organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Meth­­oxy-1-{[(Z)-2-nitro­phenyl­imino](phen­yl)meth­yl}-2-naphthol chloro­form monosolvate

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 16 October 2010; accepted 18 November 2010; online 24 November 2010)

In the title compound, C24H18N2O4·CHCl3, the phenyl and benzene rings make a dihedral angle of 38.60 (9)° and connect in an orientation almost perpendicular to the naphthalene ring system at dihedral angles of 78.73 (8) and 81.20 (7)°. The mol­ecule has a Z configuration about the C=N bond. In the crystal, mol­ecules are linked by inter­molecular O—H⋯N=C hydrogen bonds between the imino moiety and hy­droxy groups. Inter­molecular C—Cl⋯C inter­actions between Cl atoms of the CHCl3 mol­ecule and C atoms of the naphthalene rings are also present [Cl⋯C = 3.353 (2) and 3.326 (19) Å]. The nitro group and the chloro­form solvent mol­ecule are disordered over two positions with site occupancies of 0.884 (4) and 0.116 (4).

Related literature

For the structures of closely related compounds, see: Mitsui et al. (2008[Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.]); Nagasawa et al. (2010a[Nagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010a). Acta Cryst. E66, o2498.],b[Nagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o2677.],c[Nagasawa, A., Mitsui, R., Okamoto, A. & Yonezawa, N. (2010c). Acta Cryst. E66, o2820-o2821.],d[Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010d). Acta Cryst. E66, o2738.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18N2O4·CHCl3

  • Mr = 517.77

  • Monoclinic, P 21 /c

  • a = 13.2672 (6) Å

  • b = 11.2865 (6) Å

  • c = 17.2371 (9) Å

  • β = 109.114 (1)°

  • V = 2438.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 193 K

  • 0.60 × 0.30 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.762, Tmax = 0.960

  • 38275 measured reflections

  • 5576 independent reflections

  • 4899 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.06

  • 5576 reflections

  • 331 parameters

  • 20 restraints

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.77 1.97 2.7160 (16) 163
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we have reported the crystal structures of 1-monoaroylated naphthalene homologues having 2-hydroxy group exemplified by (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2008), (2-hydroxy-7-methoxynaphthalen-1-yl)(phenyl)methanone (Nagasawa et al., 2010a) and (2-hydroxy-7-methoxynaphthalen-1-yl)(4-methylphenyl)methanone (Nagasawa et al., 2010c). The carbonyl group of these compounds are readily converted to the imino group by imination with aniline derivatives in the presence of TiCl4 and 1,4-diazabicyclo[2.2.2]octane (DABCO). The crystal structures of some of the imine compounds thus obtained have also revealed, e.g., 1-[(4-chlorophenyl)(phenylimino)methyl]-7-methoxy-2-naphthol-1,4-diazabicyclo[2.2.2]octane (2/1) (Nagasawa et al., 2010b) and 7-methoxy-1-{[(Z)-2-nitrophenylimino](phenyl)methyl}-2-naphthol, (I) (Nagasawa et al., 2010d). As a part of our ongoing studies on the synthesis and crystal structure analysis of triarylimine compounds, we prepared and analysed the crystal structure of the title compound (II), which is the regioisomer of (I).

An ORTEPIII (Burnett & Johnson, 1996) plot of (II) is shown in Fig. 1. In the molecule of (II), interplanar angles of the least-squares plane of the benzene ring (C18–C23) attached to nitrogen atom (N1) and benzene ring (C12–C17) attached to carbon atom (C11) of imine moiety against the naphthalene ring (C1–C10) are 81.20 (7) and 78.73 (8)°, respectively. The conformation of these groups resembles to that of (I). On the other hand, the interplanar angle between two benzene rings is 38.60 (9)°, which is smaller than that of (I), i.e. 87.15 (6)°. The molecule of (II) has a Z configuration for the imine vector.

In the crystal structure, the molecular packing of (II) is mainly stabilized by intermolecular hydrogen bond and van der Waals interaction. The intermolecular O—H···N hydrogen bond between the hydroxy and the imino groups on the naphthalene ring is observed [H1···N1 = 1.97 Å] (Fig. 2). In addition, one chloroform molecule and two aroylated naphthalene molecules are linked by Cl···C interactions along the c axis [Cl1···C6 = 3.353 (2) Å, Cl2···C5 = 3.326 (19) Å] (Fig. 3).

Related literature top

For the structures of closely related compounds, see: Mitsui et al. (2008); Nagasawa et al. (2010a,b,c,d).

Experimental top

To a solution of (2-hydroxy-7-methoxynaphthalen-1-yl)(phenyl)methanone (0.2 mmol, 56 mg) in chlorobenzene (1 ml), a mixture of 2-nitroaniline (0.22 mmol, 30 mg), TiCl4 (0.33 mmol, 62.4 mg), DABCO (1.32 mmol, 148.0 mg) and chlorobenzene (1 ml) was added by portions at 363 K under nitrogen atmosphere. After the reaction mixture was stirred at 398 K for 1.5 h, the resulting solution was filtrated to remove the solid formed. The solvent was removed under reduced pressure to give crude material. The crude material thus obtained was subjected to crystalization from CHCl3/hexane to give compound (II) as yellow platelet (m.p. 453.0–454.0 K, yield 207 mg, 40%).

Spectroscopic Data: 1H NMR (300 MHz, DMSO-d6) δ; 10.25, (s, 1H), 7.85 (dd, J = 8.6, 1.4 Hz, 1H), 7.70–7.60 (m, 4H), 7.50–7.36 (m, 4H), 7.07–6.98 (m, 3H), 6.81 (dd, J = 8,6, 2.4 Hz, 1H), 6.70 (d, J = 2.4 Hz, 1H), 3.58 (s, 3H); 13C NMR (75 MHz, DMSO-d6) 166.8, 158.6, 154.0, 145.6, 140.6, 138.4, 134.5, 133.0, 131.9, 131.0, 130.4, 129.2, 128.8, 125.2, 124.9, 123.3, 120.8, 115.8, 115.2, 114.9, 102.2, 55.2; IR (KBr): 3427, 1622, 1602, 1515, 1341, 1210; HRMS (m/z): [M + H]+ calcd for C24H19N2O4, 399.1345; found, 399.1371.

Refinement top

All H atoms were introduced in calculated positions and treated as riding on their parent atoms with C—H = 1.00 Å (methine), 0.98 Å (methyl) or 0.95 Å (aromatic) with Uiso(H) = 1.2 or 1.5Ueq(C) and O—H = 0.77 Å with Uiso(H) = 1.5Ueq(O).

In the nitro group, N2/N2' and O3/O3' atoms were constrained to make the anisotropic displacement parameters equal. The distances between C23—N2 and C23—N2' were restrained to possess the same value within 0.020 standard deviation. Further restraints were applied to generate similar Uij values within 0.010 standard deviation for the O4 and O4' atoms. N2'—O3' and N2'—O4' bond lengths and the angle were restrained to be similar within 0.020 standard deviation. The nitro groups of the Uij in the direction of the bond were restrained to be equal within 0.010 standard deviation.

In the chloroform molecule, C25/C25', Cl1/Cl1', Cl2/Cl2' and Cl3/Cl3' were constrained to make the anisotropic displacement parameters equal. C25'—Cl1', Cl2' and Cl3' lengths and angles were restrained to be nearly equal within 0.020 standard deviation.

Structure description top

Recently, we have reported the crystal structures of 1-monoaroylated naphthalene homologues having 2-hydroxy group exemplified by (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2008), (2-hydroxy-7-methoxynaphthalen-1-yl)(phenyl)methanone (Nagasawa et al., 2010a) and (2-hydroxy-7-methoxynaphthalen-1-yl)(4-methylphenyl)methanone (Nagasawa et al., 2010c). The carbonyl group of these compounds are readily converted to the imino group by imination with aniline derivatives in the presence of TiCl4 and 1,4-diazabicyclo[2.2.2]octane (DABCO). The crystal structures of some of the imine compounds thus obtained have also revealed, e.g., 1-[(4-chlorophenyl)(phenylimino)methyl]-7-methoxy-2-naphthol-1,4-diazabicyclo[2.2.2]octane (2/1) (Nagasawa et al., 2010b) and 7-methoxy-1-{[(Z)-2-nitrophenylimino](phenyl)methyl}-2-naphthol, (I) (Nagasawa et al., 2010d). As a part of our ongoing studies on the synthesis and crystal structure analysis of triarylimine compounds, we prepared and analysed the crystal structure of the title compound (II), which is the regioisomer of (I).

An ORTEPIII (Burnett & Johnson, 1996) plot of (II) is shown in Fig. 1. In the molecule of (II), interplanar angles of the least-squares plane of the benzene ring (C18–C23) attached to nitrogen atom (N1) and benzene ring (C12–C17) attached to carbon atom (C11) of imine moiety against the naphthalene ring (C1–C10) are 81.20 (7) and 78.73 (8)°, respectively. The conformation of these groups resembles to that of (I). On the other hand, the interplanar angle between two benzene rings is 38.60 (9)°, which is smaller than that of (I), i.e. 87.15 (6)°. The molecule of (II) has a Z configuration for the imine vector.

In the crystal structure, the molecular packing of (II) is mainly stabilized by intermolecular hydrogen bond and van der Waals interaction. The intermolecular O—H···N hydrogen bond between the hydroxy and the imino groups on the naphthalene ring is observed [H1···N1 = 1.97 Å] (Fig. 2). In addition, one chloroform molecule and two aroylated naphthalene molecules are linked by Cl···C interactions along the c axis [Cl1···C6 = 3.353 (2) Å, Cl2···C5 = 3.326 (19) Å] (Fig. 3).

For the structures of closely related compounds, see: Mitsui et al. (2008); Nagasawa et al. (2010a,b,c,d).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of compound (II) showing only the major component and atom labeling. Displacement ellipsoids are drawn at the 50% probability.
[Figure 2] Fig. 2. A partial crystal packing diagram of compound (II) (intermolecular O—H···N hydrogen bonds are shown as dashed lines).
[Figure 3] Fig. 3. A partial crystal packing diagram of compound (II), viewed down the b axis (intermolecular Cl···C interactions are shown as dashed lines).
7-Methoxy-1-{[(Z)-2-nitrophenylimino](phenyl)methyl}-2-naphthol chloroform monosolvate top
Crystal data top
C24H18N2O4·CHCl3F(000) = 1064
Mr = 517.77Dx = 1.410 Mg m3
Monoclinic, P21/cMelting point = 453.0–454.0 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71075 Å
a = 13.2672 (6) ÅCell parameters from 30136 reflections
b = 11.2865 (6) Åθ = 3.1–27.4°
c = 17.2371 (9) ŵ = 0.41 mm1
β = 109.114 (1)°T = 193 K
V = 2438.8 (2) Å3Platelet, colorless
Z = 40.60 × 0.30 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5576 independent reflections
Radiation source: rotating anode4899 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1717
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1414
Tmin = 0.762, Tmax = 0.960l = 2222
38275 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.056P)2 + 1.0227P]
where P = (Fo2 + 2Fc2)/3
5576 reflections(Δ/σ)max = 0.001
331 parametersΔρmax = 0.50 e Å3
20 restraintsΔρmin = 0.57 e Å3
Crystal data top
C24H18N2O4·CHCl3V = 2438.8 (2) Å3
Mr = 517.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2672 (6) ŵ = 0.41 mm1
b = 11.2865 (6) ÅT = 193 K
c = 17.2371 (9) Å0.60 × 0.30 × 0.10 mm
β = 109.114 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5576 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
4899 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.960Rint = 0.024
38275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04120 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.06Δρmax = 0.50 e Å3
5576 reflectionsΔρmin = 0.57 e Å3
331 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.02083 (8)0.05421 (9)0.26338 (7)0.0340 (2)
H10.00300.00700.27360.051*
O20.43281 (10)0.33884 (12)0.13788 (8)0.0460 (3)
N10.07278 (9)0.34133 (10)0.23258 (7)0.0260 (2)
N20.2246 (4)0.5366 (4)0.28500 (16)0.0388 (7)0.884 (4)
O30.1947 (6)0.5115 (6)0.21267 (17)0.0434 (6)0.884 (4)
O40.2636 (3)0.6325 (2)0.31061 (13)0.0886 (10)0.884 (4)
N2'0.227 (4)0.522 (4)0.2773 (13)0.0388 (7)0.116 (4)
O3'0.198 (5)0.518 (6)0.2029 (15)0.0434 (6)0.116 (4)
O4'0.3015 (11)0.5866 (14)0.3138 (9)0.046 (3)*0.116 (4)
C10.14869 (10)0.14673 (11)0.21739 (8)0.0244 (3)
C20.11662 (11)0.04855 (12)0.25110 (8)0.0284 (3)
C30.18235 (13)0.05341 (12)0.27254 (9)0.0357 (3)
H30.15920.12080.29510.043*
C40.27910 (13)0.05430 (13)0.26056 (9)0.0369 (3)
H40.32230.12330.27410.044*
C50.31622 (12)0.04563 (13)0.22843 (8)0.0310 (3)
C60.41893 (13)0.04875 (15)0.21993 (9)0.0391 (3)
H60.46360.01900.23480.047*
C70.45494 (12)0.14659 (17)0.19098 (10)0.0408 (4)
H70.52430.14700.18620.049*
C80.38870 (12)0.24785 (14)0.16805 (9)0.0344 (3)
C90.28882 (11)0.24960 (12)0.17571 (8)0.0279 (3)
H90.24540.31820.16040.033*
C100.25066 (11)0.14845 (11)0.20667 (8)0.0255 (3)
C110.07401 (10)0.24982 (11)0.18894 (8)0.0237 (2)
C120.00079 (11)0.25001 (12)0.10229 (8)0.0269 (3)
C130.03252 (13)0.14463 (13)0.05936 (9)0.0361 (3)
H130.00930.07080.08560.043*
C140.09970 (15)0.14713 (16)0.02191 (10)0.0442 (4)
H140.12300.07490.05050.053*
C150.13261 (14)0.25356 (17)0.06123 (10)0.0458 (4)
H150.17780.25460.11690.055*
C160.09974 (16)0.35897 (16)0.01956 (10)0.0473 (4)
H160.12250.43240.04660.057*
C170.03340 (14)0.35763 (13)0.06198 (9)0.0380 (3)
H170.01120.43020.09040.046*
C180.13766 (11)0.35278 (12)0.31576 (8)0.0268 (3)
C190.12082 (13)0.27964 (13)0.37559 (9)0.0338 (3)
H190.07360.21410.35950.041*
C200.17225 (14)0.30158 (15)0.45846 (9)0.0399 (4)
H200.16000.25080.49840.048*
C210.24114 (14)0.39668 (15)0.48345 (9)0.0418 (4)
H210.27680.41030.54020.050*
C220.25782 (13)0.47152 (15)0.42562 (9)0.0396 (3)
H220.30430.53760.44240.047*
C230.20625 (12)0.44975 (13)0.34255 (9)0.0312 (3)
C240.36876 (16)0.44165 (17)0.10900 (12)0.0506 (4)
H24A0.40900.49930.08840.076*
H24B0.34950.47690.15420.076*
H24C0.30380.41920.06460.076*
C250.4954 (2)0.2617 (3)0.4771 (2)0.0463 (5)0.884 (4)
H20.46380.29540.51760.056*0.884 (4)
Cl10.51726 (10)0.38033 (11)0.41735 (8)0.0718 (3)0.884 (4)
Cl20.40495 (10)0.15916 (14)0.41674 (8)0.0602 (3)0.884 (4)
Cl30.61723 (8)0.19467 (8)0.53272 (8)0.0620 (3)0.884 (4)
C25'0.5097 (15)0.2618 (19)0.4821 (15)0.0463 (5)0.116 (4)
H2'0.49310.30080.52850.056*0.116 (4)
Cl1'0.4895 (8)0.3540 (8)0.3952 (6)0.0718 (3)0.116 (4)
Cl2'0.4217 (9)0.1492 (13)0.4346 (7)0.0602 (3)0.116 (4)
Cl3'0.6378 (6)0.2033 (7)0.5088 (5)0.0620 (3)0.116 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0372 (5)0.0222 (5)0.0436 (6)0.0058 (4)0.0145 (4)0.0038 (4)
O20.0392 (6)0.0544 (7)0.0499 (7)0.0097 (5)0.0220 (5)0.0005 (6)
N10.0309 (6)0.0215 (5)0.0245 (5)0.0023 (4)0.0073 (4)0.0010 (4)
N20.0458 (8)0.0336 (15)0.0359 (8)0.0118 (11)0.0118 (8)0.0040 (8)
O30.0662 (10)0.0354 (11)0.0318 (10)0.0064 (7)0.0205 (12)0.0025 (12)
O40.150 (3)0.0520 (13)0.0558 (11)0.0610 (16)0.0229 (13)0.0100 (10)
N2'0.0458 (8)0.0336 (15)0.0359 (8)0.0118 (11)0.0118 (8)0.0040 (8)
O3'0.0662 (10)0.0354 (11)0.0318 (10)0.0064 (7)0.0205 (12)0.0025 (12)
C10.0297 (6)0.0191 (6)0.0222 (6)0.0007 (5)0.0056 (5)0.0010 (4)
C20.0347 (7)0.0210 (6)0.0273 (6)0.0021 (5)0.0072 (5)0.0005 (5)
C30.0485 (8)0.0208 (6)0.0347 (7)0.0024 (6)0.0095 (6)0.0050 (5)
C40.0473 (8)0.0263 (7)0.0326 (7)0.0121 (6)0.0070 (6)0.0028 (6)
C50.0354 (7)0.0314 (7)0.0232 (6)0.0076 (6)0.0054 (5)0.0026 (5)
C60.0362 (8)0.0468 (9)0.0312 (7)0.0144 (7)0.0070 (6)0.0022 (6)
C70.0295 (7)0.0583 (10)0.0343 (8)0.0050 (7)0.0099 (6)0.0063 (7)
C80.0338 (7)0.0427 (8)0.0271 (7)0.0055 (6)0.0103 (6)0.0054 (6)
C90.0303 (6)0.0286 (7)0.0239 (6)0.0006 (5)0.0077 (5)0.0027 (5)
C100.0300 (6)0.0254 (6)0.0188 (5)0.0018 (5)0.0048 (5)0.0028 (5)
C110.0263 (6)0.0197 (6)0.0254 (6)0.0012 (5)0.0090 (5)0.0018 (5)
C120.0285 (6)0.0263 (6)0.0249 (6)0.0002 (5)0.0074 (5)0.0006 (5)
C130.0449 (8)0.0281 (7)0.0309 (7)0.0040 (6)0.0066 (6)0.0008 (6)
C140.0521 (10)0.0415 (9)0.0323 (8)0.0111 (7)0.0047 (7)0.0083 (7)
C150.0468 (9)0.0559 (10)0.0263 (7)0.0031 (8)0.0005 (6)0.0005 (7)
C160.0598 (11)0.0414 (9)0.0316 (8)0.0084 (8)0.0024 (7)0.0088 (7)
C170.0505 (9)0.0284 (7)0.0295 (7)0.0035 (6)0.0057 (6)0.0012 (6)
C180.0305 (6)0.0241 (6)0.0245 (6)0.0051 (5)0.0072 (5)0.0012 (5)
C190.0439 (8)0.0267 (7)0.0307 (7)0.0011 (6)0.0122 (6)0.0006 (5)
C200.0564 (10)0.0363 (8)0.0274 (7)0.0086 (7)0.0141 (7)0.0059 (6)
C210.0511 (9)0.0434 (9)0.0237 (7)0.0078 (7)0.0026 (6)0.0029 (6)
C220.0409 (8)0.0378 (8)0.0328 (8)0.0019 (6)0.0023 (6)0.0059 (6)
C230.0341 (7)0.0294 (7)0.0282 (7)0.0001 (5)0.0077 (5)0.0001 (5)
C240.0516 (10)0.0490 (10)0.0549 (10)0.0131 (8)0.0225 (8)0.0076 (8)
C250.0548 (12)0.0498 (10)0.0337 (9)0.0049 (9)0.0137 (9)0.0057 (7)
Cl10.0736 (6)0.0777 (5)0.0555 (5)0.0211 (4)0.0093 (4)0.0162 (4)
Cl20.0497 (5)0.0729 (5)0.0506 (6)0.0098 (4)0.0065 (4)0.0209 (5)
Cl30.0576 (4)0.0652 (4)0.0514 (5)0.0027 (3)0.0017 (3)0.0042 (3)
C25'0.0548 (12)0.0498 (10)0.0337 (9)0.0049 (9)0.0137 (9)0.0057 (7)
Cl1'0.0736 (6)0.0777 (5)0.0555 (5)0.0211 (4)0.0093 (4)0.0162 (4)
Cl2'0.0497 (5)0.0729 (5)0.0506 (6)0.0098 (4)0.0065 (4)0.0209 (5)
Cl3'0.0576 (4)0.0652 (4)0.0514 (5)0.0027 (3)0.0017 (3)0.0042 (3)
Geometric parameters (Å, º) top
O1—C21.3566 (18)C12—C171.399 (2)
O1—H10.7695C13—C141.393 (2)
O2—C81.3664 (19)C13—H130.9500
O2—C241.428 (2)C14—C151.378 (3)
N1—C111.2810 (17)C14—H140.9500
N1—C181.4159 (17)C15—C161.384 (3)
N2—O31.211 (3)C15—H150.9500
N2—O41.219 (3)C16—C171.393 (2)
N2—C231.470 (3)C16—H160.9500
N2'—O3'1.214 (17)C17—H170.9500
N2'—O4'1.230 (18)C18—C191.395 (2)
N2'—C231.481 (17)C18—C231.401 (2)
C1—C21.3814 (18)C19—C201.389 (2)
C1—C101.4242 (18)C19—H190.9500
C1—C111.5026 (17)C20—C211.384 (3)
C2—C31.4178 (19)C20—H200.9500
C3—C41.365 (2)C21—C221.379 (2)
C3—H30.9500C21—H210.9500
C4—C51.414 (2)C22—C231.392 (2)
C4—H40.9500C22—H220.9500
C5—C61.418 (2)C24—H24A0.9800
C5—C101.4249 (18)C24—H24B0.9800
C6—C71.361 (3)C24—H24C0.9800
C6—H60.9500C25—Cl21.745 (3)
C7—C81.417 (2)C25—Cl31.757 (3)
C7—H70.9500C25—Cl11.770 (3)
C8—C91.374 (2)C25—H21.0000
C9—C101.4217 (19)C25'—Cl3'1.739 (19)
C9—H90.9500C25'—Cl2'1.740 (18)
C11—C121.4915 (18)C25'—Cl1'1.770 (19)
C12—C131.394 (2)C25'—H2'1.0000
C2—O1—H1111.6C15—C14—H14119.7
C8—O2—C24117.60 (13)C13—C14—H14119.7
C11—N1—C18123.21 (11)C14—C15—C16119.91 (14)
O3—N2—O4122.5 (4)C14—C15—H15120.0
O3—N2—C23117.9 (3)C16—C15—H15120.0
O4—N2—C23119.5 (2)C15—C16—C17120.12 (15)
O3'—N2'—O4'119 (3)C15—C16—H16119.9
O3'—N2'—C23135 (3)C17—C16—H16119.9
O4'—N2'—C23104.8 (17)C16—C17—C12120.37 (14)
C2—C1—C10120.13 (12)C16—C17—H17119.8
C2—C1—C11119.83 (12)C12—C17—H17119.8
C10—C1—C11120.00 (11)C19—C18—C23117.54 (12)
O1—C2—C1117.46 (12)C19—C18—N1120.21 (12)
O1—C2—C3121.68 (12)C23—C18—N1121.25 (12)
C1—C2—C3120.86 (13)C20—C19—C18120.74 (14)
C4—C3—C2119.67 (13)C20—C19—H19119.6
C4—C3—H3120.2C18—C19—H19119.6
C2—C3—H3120.2C21—C20—C19120.69 (14)
C3—C4—C5121.24 (13)C21—C20—H20119.7
C3—C4—H4119.4C19—C20—H20119.7
C5—C4—H4119.4C22—C21—C20119.75 (14)
C4—C5—C6122.01 (13)C22—C21—H21120.1
C4—C5—C10119.46 (13)C20—C21—H21120.1
C6—C5—C10118.49 (14)C21—C22—C23119.63 (15)
C7—C6—C5121.51 (14)C21—C22—H22120.2
C7—C6—H6119.2C23—C22—H22120.2
C5—C6—H6119.2C22—C23—C18121.62 (14)
C6—C7—C8119.77 (14)C22—C23—N2116.26 (16)
C6—C7—H7120.1C18—C23—N2122.07 (15)
C8—C7—H7120.1C22—C23—N2'122.3 (9)
O2—C8—C9124.92 (14)C18—C23—N2'115.9 (9)
O2—C8—C7114.12 (14)O2—C24—H24A109.5
C9—C8—C7120.96 (14)O2—C24—H24B109.5
C8—C9—C10119.84 (13)H24A—C24—H24B109.5
C8—C9—H9120.1O2—C24—H24C109.5
C10—C9—H9120.1H24A—C24—H24C109.5
C9—C10—C1121.99 (12)H24B—C24—H24C109.5
C9—C10—C5119.41 (13)Cl2—C25—Cl3111.70 (19)
C1—C10—C5118.60 (12)Cl2—C25—Cl1111.47 (19)
N1—C11—C12117.23 (11)Cl3—C25—Cl1110.27 (16)
N1—C11—C1124.51 (12)Cl2—C25—H2107.7
C12—C11—C1118.13 (11)Cl3—C25—H2107.7
C13—C12—C17118.83 (13)Cl1—C25—H2107.7
C13—C12—C11121.31 (12)Cl3'—C25'—Cl2'107.2 (13)
C17—C12—C11119.83 (12)Cl3'—C25'—Cl1'108.2 (13)
C14—C13—C12120.25 (14)Cl2'—C25'—Cl1'98.0 (12)
C14—C13—H13119.9Cl3'—C25'—H2'114.1
C12—C13—H13119.9Cl2'—C25'—H2'114.1
C15—C14—C13120.51 (15)Cl1'—C25'—H2'114.1
C10—C1—C2—O1176.96 (11)C1—C11—C12—C17151.40 (14)
C11—C1—C2—O15.47 (18)C17—C12—C13—C140.8 (2)
C10—C1—C2—C32.5 (2)C11—C12—C13—C14179.07 (14)
C11—C1—C2—C3175.10 (12)C12—C13—C14—C151.1 (3)
O1—C2—C3—C4178.72 (13)C13—C14—C15—C160.7 (3)
C1—C2—C3—C40.7 (2)C14—C15—C16—C170.1 (3)
C2—C3—C4—C51.2 (2)C15—C16—C17—C120.2 (3)
C3—C4—C5—C6176.36 (14)C13—C12—C17—C160.2 (2)
C3—C4—C5—C101.2 (2)C11—C12—C17—C16178.47 (15)
C4—C5—C6—C7178.21 (14)C11—N1—C18—C1966.99 (18)
C10—C5—C6—C70.6 (2)C11—N1—C18—C23124.71 (15)
C5—C6—C7—C80.5 (2)C23—C18—C19—C201.3 (2)
C24—O2—C8—C92.7 (2)N1—C18—C19—C20170.00 (13)
C24—O2—C8—C7176.52 (14)C18—C19—C20—C210.2 (2)
C6—C7—C8—O2178.28 (14)C19—C20—C21—C220.9 (3)
C6—C7—C8—C91.0 (2)C20—C21—C22—C230.9 (2)
O2—C8—C9—C10178.85 (13)C21—C22—C23—C180.3 (2)
C7—C8—C9—C100.3 (2)C21—C22—C23—N2177.4 (3)
C8—C9—C10—C1178.66 (12)C21—C22—C23—N2'176 (3)
C8—C9—C10—C50.81 (19)C19—C18—C23—C221.4 (2)
C2—C1—C10—C9177.09 (12)N1—C18—C23—C22169.96 (13)
C11—C1—C10—C95.34 (18)C19—C18—C23—N2176.2 (3)
C2—C1—C10—C52.38 (18)N1—C18—C23—N27.6 (3)
C11—C1—C10—C5175.19 (11)C19—C18—C23—N2'177 (3)
C4—C5—C10—C9178.91 (12)N1—C18—C23—N2'14 (3)
C6—C5—C10—C91.27 (19)O3—N2—C23—C22168.9 (6)
C4—C5—C10—C10.57 (19)O4—N2—C23—C2214.9 (6)
C6—C5—C10—C1178.22 (12)O3—N2—C23—C1813.4 (8)
C18—N1—C11—C12179.69 (12)O4—N2—C23—C18162.8 (4)
C18—N1—C11—C14.4 (2)O3—N2—C23—N2'33 (12)
C2—C1—C11—N194.25 (16)O4—N2—C23—N2'151 (13)
C10—C1—C11—N188.17 (16)O3'—N2'—C23—C22175 (7)
C2—C1—C11—C1289.89 (15)O4'—N2'—C23—C227 (5)
C10—C1—C11—C1287.69 (15)O3'—N2'—C23—C180 (9)
N1—C11—C12—C13156.96 (14)O4'—N2'—C23—C18168 (2)
C1—C11—C12—C1326.88 (19)O3'—N2'—C23—N2137 (20)
N1—C11—C12—C1724.77 (19)O4'—N2'—C23—N255 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.771.972.7160 (16)163
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H18N2O4·CHCl3
Mr517.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)13.2672 (6), 11.2865 (6), 17.2371 (9)
β (°) 109.114 (1)
V3)2438.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.60 × 0.30 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.762, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
38275, 5576, 4899
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.06
No. of reflections5576
No. of parameters331
No. of restraints20
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.57

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.771.972.7160 (16)163
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

The authors would express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010a). Acta Cryst. E66, o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o2677.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagasawa, A., Mitsui, R., Okamoto, A. & Yonezawa, N. (2010c). Acta Cryst. E66, o2820–o2821.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagasawa, A., Okamoto, A. & Yonezawa, N. (2010d). Acta Cryst. E66, o2738.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds