—C351.385 (4)
C4—C51.408 (3)C35—C361.366 (4)
C4—C61.424 (4)C35—H350.9300
C5—C91.442 (3)C36—C371.379 (4)
C6—C71.338 (4)C36—H360.9300
C6—H60.9300C37—C381.390 (3)
C7—C81.436 (4)C37—H370.9300
C7—H7A0.9300
O6—Gd1—O279.42 (6)N1—C5—C9118.2 (2)
O6—Gd1—O552.59 (6)C4—C5—C9119.0 (2)
O2—Gd1—O574.76 (6)C7—C6—C4121.4 (3)
O6—Gd1—O970.53 (6)C7—C6—H6119.3
O2—Gd1—O9143.80 (6)C4—C6—H6119.3
O5—Gd1—O971.11 (6)C6—C7—C8121.4 (3)
O6—Gd1—N4134.90 (6)C6—C7—H7A119.3
O2—Gd1—N472.04 (6)C8—C7—H7A119.3
O5—Gd1—N486.06 (6)C10—C8—C9118.0 (2)
O9—Gd1—N4116.56 (6)C10—C8—C7123.3 (3)
O6—Gd1—O171.59 (6)C9—C8—C7118.7 (3)
O2—Gd1—O151.57 (5)N2—C9—C8122.0 (2)
O5—Gd1—O1108.00 (6)N2—C9—C5118.1 (2)
O9—Gd1—O1130.59 (6)C8—C9—C5119.9 (2)
N4—Gd1—O1112.56 (6)C11—C10—C8119.8 (3)
O6—Gd1—N3143.09 (6)C11—C10—H10120.1
O2—Gd1—N379.18 (6)C8—C10—H10120.1
O5—Gd1—N3144.99 (6)C10—C11—C12118.5 (3)
O9—Gd1—N3136.91 (6)C10—C11—H11120.7
N4—Gd1—N363.67 (6)C12—C11—H11120.7
O1—Gd1—N371.53 (6)N2—C12—C11124.4 (2)
O6—Gd1—N179.85 (6)N2—C12—H12117.8
O2—Gd1—N1122.79 (6)C11—C12—H12117.8
O5—Gd1—N1126.90 (6)N3—C13—C14123.1 (3)
O9—Gd1—N171.77 (6)N3—C13—H13118.5
N4—Gd1—N1145.17 (7)C14—C13—H13118.5
O1—Gd1—N171.33 (6)C15—C14—C13119.3 (3)
N3—Gd1—N186.98 (6)C15—C14—H14120.3
O6—Gd1—O10105.44 (6)C13—C14—H14120.3
O2—Gd1—O10124.86 (6)C14—C15—C16120.3 (3)
O5—Gd1—O1067.48 (6)C14—C15—H15119.8
O9—Gd1—O1049.75 (6)C16—C15—H15119.8
N4—Gd1—O1066.82 (6)C15—C16—C17116.6 (3)
O1—Gd1—O10175.38 (6)C15—C16—C21124.0 (3)
N3—Gd1—O10111.47 (6)C17—C16—C21119.4 (3)
N1—Gd1—O10111.94 (6)N3—C17—C16123.3 (2)
O6—Gd1—N2132.26 (6)N3—C17—C18117.6 (2)
O2—Gd1—N2145.49 (6)C16—C17—C18119.0 (2)
O5—Gd1—N2132.37 (6)N4—C18—C19122.5 (2)
O9—Gd1—N270.16 (6)N4—C18—C17117.4 (2)
N4—Gd1—N287.30 (6)C19—C18—C17120.2 (2)
O1—Gd1—N2118.02 (6)C22—C19—C18117.6 (2)
N3—Gd1—N266.79 (6)C22—C19—C20123.8 (3)
N1—Gd1—N262.87 (7)C18—C19—C20118.6 (3)
O10—Gd1—N266.59 (6)C21—C20—C19121.7 (3)
O6—Gd1—C3226.57 (6)C21—C20—H20119.1
O2—Gd1—C3278.98 (6)C19—C20—H20119.1
O5—Gd1—C3226.43 (6)C20—C21—C16120.8 (3)
O9—Gd1—C3265.09 (7)C20—C21—H21119.6
N4—Gd1—C32111.92 (7)C16—C21—H21119.6
O1—Gd1—C3292.26 (7)C23—C22—C19120.0 (2)
N3—Gd1—C32157.93 (7)C23—C22—H22120.0
N1—Gd1—C32102.26 (7)C19—C22—H22120.0
O10—Gd1—C3283.90 (7)C22—C23—C24119.0 (3)
N2—Gd1—C32135.25 (7)C22—C23—H23120.5
O6—Gd1—C2573.40 (6)C24—C23—H23120.5
O2—Gd1—C2525.73 (6)N4—C24—C23123.6 (3)
O5—Gd1—C2591.04 (6)N4—C24—H24118.2
O9—Gd1—C25143.56 (7)C23—C24—H24118.2
N4—Gd1—C2592.66 (7)O1—C25—O2119.6 (2)
O1—Gd1—C2525.85 (6)O1—C25—C26120.8 (2)
N3—Gd1—C2574.25 (6)O2—C25—C26119.5 (2)
N1—Gd1—C2597.09 (7)O1—C25—Gd161.84 (13)
O10—Gd1—C25150.44 (7)O2—C25—Gd157.80 (13)
N2—Gd1—C25136.38 (6)C26—C25—Gd1176.71 (18)
C32—Gd1—C2584.65 (7)C31—C26—C27117.2 (2)
C25—O1—Gd192.31 (15)C31—C26—C25121.4 (2)
C25—O2—Gd196.46 (15)C27—C26—C25121.4 (2)
C27—O3—H3109.5O3—C27—C28117.7 (2)
C31—O4—H4109.5O3—C27—C26121.5 (2)
C32—O5—Gd192.88 (15)C28—C27—C26120.8 (3)
C32—O6—Gd193.12 (15)C29—C28—C27119.5 (3)
C38—O7—H7109.5C29—C28—H28120.2
C34—O8—H8109.5C27—C28—H28120.2
N5—O9—Gd198.88 (13)C30—C29—C28121.9 (3)
N5—O10—Gd194.79 (14)C30—C29—H29119.0
C1—N1—C5117.8 (2)C28—C29—H29119.0
C1—N1—Gd1121.05 (18)C29—C30—C31119.3 (3)
C5—N1—Gd1120.81 (15)C29—C30—H30120.3
C12—N2—C9117.3 (2)C31—C30—H30120.3
C12—N2—Gd1123.06 (17)O4—C31—C30117.9 (3)
C9—N2—Gd1119.48 (16)O4—C31—C26121.0 (2)
C13—N3—C17117.4 (2)C30—C31—C26121.1 (3)
C13—N3—Gd1122.94 (17)O5—C32—O6119.6 (2)
C17—N3—Gd1118.78 (15)O5—C32—C33120.5 (2)
C24—N4—C18117.2 (2)O6—C32—C33119.9 (2)
C24—N4—Gd1122.31 (16)O5—C32—Gd160.70 (13)
C18—N4—Gd1120.37 (15)O6—C32—Gd160.30 (13)
O11—N5—O10123.2 (3)C33—C32—Gd1166.12 (18)
O11—N5—O9120.3 (2)C34—C33—C38118.3 (2)
O10—N5—O9116.6 (2)C34—C33—C32121.3 (2)
O11—N5—Gd1175.9 (2)C38—C33—C32120.4 (2)
O10—N5—Gd160.47 (12)O8—C34—C35117.9 (3)
O9—N5—Gd156.11 (11)O8—C34—C33120.9 (2)
N1—C1—C2122.6 (3)C35—C34—C33121.1 (3)
N1—C1—H1118.7C36—C35—C34118.5 (3)
C2—C1—H1118.7C36—C35—H35120.7
C3—C2—C1119.6 (3)C34—C35—H35120.7
C3—C2—H2120.2C35—C36—C37123.1 (3)
C1—C2—H2120.2C35—C36—H36118.5
C2—C3—C4119.9 (3)C37—C36—H36118.5
C2—C3—H3A120.0C36—C37—C38118.7 (3)
C4—C3—H3A120.0C36—C37—H37120.7
C3—C4—C5117.4 (3)C38—C37—H37120.7
C3—C4—C6123.0 (3)O7—C38—C37117.1 (2)
C5—C4—C6119.6 (3)O7—C38—C33122.6 (2)
N1—C5—C4122.8 (2)C37—C38—C33120.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O50.821.872.592 (2)147
O8—H8···O60.821.832.563 (3)148
O4—H4···O10.821.862.585 (3)147
O3—H3···O20.821.842.574 (3)148

Experimental details

Crystal data
Chemical formula[Gd(C7H5O3)2(NO3)(C12H8N2)2]
Mr885.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.1623 (2), 26.7666 (4), 14.2979 (4)
β (°) 127.445 (1)
V3)3391.60 (12)
Z4
Radiation typeMo Kα
µ (mm1)2.03
Crystal size (mm)0.46 × 0.42 × 0.40
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.455, 0.497
No. of measured, independent and
observed [I > 2σ(I)] reflections
18394, 5979, 4815
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.043, 1.01
No. of reflections5979
No. of parameters496
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.47

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2006), CrysAlis PRO RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O50.821.872.592 (2)146.9
O8—H8···O60.821.832.563 (3)148.2
O4—H4···O10.821.862.585 (3)147.2
O3—H3···O20.821.842.574 (3)147.5
 

Acknowledgements

The authors are grateful for financial support from the Natural Science Foundation of Zhejiang Province (project No. 2010 Y4100495).

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationKido, J. & Okamoto, Y. (2002). Chem. Rev. 102, 2357–2393.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLauffer, R. B. (1990). Magn. Reson. Q. 6, 65–92.  CAS PubMed Google Scholar
First citationMa, P., Huang, M.-L. & Chen, K.-H. (2010). Acta Cryst. E66, m833.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S.-B., He, H.-M., Li, S. & Tang, K. (2008). Acta Cryst. E64, m516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXia, J., Zhao, B., Wang, H.-S., Shi, W., Ma, Y., Song, H., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Inorg. Chem. 46, 3450–3458.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds