organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1-Adamant­yl)(2-methyl­phen­yl)methanone

aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín,762 72, Czech Republic, and bDepartment of Chemistry, Faculty of Science, Masaryk University in Brno, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic
*Correspondence e-mail: rvicha@ft.utb.cz

(Received 2 November 2010; accepted 18 November 2010; online 24 November 2010)

In the title compound, C18H22O, the dihedral angle between the carbonyl and benzene planes is 69.11 (6)°. In the adamantyl group, the three fused cyclo­hexane rings have almost ideal chair conformations, with C—C—C angles in the range 108.14 (11)–110.50 (11)°. No specific inter­molecular inter­actions (other than van der Waals inter­actions) are present in the crystal.

Related literature

For background to the synthesis, see: Vícha et al. (2006[Vícha, R., Nečas, M. & Potáček, M. (2006). Collect. Czech. Chem. Commun. 71, 709-722.]); Austin & Johnson (1932[Austin, P. R. & Johnson, J. R. (1932). J. Am. Chem. Soc. 54, 647-660.]). For an alternative method for the preparation of the title compound, see: Lo Fiego et al. (2009[Lo Fiego, M. J., Lockhart, M. T. & Chopa, A. B. (2009). J. Organomet. Chem. 694, 3674-3678.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22O

  • Mr = 254.36

  • Monoclinic, P 21 /c

  • a = 6.6988 (4) Å

  • b = 12.2971 (6) Å

  • c = 16.7670 (7) Å

  • β = 92.244 (4)°

  • V = 1380.14 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 120 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire2 detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.974, Tmax = 1.000

  • 8111 measured reflections

  • 2414 independent reflections

  • 1673 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.084

  • S = 0.96

  • 2414 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.].

Supporting information


Comment top

The title compound arose from the reaction of adamantane-1-carbonyl chloride with benzylmagnesium chloride as a product of the rearrangement of a starting Grignard reagent. Similar behavior of benzylmagnesium halides has been described previously (Austin & Johnson, 1932). Alternatively, the title compound may be prepared by the reaction of adamantane-1-carbonyl chloride with 2-methylphenyl(tributyl)stannane as Lo Fiego et al. (2009) have described. In the molecule of the title compound (Fig. 1), the angle between carbonyl plane P1 (C1, C11, C12, O1) and benzene ring plane P2 (C12–C17) is 69.11 (6)°. Such a large twist may be attributed to the steric hindrance between the bulky adamantane moiety and the benzene ring. Nevertheless, the carbon of the methyl group in the ortho position is located almost in the ring plane with a deviation of 0.0587 (15) Å. Maximum deviations from the best planes are 0.0229 (13)Å for C11 and -0.0132 (13)Å for C12, respectively. No specific intermolecular interactions were observed in crystal packing.

Related literature top

For background to the synthesi, see: Vícha et al. (2006); Austin & Johnson (1932). For an alternative method for the preparation of the title compound, see: Lo Fiego et al. (2009).

Experimental top

The title compound was prepared by the reaction of adamantane-1-carbonyl chloride with benzylmagnesium chloride according to the procedure published previously (Vícha et al., 2006). The colorless microcrystalline powder was isolated from a crude complex mixture by column chromatography (silicagel; petroleum ether/ethyl acetate, v/v, 16/1). A single-crystal for X-ray analysis was acquired by spontaneous evaporation from deuterochloroform at room temperature.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), 1.00 Å (R3CH), 0.95 Å (CArH), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached atom.

Structure description top

The title compound arose from the reaction of adamantane-1-carbonyl chloride with benzylmagnesium chloride as a product of the rearrangement of a starting Grignard reagent. Similar behavior of benzylmagnesium halides has been described previously (Austin & Johnson, 1932). Alternatively, the title compound may be prepared by the reaction of adamantane-1-carbonyl chloride with 2-methylphenyl(tributyl)stannane as Lo Fiego et al. (2009) have described. In the molecule of the title compound (Fig. 1), the angle between carbonyl plane P1 (C1, C11, C12, O1) and benzene ring plane P2 (C12–C17) is 69.11 (6)°. Such a large twist may be attributed to the steric hindrance between the bulky adamantane moiety and the benzene ring. Nevertheless, the carbon of the methyl group in the ortho position is located almost in the ring plane with a deviation of 0.0587 (15) Å. Maximum deviations from the best planes are 0.0229 (13)Å for C11 and -0.0132 (13)Å for C12, respectively. No specific intermolecular interactions were observed in crystal packing.

For background to the synthesi, see: Vícha et al. (2006); Austin & Johnson (1932). For an alternative method for the preparation of the title compound, see: Lo Fiego et al. (2009).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ellipsoid plot of the asymmetric unit with atoms represented as 50% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure showing unit cell projected along the a-axis. H-atoms have been omitted for clarity.
(1-Adamantyl)(2-methylphenyl)methanone top
Crystal data top
C18H22OF(000) = 552
Mr = 254.36Dx = 1.224 Mg m3
Monoclinic, P21/cMelting point: 345 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 6.6988 (4) ÅCell parameters from 2705 reflections
b = 12.2971 (6) Åθ = 3.3–27.3°
c = 16.7670 (7) ŵ = 0.07 mm1
β = 92.244 (4)°T = 120 K
V = 1380.14 (12) Å3Block, colourless
Z = 40.40 × 0.40 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire2 detector
2414 independent reflections
Radiation source: Enhance (Mo) X-ray Source1673 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.4353 pixels mm-1θmax = 25.0°, θmin = 3.5°
ω scanh = 76
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1414
Tmin = 0.974, Tmax = 1.000l = 1919
8111 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0418P)2]
where P = (Fo2 + 2Fc2)/3
2414 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H22OV = 1380.14 (12) Å3
Mr = 254.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.6988 (4) ŵ = 0.07 mm1
b = 12.2971 (6) ÅT = 120 K
c = 16.7670 (7) Å0.40 × 0.40 × 0.30 mm
β = 92.244 (4)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire2 detector
2414 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1673 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 1.000Rint = 0.029
8111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 0.96Δρmax = 0.17 e Å3
2414 reflectionsΔρmin = 0.19 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.03229 (15)0.67052 (8)0.17539 (6)0.0327 (3)
C10.0839 (2)0.76864 (11)0.29798 (8)0.0198 (3)
C20.2536 (2)0.71524 (12)0.34999 (8)0.0275 (4)
H2A0.25720.63610.33930.033*
H2B0.38390.74660.33610.033*
C30.2185 (2)0.73491 (13)0.43858 (9)0.0311 (4)
H30.32830.70000.47160.037*
C40.2157 (2)0.85708 (14)0.45562 (9)0.0362 (4)
H4A0.19400.86970.51300.043*
H4B0.34580.88960.44280.043*
C50.0483 (2)0.91065 (12)0.40506 (9)0.0309 (4)
H50.04710.99060.41610.037*
C60.1514 (2)0.86164 (12)0.42657 (9)0.0292 (4)
H6A0.26080.89660.39450.035*
H6B0.17470.87480.48370.035*
C70.1501 (2)0.73938 (12)0.41004 (8)0.0247 (4)
H70.28110.70730.42430.030*
C80.1164 (2)0.71996 (12)0.32129 (8)0.0244 (4)
H8A0.22630.75380.28880.029*
H8B0.11730.64090.31020.029*
C90.0183 (2)0.68552 (12)0.46001 (9)0.0293 (4)
H9A0.00360.69680.51750.035*
H9B0.01920.60630.44950.035*
C100.0831 (2)0.89173 (11)0.31629 (8)0.0268 (4)
H10A0.21260.92400.30240.032*
H10B0.02390.92770.28350.032*
C110.1261 (2)0.74157 (11)0.21138 (8)0.0217 (3)
C120.2950 (2)0.79751 (11)0.17062 (8)0.0200 (3)
C130.2765 (2)0.90683 (12)0.14885 (8)0.0262 (4)
H130.15900.94560.16110.031*
C140.4271 (2)0.95941 (12)0.10975 (9)0.0306 (4)
H140.41251.03360.09470.037*
C150.5985 (2)0.90312 (13)0.09284 (8)0.0312 (4)
H150.70420.93900.06730.037*
C160.6163 (2)0.79443 (12)0.11302 (8)0.0269 (4)
H160.73460.75650.10060.032*
C170.4658 (2)0.73909 (11)0.15109 (8)0.0218 (3)
C180.4921 (2)0.61964 (12)0.16948 (9)0.0297 (4)
H18A0.63080.59850.16130.045*
H18B0.40260.57700.13400.045*
H18C0.45980.60590.22510.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0341 (7)0.0331 (6)0.0309 (6)0.0089 (5)0.0016 (5)0.0102 (5)
C10.0196 (8)0.0194 (8)0.0203 (8)0.0001 (6)0.0004 (6)0.0000 (6)
C20.0223 (9)0.0350 (9)0.0253 (9)0.0044 (7)0.0000 (7)0.0016 (7)
C30.0246 (9)0.0471 (11)0.0213 (8)0.0065 (8)0.0027 (7)0.0032 (7)
C40.0332 (10)0.0530 (12)0.0227 (9)0.0160 (8)0.0029 (8)0.0080 (8)
C50.0445 (11)0.0230 (9)0.0258 (9)0.0058 (7)0.0082 (8)0.0059 (7)
C60.0322 (10)0.0299 (9)0.0259 (9)0.0060 (7)0.0047 (7)0.0001 (7)
C70.0212 (9)0.0276 (9)0.0255 (8)0.0032 (7)0.0031 (7)0.0017 (7)
C80.0231 (9)0.0233 (8)0.0266 (8)0.0033 (6)0.0006 (7)0.0009 (6)
C90.0359 (10)0.0277 (9)0.0247 (8)0.0044 (7)0.0050 (7)0.0033 (7)
C100.0339 (10)0.0210 (8)0.0258 (8)0.0035 (7)0.0039 (7)0.0006 (6)
C110.0215 (8)0.0185 (8)0.0248 (8)0.0040 (7)0.0041 (7)0.0007 (6)
C120.0243 (9)0.0206 (8)0.0150 (7)0.0006 (6)0.0020 (6)0.0010 (6)
C130.0317 (9)0.0245 (9)0.0224 (8)0.0036 (7)0.0019 (7)0.0006 (6)
C140.0459 (11)0.0214 (9)0.0245 (9)0.0030 (7)0.0026 (8)0.0029 (6)
C150.0341 (10)0.0357 (10)0.0240 (8)0.0093 (8)0.0040 (7)0.0002 (7)
C160.0229 (9)0.0356 (10)0.0221 (8)0.0013 (7)0.0013 (7)0.0034 (7)
C170.0246 (9)0.0239 (8)0.0167 (7)0.0012 (6)0.0028 (6)0.0020 (6)
C180.0313 (9)0.0263 (9)0.0315 (9)0.0065 (7)0.0001 (7)0.0024 (7)
Geometric parameters (Å, º) top
O1—C111.2219 (16)C7—H71.0000
C1—C111.5268 (18)C8—H8A0.9900
C1—C81.5338 (19)C8—H8B0.9900
C1—C101.5445 (18)C9—H9A0.9900
C1—C21.551 (2)C9—H9B0.9900
C2—C31.5321 (19)C10—H10A0.9900
C2—H2A0.9900C10—H10B0.9900
C2—H2B0.9900C11—C121.5101 (19)
C3—C91.528 (2)C12—C131.3972 (18)
C3—C41.530 (2)C12—C171.4009 (19)
C3—H31.0000C13—C141.3843 (19)
C4—C51.529 (2)C13—H130.9500
C4—H4A0.9900C14—C151.380 (2)
C4—H4B0.9900C14—H140.9500
C5—C61.5232 (19)C15—C161.383 (2)
C5—C101.5332 (19)C15—H150.9500
C5—H51.0000C16—C171.3918 (19)
C6—C71.529 (2)C16—H160.9500
C6—H6A0.9900C17—C181.5097 (19)
C6—H6B0.9900C18—H18A0.9800
C7—C91.529 (2)C18—H18B0.9800
C7—C81.5325 (18)C18—H18C0.9800
C11—C1—C8110.71 (12)C1—C8—H8A109.6
C11—C1—C10113.89 (11)C7—C8—H8B109.6
C8—C1—C10108.78 (11)C1—C8—H8B109.6
C11—C1—C2106.46 (11)H8A—C8—H8B108.1
C8—C1—C2108.70 (11)C3—C9—C7109.53 (12)
C10—C1—C2108.14 (12)C3—C9—H9A109.8
C3—C2—C1109.96 (12)C7—C9—H9A109.8
C3—C2—H2A109.7C3—C9—H9B109.8
C1—C2—H2A109.7C7—C9—H9B109.8
C3—C2—H2B109.7H9A—C9—H9B108.2
C1—C2—H2B109.7C5—C10—C1110.09 (11)
H2A—C2—H2B108.2C5—C10—H10A109.6
C9—C3—C4109.22 (12)C1—C10—H10A109.6
C9—C3—C2109.56 (13)C5—C10—H10B109.6
C4—C3—C2109.85 (12)C1—C10—H10B109.6
C9—C3—H3109.4H10A—C10—H10B108.2
C4—C3—H3109.4O1—C11—C12118.83 (13)
C2—C3—H3109.4O1—C11—C1120.98 (13)
C5—C4—C3109.49 (12)C12—C11—C1120.07 (12)
C5—C4—H4A109.8C13—C12—C17119.81 (13)
C3—C4—H4A109.8C13—C12—C11119.76 (12)
C5—C4—H4B109.8C17—C12—C11120.36 (12)
C3—C4—H4B109.8C14—C13—C12120.96 (14)
H4A—C4—H4B108.2C14—C13—H13119.5
C6—C5—C4109.28 (12)C12—C13—H13119.5
C6—C5—C10109.77 (13)C15—C14—C13119.38 (14)
C4—C5—C10109.68 (13)C15—C14—H14120.3
C6—C5—H5109.4C13—C14—H14120.3
C4—C5—H5109.4C14—C15—C16119.94 (14)
C10—C5—H5109.4C14—C15—H15120.0
C5—C6—C7109.56 (12)C16—C15—H15120.0
C5—C6—H6A109.8C15—C16—C17121.86 (14)
C7—C6—H6A109.8C15—C16—H16119.1
C5—C6—H6B109.8C17—C16—H16119.1
C7—C6—H6B109.8C16—C17—C12117.99 (13)
H6A—C6—H6B108.2C16—C17—C18119.27 (13)
C6—C7—C9109.62 (12)C12—C17—C18122.74 (12)
C6—C7—C8109.35 (11)C17—C18—H18A109.5
C9—C7—C8109.33 (12)C17—C18—H18B109.5
C6—C7—H7109.5H18A—C18—H18B109.5
C9—C7—H7109.5C17—C18—H18C109.5
C8—C7—H7109.5H18A—C18—H18C109.5
C7—C8—C1110.50 (12)H18B—C18—H18C109.5
C7—C8—H8A109.6

Experimental details

Crystal data
Chemical formulaC18H22O
Mr254.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)6.6988 (4), 12.2971 (6), 16.7670 (7)
β (°) 92.244 (4)
V3)1380.14 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire2 detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.974, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8111, 2414, 1673
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.084, 0.96
No. of reflections2414
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008).

 

Acknowledgements

The financial support of this work by inter­nal grant of TBU in Zlín No. IGA/7/FT/10/D funded from the resources of specific university research is gratefully acknowledged.

References

First citationAustin, P. R. & Johnson, J. R. (1932). J. Am. Chem. Soc. 54, 647–660.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLo Fiego, M. J., Lockhart, M. T. & Chopa, A. B. (2009). J. Organomet. Chem. 694, 3674–3678.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVícha, R., Nečas, M. & Potáček, M. (2006). Collect. Czech. Chem. Commun. 71, 709–722.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds