metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis[1-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-1-one-κN4]bis­­(thio­cyanato-κN)nickel(II)

aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: guojianhua1998@163.com

(Received 9 November 2010; accepted 24 November 2010; online 27 November 2010)

In the centrosymmetric mononuclear title complex, [Ni(NCS)2(C11H11N3O)4], the NiII atom, located on an inversion centre, is hexa­coordinated in a distorted octa­hedral geometry comprising four N atoms of four monodentate 1-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-1-one ligands and two N atoms from thio­cyanate anions.

Related literature

Pseudohalide anions N3, NCS and NCO are versatile ligands in coordination chemistry because of their multiple bridging modes, see: Yue et al. (2008[Yue, Y. F., Gao, E. Q., Fang, C. J., Zheng, T., Liang, J. & Yan, C. H. (2008). Cryst. Growth Des. 9, 3295-3301.]). For a related structure, see: Guo & Cai (2007[Guo, J.-H. & Cai, H. (2007). Acta Cryst. E63, m1322-m1324.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C11H11N3O)4]

  • Mr = 979.78

  • Triclinic, [P \overline 1]

  • a = 7.8067 (10) Å

  • b = 11.8539 (15) Å

  • c = 13.8179 (17) Å

  • α = 68.907 (2)°

  • β = 74.765 (2)°

  • γ = 81.687 (2)°

  • V = 1149.3 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 293 K

  • 0.32 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.838, Tmax = 0.884

  • 6289 measured reflections

  • 4016 independent reflections

  • 3540 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.080

  • S = 1.06

  • 4016 reflections

  • 304 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pseudohalide anions N3-, NCS- and NCO- are known as extremely versatile ligands in coordination chemistry because of their multiple bridging modes (Yue et al., 2008). Recently, we have initiated a research program of synthesizing supramolecules based on pseudohalide and flexible ligands that consist of a propanone unit substituted with an imidazole and a phenyl group (Guo et al., 2007). To further explore this series, we synthesized the title compound, a new NiII complex based on the mixed ligands thiocyanato and 3-(1H-1,2,4-triazol-1-yl)-1-phenylpropan-1-one (L), which consists of a propanone unit substituted with an triazole and a phenyl group. The crystal structure of the compound consists of a neutral mononuclear [Ni(L)4(SCN)2] molecule. As shown in Fig. 1, the NiII centre is coordinated by four N atoms from four L ligands, with Ni—N bond lengths in the range 2.103 (1)–2.135 (1) Å, two additional N donor from SCN anion, with a Ni—N bond distance of 2.078 (2) Å. Thus, the coordination polyhedron around the NiII cation could be best described as a distorted octahedral geometry. Analysis of the crystal packing indicates that there were no hydrogen bond or πi-πi stacking interactions in the crystal structure. (see Fig. 2).

Related literature top

Pseudohalide anions N3-, NCS- and NCO- are versatile ligands in coordination chemistry because of their multiple bridging modes, see: Yue et al. (2008). For a related structure, see: Guo & Cai (2007).

Experimental top

Ni(NO3)2.6H2O (29.1 mg, 0.1 mmol), 3-(1H-1,2,4-triazol-1-yl)-1-phenylpropan-1-one (22.3 mg, 0.1 mmol) and NH4SCN (7.6 mg, 0.1 mmol) were mixed in a CH3CN—H2O (20 ml, 1:1 v/v) solution with vigorous stirring for ca 30 min. The resulting solution was filtered and left to stand at room temperature. Green block crystals suitable for X-ray analysis were obtained in 60% yield by slow evaporation of the solvent over a period of 1 week. Analysis, calculated for NiC46H44N14O4S2: C 56.39, H 4.53, N 20.01; found: C 56.44, H 4.64, N 20.05.

Refinement top

Although all H atoms were visible in difference maps, they were finally placed in geometrically calculated positions, with C—H distances in the range 0.93–0.97 Å, and included in the final refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H atoms.

Structure description top

Pseudohalide anions N3-, NCS- and NCO- are known as extremely versatile ligands in coordination chemistry because of their multiple bridging modes (Yue et al., 2008). Recently, we have initiated a research program of synthesizing supramolecules based on pseudohalide and flexible ligands that consist of a propanone unit substituted with an imidazole and a phenyl group (Guo et al., 2007). To further explore this series, we synthesized the title compound, a new NiII complex based on the mixed ligands thiocyanato and 3-(1H-1,2,4-triazol-1-yl)-1-phenylpropan-1-one (L), which consists of a propanone unit substituted with an triazole and a phenyl group. The crystal structure of the compound consists of a neutral mononuclear [Ni(L)4(SCN)2] molecule. As shown in Fig. 1, the NiII centre is coordinated by four N atoms from four L ligands, with Ni—N bond lengths in the range 2.103 (1)–2.135 (1) Å, two additional N donor from SCN anion, with a Ni—N bond distance of 2.078 (2) Å. Thus, the coordination polyhedron around the NiII cation could be best described as a distorted octahedral geometry. Analysis of the crystal packing indicates that there were no hydrogen bond or πi-πi stacking interactions in the crystal structure. (see Fig. 2).

Pseudohalide anions N3-, NCS- and NCO- are versatile ligands in coordination chemistry because of their multiple bridging modes, see: Yue et al. (2008). For a related structure, see: Guo & Cai (2007).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title complex with atom labeling, shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing view of compound.
Tetrakis[1-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-1-one- κN4]bis(thiocyanato-κN)nickel(II) top
Crystal data top
[Ni(NCS)2(C11H11N3O)4]Z = 1
Mr = 979.78F(000) = 510
Triclinic, P1Dx = 1.416 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8067 (10) ÅCell parameters from 3376 reflections
b = 11.8539 (15) Åθ = 2.7–27.7°
c = 13.8179 (17) ŵ = 0.57 mm1
α = 68.907 (2)°T = 293 K
β = 74.765 (2)°Block, green
γ = 81.687 (2)°0.32 × 0.28 × 0.22 mm
V = 1149.3 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4016 independent reflections
Radiation source: fine-focus sealed tube3540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.838, Tmax = 0.884k = 1412
6289 measured reflectionsl = 1612
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.040P)2 + 0.2997P]
where P = (Fo2 + 2Fc2)/3
4016 reflections(Δ/σ)max = 0.001
304 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = 0.34 e Å3
Crystal data top
[Ni(NCS)2(C11H11N3O)4]γ = 81.687 (2)°
Mr = 979.78V = 1149.3 (3) Å3
Triclinic, P1Z = 1
a = 7.8067 (10) ÅMo Kα radiation
b = 11.8539 (15) ŵ = 0.57 mm1
c = 13.8179 (17) ÅT = 293 K
α = 68.907 (2)°0.32 × 0.28 × 0.22 mm
β = 74.765 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4016 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3540 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.884Rint = 0.015
6289 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.080H-atom parameters constrained
S = 1.06Δρmax = 0.38 e Å3
4016 reflectionsΔρmin = 0.34 e Å3
304 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00001.00000.03496 (10)
S10.33805 (8)0.17536 (5)1.13687 (5)0.06495 (17)
O10.2740 (2)0.43272 (14)0.66743 (14)0.0764 (5)
O20.7081 (2)0.11988 (13)0.41955 (11)0.0655 (4)
N10.13110 (18)0.17612 (12)0.96907 (11)0.0392 (3)
N20.3141 (2)0.33084 (13)0.91887 (12)0.0452 (4)
N30.2531 (2)0.35006 (14)0.99458 (13)0.0532 (4)
N40.22222 (18)0.06368 (13)0.87523 (10)0.0396 (3)
N50.42461 (19)0.09149 (13)0.72860 (11)0.0413 (3)
N60.4816 (2)0.14708 (15)0.78321 (12)0.0524 (4)
N70.1164 (2)0.03338 (14)1.10545 (12)0.0463 (4)
C10.1443 (3)0.25495 (17)1.02134 (14)0.0482 (4)
H10.08050.24261.07280.058*
C20.2417 (2)0.22777 (16)0.90504 (14)0.0433 (4)
H20.26500.19630.85740.052*
C30.4513 (3)0.41348 (18)0.87177 (18)0.0575 (5)
H3A0.54520.42870.92820.069*
H3B0.50270.37490.83570.069*
C40.3814 (3)0.53338 (17)0.79313 (15)0.0517 (5)
H4A0.48030.59320.78500.062*
H4B0.30060.56030.82190.062*
C50.2859 (3)0.52697 (17)0.68498 (17)0.0512 (5)
C60.2094 (3)0.63838 (17)0.59972 (15)0.0478 (4)
C70.2128 (3)0.74666 (18)0.61733 (17)0.0589 (5)
H70.26640.75210.68420.071*
C80.1372 (3)0.8465 (2)0.53641 (19)0.0696 (6)
H80.14010.91860.54930.084*
C90.0584 (3)0.8405 (2)0.43801 (19)0.0694 (6)
H90.00700.90810.38400.083*
C100.0551 (3)0.7347 (2)0.41887 (19)0.0725 (7)
H100.00230.73060.35140.087*
C110.1297 (3)0.6340 (2)0.49890 (17)0.0618 (6)
H110.12630.56240.48510.074*
C120.3558 (3)0.12746 (18)0.87042 (14)0.0501 (5)
H120.35840.15530.92490.060*
C130.2719 (2)0.04232 (16)0.78431 (13)0.0430 (4)
H130.20860.00120.76250.052*
C140.5325 (3)0.08618 (17)0.62641 (14)0.0493 (5)
H14A0.46850.04740.59670.059*
H14B0.64210.03820.63690.059*
C150.5753 (2)0.21197 (16)0.54981 (13)0.0448 (4)
H15A0.46520.26060.54270.054*
H15B0.64320.24900.57890.054*
C160.6796 (2)0.21220 (17)0.44120 (14)0.0433 (4)
C170.7446 (2)0.32998 (16)0.36077 (13)0.0409 (4)
C180.6985 (3)0.43852 (18)0.37917 (15)0.0540 (5)
H180.62740.43960.44450.065*
C190.7573 (3)0.54573 (19)0.30103 (17)0.0640 (6)
H190.72370.61880.31340.077*
C200.8645 (3)0.5447 (2)0.20578 (16)0.0605 (6)
H200.90410.61700.15350.073*
C210.9141 (3)0.4374 (2)0.18690 (16)0.0633 (6)
H210.98810.43680.12220.076*
C220.8541 (3)0.33028 (19)0.26387 (15)0.0549 (5)
H220.88730.25770.25060.066*
C230.2074 (2)0.09092 (16)1.12141 (13)0.0401 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03343 (17)0.03979 (18)0.02712 (16)0.01089 (12)0.00462 (12)0.00422 (12)
S10.0753 (4)0.0712 (4)0.0618 (3)0.0221 (3)0.0177 (3)0.0299 (3)
O10.0911 (12)0.0527 (9)0.0871 (11)0.0029 (8)0.0070 (9)0.0353 (8)
O20.0860 (11)0.0510 (8)0.0485 (8)0.0119 (7)0.0079 (7)0.0171 (7)
N10.0398 (8)0.0403 (8)0.0326 (7)0.0093 (6)0.0067 (6)0.0048 (6)
N20.0433 (8)0.0441 (8)0.0441 (8)0.0059 (7)0.0123 (7)0.0070 (7)
N30.0634 (10)0.0478 (9)0.0490 (9)0.0007 (8)0.0173 (8)0.0148 (7)
N40.0383 (8)0.0434 (8)0.0313 (7)0.0106 (6)0.0035 (6)0.0059 (6)
N50.0421 (8)0.0440 (8)0.0316 (7)0.0120 (6)0.0004 (6)0.0074 (6)
N60.0522 (9)0.0625 (10)0.0407 (8)0.0271 (8)0.0016 (7)0.0149 (7)
N70.0434 (8)0.0555 (9)0.0386 (8)0.0095 (7)0.0108 (7)0.0106 (7)
C10.0595 (12)0.0468 (10)0.0389 (10)0.0058 (9)0.0163 (9)0.0103 (8)
C20.0427 (10)0.0456 (10)0.0390 (9)0.0107 (8)0.0085 (8)0.0089 (8)
C30.0442 (11)0.0561 (12)0.0645 (13)0.0005 (9)0.0162 (10)0.0099 (10)
C40.0539 (11)0.0465 (10)0.0526 (11)0.0065 (9)0.0187 (9)0.0131 (9)
C50.0485 (11)0.0462 (11)0.0617 (12)0.0077 (8)0.0199 (9)0.0204 (9)
C60.0481 (11)0.0468 (10)0.0494 (11)0.0110 (8)0.0187 (9)0.0169 (8)
C70.0749 (14)0.0495 (11)0.0498 (11)0.0059 (10)0.0145 (10)0.0172 (9)
C80.0873 (17)0.0482 (12)0.0687 (15)0.0031 (11)0.0207 (13)0.0149 (11)
C90.0619 (14)0.0622 (14)0.0656 (15)0.0035 (11)0.0142 (11)0.0027 (11)
C100.0664 (15)0.0860 (18)0.0514 (13)0.0121 (13)0.0045 (11)0.0196 (12)
C110.0651 (13)0.0624 (13)0.0596 (13)0.0122 (11)0.0150 (11)0.0282 (11)
C120.0558 (11)0.0570 (11)0.0366 (9)0.0258 (9)0.0021 (8)0.0152 (8)
C130.0409 (10)0.0501 (10)0.0346 (9)0.0159 (8)0.0054 (7)0.0075 (8)
C140.0524 (11)0.0510 (11)0.0353 (9)0.0089 (9)0.0050 (8)0.0120 (8)
C150.0436 (10)0.0480 (10)0.0337 (9)0.0043 (8)0.0008 (7)0.0080 (8)
C160.0409 (10)0.0480 (10)0.0361 (9)0.0038 (8)0.0054 (7)0.0106 (8)
C170.0383 (9)0.0477 (10)0.0323 (9)0.0046 (8)0.0070 (7)0.0082 (7)
C180.0627 (12)0.0512 (11)0.0382 (10)0.0030 (9)0.0022 (9)0.0098 (8)
C190.0799 (16)0.0478 (11)0.0563 (13)0.0061 (11)0.0133 (11)0.0088 (10)
C200.0604 (13)0.0596 (13)0.0482 (12)0.0217 (10)0.0102 (10)0.0027 (10)
C210.0624 (13)0.0771 (15)0.0361 (10)0.0192 (11)0.0063 (9)0.0088 (10)
C220.0611 (12)0.0584 (12)0.0385 (10)0.0109 (10)0.0022 (9)0.0152 (9)
C230.0417 (9)0.0467 (10)0.0299 (8)0.0030 (7)0.0084 (7)0.0101 (7)
Geometric parameters (Å, º) top
Ni1—N7i2.0783 (15)C6—C71.385 (3)
Ni1—N72.0783 (15)C6—C111.385 (3)
Ni1—N42.1028 (13)C7—C81.379 (3)
Ni1—N4i2.1028 (13)C7—H70.9300
Ni1—N12.1351 (14)C8—C91.360 (3)
Ni1—N1i2.1351 (14)C8—H80.9300
S1—C231.6282 (19)C9—C101.368 (4)
O1—C51.212 (2)C9—H90.9300
O2—C161.211 (2)C10—C111.378 (3)
N1—C21.327 (2)C10—H100.9300
N1—C11.351 (2)C11—H110.9300
N2—C21.327 (2)C12—H120.9300
N2—N31.355 (2)C13—H130.9300
N2—C31.461 (2)C14—C151.509 (2)
N3—C11.311 (2)C14—H14A0.9700
N4—C131.318 (2)C14—H14B0.9700
N4—C121.349 (2)C15—C161.507 (2)
N5—C131.322 (2)C15—H15A0.9700
N5—N61.349 (2)C15—H15B0.9700
N5—C141.460 (2)C16—C171.495 (2)
N6—C121.309 (2)C17—C181.379 (3)
N7—C231.162 (2)C17—C221.385 (2)
C1—H10.9300C18—C191.383 (3)
C2—H20.9300C18—H180.9300
C3—C41.516 (3)C19—C201.365 (3)
C3—H3A0.9700C19—H190.9300
C3—H3B0.9700C20—C211.371 (3)
C4—C51.508 (3)C20—H200.9300
C4—H4A0.9700C21—C221.379 (3)
C4—H4B0.9700C21—H210.9300
C5—C61.492 (3)C22—H220.9300
N7i—Ni1—N7180.0C8—C7—H7119.8
N7i—Ni1—N489.53 (6)C6—C7—H7119.8
N7—Ni1—N490.47 (6)C9—C8—C7120.7 (2)
N7i—Ni1—N4i90.47 (6)C9—C8—H8119.7
N7—Ni1—N4i89.53 (6)C7—C8—H8119.7
N4—Ni1—N4i180.0C8—C9—C10119.7 (2)
N7i—Ni1—N190.38 (6)C8—C9—H9120.2
N7—Ni1—N189.62 (6)C10—C9—H9120.2
N4—Ni1—N192.47 (5)C9—C10—C11120.4 (2)
N4i—Ni1—N187.53 (5)C9—C10—H10119.8
N7i—Ni1—N1i89.62 (6)C11—C10—H10119.8
N7—Ni1—N1i90.38 (6)C10—C11—C6120.6 (2)
N4—Ni1—N1i87.53 (5)C10—C11—H11119.7
N4i—Ni1—N1i92.47 (5)C6—C11—H11119.7
N1—Ni1—N1i180.0N6—C12—N4114.85 (17)
C2—N1—C1102.31 (15)N6—C12—H12122.6
C2—N1—Ni1128.52 (13)N4—C12—H12122.6
C1—N1—Ni1128.48 (12)N4—C13—N5110.34 (16)
C2—N2—N3110.13 (15)N4—C13—H13124.8
C2—N2—C3129.49 (17)N5—C13—H13124.8
N3—N2—C3120.18 (16)N5—C14—C15110.42 (15)
C1—N3—N2102.04 (15)N5—C14—H14A109.6
C13—N4—C12102.53 (14)C15—C14—H14A109.6
C13—N4—Ni1127.68 (12)N5—C14—H14B109.6
C12—N4—Ni1129.61 (12)C15—C14—H14B109.6
C13—N5—N6109.87 (14)H14A—C14—H14B108.1
C13—N5—C14129.32 (16)C16—C15—C14112.64 (15)
N6—N5—C14120.71 (14)C16—C15—H15A109.1
C12—N6—N5102.40 (14)C14—C15—H15A109.1
C23—N7—Ni1149.53 (14)C16—C15—H15B109.1
N3—C1—N1115.41 (17)C14—C15—H15B109.1
N3—C1—H1122.3H15A—C15—H15B107.8
N1—C1—H1122.3O2—C16—C17121.11 (16)
N2—C2—N1110.11 (17)O2—C16—C15120.90 (16)
N2—C2—H2124.9C17—C16—C15117.98 (16)
N1—C2—H2124.9C18—C17—C22118.80 (17)
N2—C3—C4113.09 (16)C18—C17—C16122.40 (16)
N2—C3—H3A109.0C22—C17—C16118.79 (17)
C4—C3—H3A109.0C17—C18—C19120.34 (19)
N2—C3—H3B109.0C17—C18—H18119.8
C4—C3—H3B109.0C19—C18—H18119.8
H3A—C3—H3B107.8C20—C19—C18120.2 (2)
C5—C4—C3113.39 (17)C20—C19—H19119.9
C5—C4—H4A108.9C18—C19—H19119.9
C3—C4—H4A108.9C19—C20—C21120.16 (19)
C5—C4—H4B108.9C19—C20—H20119.9
C3—C4—H4B108.9C21—C20—H20119.9
H4A—C4—H4B107.7C20—C21—C22119.97 (19)
O1—C5—C6120.63 (19)C20—C21—H21120.0
O1—C5—C4120.17 (19)C22—C21—H21120.0
C6—C5—C4119.19 (17)C21—C22—C17120.5 (2)
C7—C6—C11118.2 (2)C21—C22—H22119.8
C7—C6—C5122.69 (18)C17—C22—H22119.8
C11—C6—C5119.16 (18)N7—C23—S1176.90 (16)
C8—C7—C6120.5 (2)
N7i—Ni1—N1—C20.68 (14)O1—C5—C6—C7177.0 (2)
N7—Ni1—N1—C2179.32 (14)C4—C5—C6—C74.0 (3)
N4—Ni1—N1—C290.22 (14)O1—C5—C6—C112.2 (3)
N4i—Ni1—N1—C289.78 (14)C4—C5—C6—C11176.77 (18)
N7i—Ni1—N1—C1169.37 (15)C11—C6—C7—C80.5 (3)
N7—Ni1—N1—C110.63 (15)C5—C6—C7—C8178.7 (2)
N4—Ni1—N1—C1101.08 (15)C6—C7—C8—C90.1 (4)
N4i—Ni1—N1—C178.92 (15)C7—C8—C9—C100.4 (4)
C2—N2—N3—C10.4 (2)C8—C9—C10—C110.6 (4)
C3—N2—N3—C1175.77 (16)C9—C10—C11—C60.2 (4)
N7i—Ni1—N4—C1319.91 (15)C7—C6—C11—C100.3 (3)
N7—Ni1—N4—C13160.09 (15)C5—C6—C11—C10178.9 (2)
N1—Ni1—N4—C13110.27 (15)N5—N6—C12—N40.2 (2)
N1i—Ni1—N4—C1369.73 (15)C13—N4—C12—N60.5 (2)
N7i—Ni1—N4—C12165.83 (16)Ni1—N4—C12—N6175.88 (13)
N7—Ni1—N4—C1214.17 (16)C12—N4—C13—N50.6 (2)
N1—Ni1—N4—C1275.48 (16)Ni1—N4—C13—N5176.09 (11)
N1i—Ni1—N4—C12104.52 (16)N6—N5—C13—N40.5 (2)
C13—N5—N6—C120.2 (2)C14—N5—C13—N4176.90 (16)
C14—N5—N6—C12176.91 (17)C13—N5—C14—C15128.03 (19)
N4—Ni1—N7—C2332.2 (3)N6—N5—C14—C1555.9 (2)
N4i—Ni1—N7—C23147.8 (3)N5—C14—C15—C16177.37 (15)
N1—Ni1—N7—C2360.3 (3)C14—C15—C16—O26.2 (3)
N1i—Ni1—N7—C23119.7 (3)C14—C15—C16—C17174.59 (16)
N2—N3—C1—N10.2 (2)O2—C16—C17—C18173.0 (2)
C2—N1—C1—N30.1 (2)C15—C16—C17—C186.3 (3)
Ni1—N1—C1—N3171.03 (12)O2—C16—C17—C226.5 (3)
N3—N2—C2—N10.5 (2)C15—C16—C17—C22174.30 (17)
C3—N2—C2—N1175.28 (16)C22—C17—C18—C191.5 (3)
C1—N1—C2—N20.33 (19)C16—C17—C18—C19177.93 (19)
Ni1—N1—C2—N2171.29 (11)C17—C18—C19—C201.3 (3)
C2—N2—C3—C4110.8 (2)C18—C19—C20—C210.2 (4)
N3—N2—C3—C474.8 (2)C19—C20—C21—C220.6 (4)
N2—C3—C4—C579.4 (2)C20—C21—C22—C170.4 (3)
C3—C4—C5—O11.3 (3)C18—C17—C22—C210.7 (3)
C3—C4—C5—C6179.74 (16)C16—C17—C22—C21178.80 (19)
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C11H11N3O)4]
Mr979.78
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8067 (10), 11.8539 (15), 13.8179 (17)
α, β, γ (°)68.907 (2), 74.765 (2), 81.687 (2)
V3)1149.3 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.32 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.838, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
6289, 4016, 3540
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.06
No. of reflections4016
No. of parameters304
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.34

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The author gratefully acknowledges financial support from the Youthful Foundation of Tianjin Normal University (Natural Science, grant No. 52 L J44)

References

First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, J.-H. & Cai, H. (2007). Acta Cryst. E63, m1322–m1324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYue, Y. F., Gao, E. Q., Fang, C. J., Zheng, T., Liang, J. & Yan, C. H. (2008). Cryst. Growth Des. 9, 3295–3301.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds